Enrichment of electrochemically active bacteria using microbial fuel cell and potentiostat

Size: px
Start display at page:

Download "Enrichment of electrochemically active bacteria using microbial fuel cell and potentiostat"

Transcription

1 Enrichment of electrochemically active bacteria using microbial fuel cell and potentiostat Tim Niklas Enke ETH Zurich Microbial Diversity 2015

2 Introduction Microbial fuel cells (MFC) can be applied to harness the power released by metabolically active bacteria as electrical energy (Figure 1). In addition to the energy generation capabilities of MFC, they have been used to generate hydrogen gas and to clean, desalinate or detoxify wastewater [1,2]. Among the bacteria found to be electrochemically active are Geobacter sulfurreducens, Shewanella putrefaciens and Aeromonas hydrophila [2,3,4]. Figure 1: Scheme of a microbial fuel cell. A MFC consists of an anaerobic anode chamber with rich organic matter, such as sludge from wastewater treatment plants or sediment. The anode (1) serves as an electron acceptor in an electron acceptor limited environment and is wired externally (2) over a resistor (3) to a cathode (5). Electrons travel over the circuit and create a current, while protons can pass the proton exchange membrane (4) to reach the oxic cathode chamber. At the cathode, the protons, electrons and oxygen react to form water. In the cathode chamber, a catalyst can facilitate the reaction and thus the movement of electrons. Figure from [ 08/18/2015]. Even more remarkably, in the deep sea, microbes can power measurement devices that deploy an anode in the anoxic sediments and position a cathode in the oxygen richer water column above, thus exploiting the MFC principle [5]. In a different application, MFC can be used to enrich for bacteria that are capable of extracellular electron transfer (EET) and form a biofilm on the electrode. In this setup, the MFC anode serves as an electron acceptor in a rich

3 organic, anaerob environment that is limited for electron accepting species, providing a niche and thus selecting for EET capable bacteria [6]. Contrary to an MFC where electrochemically active bacteria are enriched due to their capability to donate electrons to an anode, a potentiostat sets a constant potential between a working and a reference electrode by adjusting the current. Here, the enrichments selects for bacteria that are capable of using electrons to harvest energy. Furthermore, potentiostats can be used for cyclic voltammetry, where a potential is cycled and the resulting current is recorded to investigate redox chemical processes at the working electrode. This mini project aims at probing the potential of microbial fuel cells and potentiostat to in situ and in vitro enrich for electrochemically active microbial consortia. Results Graphite electrodes were incubated in a microbial fuel cell (see Figure 5, also Figure 1), in vitro in a core from Trunk river (Figure 4) and in situ at Trunk river (Table 3). The electrodes and controls from the MFC, the core (no controls) and in situ site at Trunk river (no controls) were imaged with a stereoscope to look for biofilm formation and for some electrodes cyclic voltammetry was performed to investigate the redox activities on the electrode (Table 1). Parts of the electrodes were fixed and prepared for scanning electron microscopy to further investigate biofilm composition (Table 2). Microbial fuel cell The potential between anode and cathode was measured for eight days (Figure 2). In the microbial fuel cell, an increase in potential can be observed, plateauing after 5 days. The anode used to enrich for bacteria capable of EET shows a different biofilm than the control that was deposited in the anode chamber of the MFC but not wired to a cathode, thus it just provided a graphite surface and no electron sink (Table 1, b and c). Scanning electron microscopy showed that the biofilm on the anode consists of both larger single cell eukaryotes as well as small round bacteria in a dense biofilm with extracellular matrix (Table 2, b).

4 The MFC anode was re-inoculated into a fresh MFC with glucose / galactose media and media composition, OD and potential were monitored over time (Figure 3). While OD increase to 0.3, the potential did not show any increase. After three days, no more OD increase was observed and the anode was harvested. The biofilm on the anode from the secondary enrichment is different from the biofilm that grew on the anode from the first enrichment (Table 1 d). Consistent with the decreasing potential in the secondary enrichment, the anode did not show any redox activities in cyclic voltammetry. Figure 2 Microbial fuel cell and core potential between the anode and the cathode. a) b) c) d) Figure 3 Secondary enrichment: the anode from the MFC was re-inoculated into a fresh MFC setup and monitored. a) OD over time b) potential between the anode and the cathode over time c) consumption of glucose and galactose in MFC medium d) production of galactose and glucose break down products, c) and d) monitored by HPLC.

5 Trunk river in vitro core The core reached an equilibrium potential after 40 hours and showed no increase in potential (Figure 2). The observed biofilm on both the cathode and the anode appeared different, but showed no redox activity in cyclic voltammetry measurements (Table 1 g and h), consistent to the equilibrating and not increasing potential measurement. Figure 4 Oxygen and hydrogen sulfide profiles for the first 4.5 cm of the sediment of core from trunk river, determined with microelectrodes. The core contains an anode in the sediment (ca. 12 cm deep, presumably in the anaerobe region) and the cathode at the air water interface. Trunk river in situ electrode enrichments Electrodes were harvested from the in situ site at trunk river after 12 days, although the anodes were lost due to cable corrosion in 3 out of 4 cases. A different biofilm on cathode and anode can be observed (Table 1 e,f). SEM of the electrodes show many large cells on the cathode and a dense bacterial biofilm on the anode (Table 2 c, d). Two of the cathodes were re inoculated into anaerobic bottles with Fe2+ containing medium to check if the enriched bacteria can oxidize and accept electrons from iron, both under light and dark conditions. The incubations appeared orange as a sign of iron oxidation and the electrodes were harvested after 8 days and investigated by microscopy and cyclic voltammetry (Table 1, k and l). Both electrons show a very different biofilm and redox activity in the cyclic voltammetry.

6 One cathode from trunk river was used to inoculate a potentiostat and harvested after 8 days of constant potential. Compared to the reference electrode, the region of the cathode that was submerged in the potentiostat media showed a clear biofilm (Table 1, i and j). In addition, cyclic voltammetry revealed redox activity on the potentiostat electrode. Table 1 Stereoscope images and cyclic voltammetry profiles (if available) of electrodes from different enrichments. Source electrode Image Cyclic voltammetry a) control graphite control b) MFC first enrichment anode c) MFC first enrichment control

7 d) MFC second enrichment anode e) Trunk river cathode f) Trunk river anode g) Core Trunk River cathode

8 h) Core Trunk River anode i) Potentiostat electrode Working electrode j) Potentiostat electrode Counter electrode (ctrl) k) Fe2+ light cathode

9 l) Fe2+ dark cathode Table 2 Scanning Electron Microscopy images of electrodes from different enrichments Source electrode SEM image a) control graphite control

10 b) MFC first enrichme nt anode

11 c) Trunk River cathode

12 d) Core Trunk River anode Discussion The different biofilms on the electrodes show that different inoculum sources as well as the different enrichment procedures lead to the formation of distinctable biofilms. Stereomicroscopy yields a variety of different biofilm types that grow on the graphite electrodes from different sources and cyclic voltammetry confirmed redox activity of some of the biofilms. Scanning electron microscopy revealed both bacterial biofilms as well as associated diatoms and other larger single cell organisms, specifically at the cathodes from trunk river. The potentiostat caused a biofilm to develop on the working electrode that showed peaks of redox activity in cyclic voltammetry. To conclude, both the MFC and the potentiostat setup allow to enrich for and study electrochemically active bacteria that form biofilms on the electrodes. Apart from the here applied methods used to investigate the electrodes, stereomicroscopy, scanning electron microscopy and cyclic voltammetry, other methods can give complementary insight: FISH can reveal the phylum composition of the consortia as well as the spatial organization within the biofilm. Plating on indicator plates like MnO2 plates that clear upon electron transfer to the MnO2 can help to isolate and further characterize bacteria capable of extracellular electron transfer.

13 Caveats in the experimental setup were corrosion of in situ electrode cables in trunk river that were not insulated. Corrosion can decrease the conductivity of the cable and in this case even caused the breaking of the wire and loss of the anodes. Furthermore, controls that were not wired to a circuit to investigate biofilm formation on graphite in the absence of electron transport were only included in the MFC and not in the in situ samples. Including controls and insulating the cables that connect the electrodes can lead to more conclusive insights in the biofilm formation at mfc electrodes. For the secondary MFC enrichment, the membrane could not be fully recovered and was covered by a white film. Even harsher cleaning conditions did not result in a clean membrane. If the membrane was not permeable for protons in the second set up, the declining potential in the second enrichment can be explained. In parallel to the presented MFC, three do it yourself MFC with different sediments as inoculum were set up to compare differences in biofilm formation at the anode (see for example These MFC used an agar saltbridge instead of a membrane, but none of them created a change in potential, which can be because of the high internal resistance of the saltbridge or oxygen leakage into the anaerobic anode chamber. Still, the anodes graphite electrodes showed biofilm formation even for the self-made MFC (data not shown), although a conclusion whether these are electrochemically active bacteria is not possible without an increase in potential.

14 Methods and Protocols Table 3 Inoculum sources for MFC and core Inoculum source Sippewissett Salt Marsh (SW) Trunk River (TR) Description intertidal salt marsh, photosynthetic microbial mats, multicellular Magnetotactic Bacteria (MMBs) Trunk River freshwater / brackish basin overlying sediments with seawater intrusion and an active sulfur cycle MFC set up Proton Exchange Membrane MFC Core, in situ electrodes Microbial Fuel Cell setup Figure 5 Microbial Fuel Cell setup, secondary enrichment. Left: anaerobic anode chamber with MFC media, gas outlet and bubbled with nitrogen. Proton exchange membrane between the two chambers. Right: cathode chamber with 50 mm Potassium ferrycyanide in 1:1 SW and FW base as catalyst, bubbled with air. See also Figure 1. Electrodes are cm graphite with a hole drilled with syringe needle. Wire used throughout was copper cable. The cable was insulated with rubber coating (Performix Plasti Dip) to prevent corrosion.

15 The aerobe cathode chamber contained 50 mm of the catalyst potassium ferricyanide (K3[Fe(CN)6 to facilitate electron acceptance by oxygen (2H+ + 2e- + O2 -> H2O). The cathode is wired over a 220 Ohm resistor to the anaerobe anode chamber. The secondary enrichment MFC was set up as stated above. Inoculum was the anode from the first enrichment. Microbial Fuel Cell Media for second enrichment Ingredient and stock conc Final conc. 500 ml SW base 1 x 10 ml 100 x FW base 1 x MOPS, ph 7.2, 1M 20 mm Galactose 1M 10 mm Glucose 1M 10 mm NH4Cl 100 x 10 mm H2S 1M 1 mm K2HPO4 100 mm 1mM Trace Elements and Vitamins 1x Proton Exchange Membrane preparation (protocol provided by Lina Bird) a. To clean membranes, place all dirty membranes in 70% ethanol solution for 30 minutes. i. Ethanol cleans off grease & graphite fibers from membranes. b. Wipe off grease from membranes using ethanol and kimwipes. After removing grease, immediately place each membrane in a beaker of DDI water. i. Membranes should be in solution at all times to prevent drying and cracking. c. Rinse with fresh DDI water. d. Boil membranes on low (~80C) in ddh2o for 30 minutes. Rinse. e. Boil membranes on low (~80C) in 3% H2O2 for 1 hour. Membranes will often float above fluid line weigh down the membranes with a glass apparatus to keep them submerged. i. H2O2 cleans the membrane. f. Rinse thoroughly with DDI water. g. Boil membranes on low (~80C) in 0.5 M H2SO4 for 1 hour. See notes in Step E. i. H2SO4 re-protonates membranes & provides additional cleaning. h. Rinse thoroughly in DDI water. i. Store in DDI water in Clean Membranes container. j. If pretreating new membranes, cut membranes out to dimensions of 5 x 5 cm. Soak in 0.5% HCl for 2 3 hours. Rinse with DDI water. Follow steps D H. Store in DDI water in New Membranes container.

16 Iron media (Fe 2+ ) Ingredient and stock conc Final conc. 10 ml 100 x FW base 1 x MOPS, ph 7.2, 1M 20 mm Acetate 1M 1 mm Bicarbonate 1M 25 mm NaNO3 10 mm Fe 2+ 5 mm NH4Cl 100 x 10 mm NaSO4 1M 1 mm K2HPO4 100 mm 1mM Trace Elements and Vitamins 1x Potentiostat media Ingredient and stock conc Final conc. 500 ml SW base 1 x 10 ml 100 x FW base 1 x NH4Cl 100 x 10 mm Bicarbonate 1M 25 mm NaSO4 1M 1 mm K2HPO4 100 mm 1mM Trace Elements and Vitamins 1x Fixation for SEM Electrodes were submerged in 4 % PFA and incubated 4h at 4 C. After fixation, sampled were washed 3 times in 1x PBS and dehydrated by each 20 minutes at room temperature in 25%, 50%, 75%, 95% and 100% ethanol. Samples were further dried by critical point drying and spotter coated with platinum in the MBL central microscope facility.

17 Acknowledgements I want to thank the Bernard Davis Endowed Scholarship Fund and ETH Zurich for the financial support of my participation in the course. I also want to thank my supervisor Otto Cordero who encouraged my application for this course, knowing about the impact that it can and will have on every researcher s life and career. Thanks to Lina Bird for the equipment, help and discussion for the setup of the enrichments that form the basis of this mini project. Special thanks go to all the students in the course for making the intense time and experience of the Microbial Diversity course 2015 so fruitful and memorable, to all the teaching assistants who avidly worked to create a perfect working and learning atmosphere in the course, to the course assistants and the course coordinator for keeping things running and to the faculty for their advice, guidance and discussion. Lastly, both directors deserve the highest appreciation and admiration for the organization and realization of the course and the inspiration and scientific spirit they transmit on to young scientists in word and deed. References 1. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science and Technology, 40(17), doi: /es Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), doi:doi /Es Kim, B.H.; Kim, H.J.; Hyun, M.S.; Park, D.H. (1999a). "Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefacience" (PDF). J Microbiol. Biotechnol 9: Pham, C. A.; Jung, S. J.; Phung, N. T.; Lee, J.; Chang, I. S.; Kim, B. H.; Yi, H.; Chun, J. (2003). "A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell".fems Microbiology Letters 223 (1): doi: /s (03) Gong, Y., Radachowsky, S.E., Wolf, M., Nielson, M.E., Girguis, P.R., and Reimers, C.E Benthic Microbial Fuel Cell as Direct Power Source for an Acoustic Modem and Seawater Oxygen/Temperature Sensor System. Environmental Science and Technology 45(11): doi: /es104383q. 6. Meng, T., Li, S., Du, Z., & Li, H. (2007). Enrichment of an Electrochemically Active Bacterial Community. Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement,

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Electricity Generation in Double Chamber Microbial Fuel Cell with different Salts Concentration Shikhi Shrivastava M.Tech Scholar,

More information

Power Generation Through Double Chamber MFC Operation By Slurry Mixed With Different Substrates

Power Generation Through Double Chamber MFC Operation By Slurry Mixed With Different Substrates Power Generation Through Double Chamber MFC Operation By Slurry Mixed With Different Substrates Shikhi Shrivastava 1, Dr.Hemlata Bundela 2 1 M.Tech Scholar, Energy Technology, Takshshila Institute of Engineering

More information

TREATMENT OF WASTEWATER AND ELECTRICITY GENERATION USING MICROBIAL FUEL CELL TECHNOLOGY

TREATMENT OF WASTEWATER AND ELECTRICITY GENERATION USING MICROBIAL FUEL CELL TECHNOLOGY TREATMENT OF WASTEWATER AND ELECTRICITY GENERATION USING MICROBIAL FUEL CELL TECHNOLOGY B.G. Mahendra 1, Shridhar Mahavarkar 2 1 Associate Professor, 2 M.Tech Scholar, Department of Civil Engineering,

More information

[Shrivastava, 3(2): February, 2014] ISSN: Impact Factor: 1.852

[Shrivastava, 3(2): February, 2014] ISSN: Impact Factor: 1.852 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Electricity Generation by the use of Double Chamber Microbial Fuel Cell: Comparative study of the Voltage Generated by Bread Factory

More information

Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration

Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration Environ. Sci. Technol. 2005, 39, 5488-5493 Power Generation in Fed-Batch Microbial Fuel Cells as a Function of Ionic Strength, Temperature, and Reactor Configuration HONG LIU, SHAOAN CHENG, AND BRUCE E.

More information

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 1, Copyright 2010 All rights reserved Integrated Publishing Association

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 1, Copyright 2010 All rights reserved Integrated Publishing Association INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 2, No 1, 2011 Copyright 2010 All rights reserved Integrated Publishing Association Research article ISSN 0976 4402 Treatment of distillery wastewater

More information

Construction and operation of a novel mediator- and membrane-less microbial fuel cell

Construction and operation of a novel mediator- and membrane-less microbial fuel cell Process Biochemistry 39 (2004) 1007 1012 Construction and operation of a novel mediator- and membrane-less microbial fuel cell Jae Kyung Jang a,b, The Hai Pham a, In Seop Chang a, Kui Hyun Kang a, Hyunsoo

More information

CONSORTIUM BUILDING FOR PEM MFC USING SYNTHETIC MEDIA AS SUBSTRATE

CONSORTIUM BUILDING FOR PEM MFC USING SYNTHETIC MEDIA AS SUBSTRATE CONSORTIUM BUILDING FOR PEM MFC USING SYNTHETIC MEDIA AS SUBSTRATE Dimpal Parida, Arti Yadav and A. Muralidharan* School of Bioengineering, SRM University, Chennai 603203, India muralifly@hotmail.com Abstract:

More information

Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap Source of Catholyte

Generation of Electricity from Abattoir Waste Water with the Aid of a Relatively Cheap Source of Catholyte JASEM ISSN 1119-836 All rights reserved Full-text Available Online at www.bioline.org.br/ja J. Appl. Sci. Environ. Manage. June, 010 Vol. 14 () 1-7 Generation of Electricity from Abattoir Waste Water with

More information

Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst

Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst Letters in Applied Microbiology ISSN 0266-8254 ORIGINAL ARTICLE Improving energy accumulation of microbial fuel cells by metabolism regulation using Rhodoferax ferrireducens as biocatalyst Z.D. Liu 1,2,

More information

Biofuels: Hot Topics. Microbial Fuel Cells:

Biofuels: Hot Topics. Microbial Fuel Cells: Washington University in St. Louis Science Outreach July 19th, 2007 Biofuels: Hot Topics A Workshop for High School Teachers Miriam Rosenbaum (The Angenent Lab): Microbial Fuel Cells: Making Waste into

More information

& Publishing. Bioelectrochemical Systems. Biotechnological Application. From Extracellular Electron Transfer to

& Publishing. Bioelectrochemical Systems. Biotechnological Application. From Extracellular Electron Transfer to Bioelectrochemical Systems From Extracellular Electron Transfer to Biotechnological Application Edited by Korneel Rabaey, Largus Angenent, Uwe Schroder and Surg Keller & Publishing London New York TECHNISCHE

More information

Generation of Bio-Electricity from Sewage Sludge Using Single Chamber Microbial Fuel Cell

Generation of Bio-Electricity from Sewage Sludge Using Single Chamber Microbial Fuel Cell Journal of Environmental Science and Public Health doi: 10.26502/JESPH.007 Volume 1, Issue 2 Research Article Generation of Bio-Electricity from Sewage Sludge Using Single Chamber Microbial Fuel Cell Kumar

More information

MICROBIAL FUEL CELLS USING MIXED CULTURES OF WASTEWATER FOR ELECTRICITY GENERATION

MICROBIAL FUEL CELLS USING MIXED CULTURES OF WASTEWATER FOR ELECTRICITY GENERATION MICROBIAL FUEL CELLS USING MIXED CULTURES OF WASTEWATER FOR ELECTRICITY GENERATION S.M. ZAIN 1, N. S. ROSLANI 1, R. HASHIM 1, F. SUJA 1, N. ANUAR 2, W.R.W. DAUD 2 & N.E.A. BASRI 1 1 Department of Civil

More information

PRODUCTION OF ELECTRICITY FROM WASTEWATER USING A DOUBLE CHAMBERED MICROBIAL FUEL CELL CONTAINING GRAPHITE FROM PENCILS AS ELECTRODES

PRODUCTION OF ELECTRICITY FROM WASTEWATER USING A DOUBLE CHAMBERED MICROBIAL FUEL CELL CONTAINING GRAPHITE FROM PENCILS AS ELECTRODES ISSN: 2319-3867 (Online) PRODUCTION OF ELECTRICITY FROM WASTEWATER USING A DOUBLE CHAMBERED MICROBIAL FUEL CELL CONTAINING GRAPHITE FROM PENCILS AS ELECTRODES * T. R. Jayendrakishore 1, M.Vignesh 2 and

More information

Enrichment of anaerobic, sulfide oxidizing denitrifiers from Trunk River sediments in southern Cape Cod, MA.

Enrichment of anaerobic, sulfide oxidizing denitrifiers from Trunk River sediments in southern Cape Cod, MA. Enrichment of anaerobic, sulfide oxidizing denitrifiers from Trunk River sediments in southern Cape Cod, MA. Abstract Elisabeth Münster Happel, Microbial Diversity 216, MBL, MA. The present study describes

More information

MICROBIAL FUEL CELL WITH CU-B CATHODE POWERING WITH WASTEWATER FROM YEAST PRODUCTION

MICROBIAL FUEL CELL WITH CU-B CATHODE POWERING WITH WASTEWATER FROM YEAST PRODUCTION Journal of Ecological Engineering Volume 18, Issue 4, July 2017, pages 224 230 DOI: 10.12911/22998993/74287 Research Article MICROBIAL FUEL CELL WITH CU-B CATHODE POWERING WITH WASTEWATER FROM YEAST PRODUCTION

More information

Exploring the extracellular electron transfer potential of biochar with soil microbes

Exploring the extracellular electron transfer potential of biochar with soil microbes Exploring the extracellular electron transfer potential of biochar with soil microbes Samuel Barnett Department of Microbiology, Cornell University Microbial Diversity Course, Marine Biological Laboratory

More information

Bioelectricity Production from Microbial Fuel using Escherichia Coli (Glucose and Brewery Waste)

Bioelectricity Production from Microbial Fuel using Escherichia Coli (Glucose and Brewery Waste) International Research Journal of Biological Sciences ISSN 2278-3202 Bioelectricity Production from Microbial Fuel using Escherichia Coli (Glucose and Brewery Waste) Abstract D souza Rohan 1, Verma Deepa

More information

ISSN (Print), ISSN (Online) Volume 5, Issue 1, January (2014), IAEME AND TECHNOLOGY (IJARET)

ISSN (Print), ISSN (Online) Volume 5, Issue 1, January (2014), IAEME AND TECHNOLOGY (IJARET) International INTERNATIONAL Journal JOURNAL of Advanced OF Research ADVANCED in Engineering RESEARCH and Technology IN ENGINEERING (IJARET), AND TECHNOLOGY (IJARET) ISSN 0976-6480 (Print) ISSN 0976-6499

More information

Recent developments in microbial fuel cells: a review

Recent developments in microbial fuel cells: a review Journal of Scientific DAS & Industrial & MANGWANI Research: RECENT DEVELOPMENTS IN MICROBIAL FUEL CELLS: A REVIEW Vol. 69, October 2010, pp. 727-731 727 Recent developments in microbial fuel cells: a review

More information

Role of Mediators in Microbial Fuel Cell for Generation of Electricity and Waste Water Treatment

Role of Mediators in Microbial Fuel Cell for Generation of Electricity and Waste Water Treatment International Journal of Chemical Sciences and Applications ISSN 0976-2590, Online ISSN 2278 6015 Vol 6, Issue1, 2015, pp 6-11 http://www.bipublication.com Role of Mediators in Microbial Fuel Cell for

More information

Acetylene as a low cost and effective inhibitor of methanogenesis in microbial electrolysis

Acetylene as a low cost and effective inhibitor of methanogenesis in microbial electrolysis Acetylene as a low cost and effective inhibitor of methanogenesis in microbial electrolysis Stephanie Trujillo, Luguang Wang, Hong Liu, Ph. D Gilmore Hall, Department of Biological and Ecological Engineering

More information

Bioresource Technology

Bioresource Technology Bioresource Technology 12 (211) 4468 4473 Contents lists available at ScienceDirect Bioresource Technology journal homepage: www.elsevier.com/locate/biortech Increasing power generation for scaling up

More information

Optimization And Energy Production By Microbial Fuel Cell

Optimization And Energy Production By Microbial Fuel Cell International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.5, pp 2193-2198, July-Sept 2013 Optimization And Energy Production By Microbial Fuel Cell Merina Paul Das* Department

More information

Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species

Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species Sustainable Energy Generation in Microbial Fuel Cell Catalyzed with Bacillus Subtilis Species Zainab Z. Ismail * Department of Environmental Engineering, Baghdad University Baghdad, Iraq and Ali J. Jaeel

More information

Electrochemical Investigation of Aerobic Biocathodes at Different Poised Potentials: Evidence for Mediated Extracellular Electron Transfer

Electrochemical Investigation of Aerobic Biocathodes at Different Poised Potentials: Evidence for Mediated Extracellular Electron Transfer 355 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 41, 2014 Guest Editors: Simonetta Palmas, Michele Mascia, Annalisa Vacca Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-32-7; ISSN 2283-9216

More information

Sustainable Wastewater Treatment through Microbial Fuel Cells (MFC) Dr. Gaurav Saini Dept. Of Civil Engg., SET

Sustainable Wastewater Treatment through Microbial Fuel Cells (MFC) Dr. Gaurav Saini Dept. Of Civil Engg., SET TSRP, 18 Feb, 2017 Sustainable Wastewater Treatment through Microbial Fuel Cells (MFC) Dr. Gaurav Saini Dept. Of Civil Engg., SET Contents Wastewater treatment & need for sustainable development MFC Mechanism,

More information

ENZYME-ENHANCED MICROBIAL FUEL CELLS. Tracie E. Ervin

ENZYME-ENHANCED MICROBIAL FUEL CELLS. Tracie E. Ervin ENZYME-ENHANCED MICROBIAL FUEL CELLS by Tracie E. Ervin A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Honors Bachelors of

More information

Bioanode in MFC for Bioelectricity Generation, Desalination and Decolorization of Industrial Wastewater

Bioanode in MFC for Bioelectricity Generation, Desalination and Decolorization of Industrial Wastewater Bioanode in MFC for Bioelectricity Generation, Desalination and Decolorization of Industrial Wastewater Atieh Ebrahimi a, Ghasem Najafpour Darzi b *, Daryoush Yousefi Kebria a a Department of Civil-Environmental

More information

Biosensors and Bioelectronics

Biosensors and Bioelectronics Biosensors and Bioelectronics 26 (2011) 1913 1917 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Electricity generation of single-chamber

More information

Algal-Microbial Desalination System for Clean Energy, Water and Biomass Production

Algal-Microbial Desalination System for Clean Energy, Water and Biomass Production Algal-Microbial Desalination System for Clean Energy, Water and Biomass Production Veera Gnaneswar Gude, Ph.D., P.E. Mississippi State University National Environmental Monitoring Conference 2012 6-10

More information

Separator Characteristics for Increasing Performance of Microbial Fuel Cells

Separator Characteristics for Increasing Performance of Microbial Fuel Cells Environ. Sci. Technol. 2009, 43, 8456 8461 Downloaded by PENNSYLVANIA STATE UNIV on October 29, 2009 http://pubs.acs.org Separator Characteristics for Increasing Performance of Microbial Fuel Cells XIAOYUAN

More information

Performance evaluation of Disposable Microbial Fuel Cell Contained Drying Bacillus Subtilis in an Anodic Electrode

Performance evaluation of Disposable Microbial Fuel Cell Contained Drying Bacillus Subtilis in an Anodic Electrode Journal of Engineering and Science Research 1 (2): 197-202, 2017 e-issn 2289-7127 RMP Publications, 2017 DOI: 10.26666/rmp.jesr.2017.2.29 Performance evaluation of Disposable Microbial Fuel Cell Contained

More information

Investigation of electron transfer mechanisms in electrochemically active microbial biofilms. Von der Fakultät für Lebenswissenschaften

Investigation of electron transfer mechanisms in electrochemically active microbial biofilms. Von der Fakultät für Lebenswissenschaften Investigation of electron transfer mechanisms in electrochemically active microbial biofilms Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur

More information

Enrichments of Non-phototrophic Sulfur Oxidizing and Sulfate Reducing Bacteria from Salt Pond Sediments

Enrichments of Non-phototrophic Sulfur Oxidizing and Sulfate Reducing Bacteria from Salt Pond Sediments Enrichments of Non-phototrophic Sulfur Oxidizing and Sulfate Reducing Bacteria from Salt Pond Sediments Flavia Jaquelina Boidi Microbial Diversity Course 2014. Marine Biological Laboratory INTRODUCTION

More information

Field Experiments on Bioelectricity Production from Lake Sediment Using Microbial Fuel Cell Technology

Field Experiments on Bioelectricity Production from Lake Sediment Using Microbial Fuel Cell Technology Electricity Production from Lake Sediment Bull. Korean Chem. Soc. 2008, Vol. 29, No. 11 2189 Field Experiments on Bioelectricity Production from Lake Sediment Using Microbial Fuel Cell Technology Seok

More information

The diversity of microbial community involved in the iron cycling. Mohd Farid Abdul Halim

The diversity of microbial community involved in the iron cycling. Mohd Farid Abdul Halim The diversity of microbial community involved in the iron cycling Mohd Farid Abdul Halim Microbial Diversity 2015 Directors D. Newman & J. Leadbetter Marine Biological Laboratory, Woods Hole, MA Introduction

More information

Laboratory Experiments in Corrosion Engineering II

Laboratory Experiments in Corrosion Engineering II Lecture - 40 Laboratory Experiments in Corrosion Engineering II Keywords: Polarization Experiments, Pitting Potentials, Microbial Corrosion. A. Electrochemical tests in a given environment Polarization

More information

MICROBIAL FUEL CELL OPERATED ON SLUDGE FROM SEWAGE TREATMENT PLANT - A Case Study

MICROBIAL FUEL CELL OPERATED ON SLUDGE FROM SEWAGE TREATMENT PLANT - A Case Study MICROBIAL FUEL CELL OPERATED ON SLUDGE FROM SEWAGE TREATMENT PLANT - A Case Study Rahul Gautam 1 and Arun Kumar Thalla 2 1. Asst. Professor, Civil Department, Jain College of Engineering, Belgaum, Karnataka,

More information

Microbial fuel cells for wastewater treatment

Microbial fuel cells for wastewater treatment Microbial fuel cells for wastewater treatment P. Aelterman, K. Rabaey, P. Clauwaert and W. Verstraete Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000

More information

Electricity Generation Using Textile Wastewater by Single Chambered Microbial Fuel Cell

Electricity Generation Using Textile Wastewater by Single Chambered Microbial Fuel Cell Electricity Generation Using Textile Wastewater by Single Chambered Microbial Fuel Cell Dr. Sashikant. R. Mise 1, Sandhya Saware 2 1Professor, Department of civil Engineering, Poojya Doddappa Appa college

More information

Rubber Processing Industry Effluent Treatment and Electricity Production Using Microbial Fuel Cell Technology

Rubber Processing Industry Effluent Treatment and Electricity Production Using Microbial Fuel Cell Technology Rubber Processing Industry Effluent Treatment and Electricity Production Using Microbial Fuel Cell Technology R.Santhosh kumar 1, M.Bindusha 2 1 Head of the Department of Civil engineering, The Kavery

More information

Zainab Z. Ismail 1 and Ali Jwied Jaeel Introduction

Zainab Z. Ismail 1 and Ali Jwied Jaeel Introduction The Scientific World Journal Volume 213, Article ID 713515, 7 pages http://dx.doi.org/1.1155/213/713515 Research Article Sustainable Power Generation in Continuous Flow Microbial Fuel Cell Treating Actual

More information

Oxygen. Oxygen is one of the fundamental resources required by life forms on Earth. Aquatic ecosystems have a wide assortment of life forms.

Oxygen. Oxygen is one of the fundamental resources required by life forms on Earth. Aquatic ecosystems have a wide assortment of life forms. Oxygen Oxygen is one of the fundamental resources required by life forms on Earth. Aquatic ecosystems have a wide assortment of life forms. Oxygen is also required for some natural chemical decays. What

More information

Use of various agricultural wastes to produce bioenergy in microbial fuel cells

Use of various agricultural wastes to produce bioenergy in microbial fuel cells International Journal of Farming and Allied Sciences Available online at www.ijfas.com 2014 IJFAS Journal-2014-3-12/1243-1247/ 31 December, 2014 ISSN 2322-4134 2014 IJFAS Use of various agricultural wastes

More information

Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing

Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing Environ. Sci. Technol. 2006, 40, 2426-2432 Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing SHAOAN CHENG, HONG LIU, AND BRUCE

More information

Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater

Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater Available online at www.sciencedirect.com ScienceDirect Energy Procedia 79 (2015 ) 646 650 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies Performance

More information

Electricity generation by microbial fuel cell using pulp and paper mill wastewater, vermicompost and Escherichia coli

Electricity generation by microbial fuel cell using pulp and paper mill wastewater, vermicompost and Escherichia coli Indian Journal of Biotechnology Vol 16, April 2017, pp 211-215 Electricity generation by microbial fuel cell using pulp and paper mill wastewater, vermicompost and Escherichia coli Pratibha Singh 1 *,

More information

Scale-up of membrane-free single-chamber microbial fuel cells

Scale-up of membrane-free single-chamber microbial fuel cells Available online at www.sciencedirect.com Journal of Power Sources 179 (2008) 274 279 Short communication Scale-up of membrane-free single-chamber microbial fuel cells Hong Liu a,, Shaoan Cheng b, Liping

More information

6480(Print), ISSN (Online) Volume 4, Issue 7, November December (2013), IAEME AND TECHNOLOGY (IJARET)

6480(Print), ISSN (Online) Volume 4, Issue 7, November December (2013), IAEME AND TECHNOLOGY (IJARET) International INTERNATIONAL Journal of Advanced JOURNAL Research OF ADVANCED in Engineering RESEARCH and Technology IN (IJARET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJARET) ISSN 0976-6480 (Print) ISSN

More information

Adventures in Microbial Electron Transfer and Technology Development

Adventures in Microbial Electron Transfer and Technology Development Adventures in Microbial Electron Transfer and Technology Development Charles E. Turick, Ph.D. Environmental Biotechnology Savannah River National Laboratory Progress to Technology Development Fundamental

More information

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES Introduction Electrochemical Cells In this part of the experiment, four half cells are created by immersing metal strips of zinc, copper,

More information

Sabrina Powell Microbial Diversity Course Marine Biological Lab Summer 2000

Sabrina Powell Microbial Diversity Course Marine Biological Lab Summer 2000 S Sabrina Powell Microbial Diversity Course Marine Biological Lab Summer 2000 Abstract This paper describes work in the areas of chemotaxis and culture work seeking microorganisms capable of growing on

More information

Pre-Lab Exercises Lab 5: Oxidation and Reduction

Pre-Lab Exercises Lab 5: Oxidation and Reduction Pre-Lab Exercises Lab 5: Oxidation and Reduction Name Date Section 1. What is oxidation? 2. What is reduction? 3. Look at the reaction 2 H 2O 2 H 2 + O 2. Is this an oxidation-reduction reaction? If so,

More information

MICROBIAL FUEL CELL: A NEW APPROACH OF WASTEWATER TREATMENT WITH POWER GENERATION

MICROBIAL FUEL CELL: A NEW APPROACH OF WASTEWATER TREATMENT WITH POWER GENERATION MICROBIAL FUEL CELL: A NEW APPROACH OF WASTEWATER TREATMENT WITH POWER GENERATION M.M. GHANGREKAR 1 AND V.B. SHINDE 2 ABSTRACT: Application of Microbial Fuel Cells (MFCs) may represent a completely new

More information

REDOX DISTRIBUTION PROFILES OF FLOODED PADDY SOILS WITH MICROBIAL FUEL CELL APPLICATIONS

REDOX DISTRIBUTION PROFILES OF FLOODED PADDY SOILS WITH MICROBIAL FUEL CELL APPLICATIONS Geotec., Const. Mat. & Env., DOI: https://doi.org/10.21660/2018.45.25281 ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan REDOX DISTRIBUTION PROFILES OF FLOODED PADDY SOILS WITH MICROBIAL FUEL CELL APPLICATIONS

More information

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising

More information

Optimisation of Scale-Up of Microbial Fuel Cells for Sustainable Wastewater Treatment for Positive Net Energy Generation

Optimisation of Scale-Up of Microbial Fuel Cells for Sustainable Wastewater Treatment for Positive Net Energy Generation Optimisation of Scale-Up of Microbial Fuel Cells for Sustainable Wastewater Treatment for Positive Net Energy Generation Ourania Dimou a *, David Simpson d, John Andresen a, Veyacheslav Fedorovich b, Igor

More information

Using household food waste as a source of energy in a single-chamber microbial fuel cell

Using household food waste as a source of energy in a single-chamber microbial fuel cell Using household food waste as a source of energy in a single-chamber microbial fuel cell Antonopoulou G. 1,2, Ntaikou I. 1,2, Alexandropoulou M. 1,2, Tremouli A. 1, Pastore C. 3, Bitonto L. 3, Bebelis

More information

Study of Microbes Immobilized Monolithic Electrodes in Microbial Fuel Cell

Study of Microbes Immobilized Monolithic Electrodes in Microbial Fuel Cell ISSN: 2384-642 Submission Date: 13/5/14 Acceptance:14/7/14 Published: 18/7/14 Study of Microbes Immobilized Monolithic Electrodes in Microbial Fuel Cell By Nwahia Chiedozie Rexford Prof. Charles C. Opara

More information

Reaction mechanism on anode filled with activated carbon in microbial fuel cell

Reaction mechanism on anode filled with activated carbon in microbial fuel cell Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(5):333-339 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Reaction mechanism on anode filled with activated

More information

Bioelectricity power generation from organic substrate in a Microbial fuel cell using Saccharomyces cerevisiae as biocatalysts

Bioelectricity power generation from organic substrate in a Microbial fuel cell using Saccharomyces cerevisiae as biocatalysts Bioelectricity power generation from organic substrate in a Microbial fuel cell using Saccharomyces cerevisiae as biocatalysts T. Jafary 1, G.D. Najafpour 1,*, A.A. Ghoreyshi 1, F. Haghparast 1, M. Rahimnejad

More information

Voltage Generated From Mangrove Forest Sediment Microbial Fuel Cell Through MOdification Of Fuel Cell Components

Voltage Generated From Mangrove Forest Sediment Microbial Fuel Cell Through MOdification Of Fuel Cell Components Voltage Generated From Mangrove Forest Sediment Microbial Fuel Cell Through MOdification Of Fuel Cell Components D. I. Sharif 1, S. M. Monsur Musa 2, Rajiv Kumar Sah 2, Sabiha Rahman 2 Associate professor,

More information

The Design of Microbial fuel cell (MFC)

The Design of Microbial fuel cell (MFC) The Design of Microbial fuel cell (MFC) Author 1:Mrs. Saee Harshad Thakur Research Scholar, Department of Biotechnology Engineering, KIT s College of Engineering, Gokul Shirgaon, Kolhapur, Maharashtra,

More information

Lecture 24 Microbially Influenced Corrosion (MIC) Definitions, Environments and Microbiology

Lecture 24 Microbially Influenced Corrosion (MIC) Definitions, Environments and Microbiology Lecture 24 Microbially Influenced Corrosion (MIC) Definitions, Environments and Microbiology Keywords: Microbial Corrosion, Microorganisms, Biofouling. Introduction Microbially-influenced corrosion (MIC)

More information

BIOELECTROCHEMICAL SYSTEMS FOR ENERGY RECOVERY FROM WASTEWATER KA YU CHENG

BIOELECTROCHEMICAL SYSTEMS FOR ENERGY RECOVERY FROM WASTEWATER KA YU CHENG BIOELECTROCHEMICAL SYSTEMS FOR ENERGY RECOVERY FROM WASTEWATER KA YU CHENG Bioelectrochemical Systems for Energy Recovery from Wastewater Ka Yu Cheng BSc (Hons); M.Phil. A thesis submitted in partial fulfillment

More information

Development of electrodes for use in Microbial Fuel Cells for wastewater treatment and power generation

Development of electrodes for use in Microbial Fuel Cells for wastewater treatment and power generation Development of electrodes for use in Microbial Fuel Cells for wastewater treatment and power generation R Pranesh 1, Namrata Shanmukh Panji 2, Tarun Malhotra 3, Keshav A.V 4 and Soumen Panda 5 1,2,3,4,5

More information

IMPROVING THE DESALINATION CAPACITY OF MICROBIAL DESALINATION CELL

IMPROVING THE DESALINATION CAPACITY OF MICROBIAL DESALINATION CELL IMPROVING THE DESALINATION CAPACITY OF MICROBIAL DESALINATION CELL Anila A 1, Bindu G 2 1 Department of Civil Engineering, Government Engineering College Thrissur, (India) ABSTRACT Microbial desalination

More information

Developing and testing lab scale microbial fuel cell for energy harvesting from wastewater

Developing and testing lab scale microbial fuel cell for energy harvesting from wastewater Proceedings of the International Academy of Ecology and Environmental Sciences, 2018, 8(3): 194-203 Article Developing and testing lab scale microbial fuel cell for energy harvesting from wastewater Arfan

More information

The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises?

The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises? The Microbial Fuel Cell: The Solution to the Global Energy and Environmental Crises? John V. Nwokocha Department of Industrial Chemistry, Abia State University, Uturu e-mail: victorjohn0@gmail.com Nwaulari,

More information

F U C H S L U B R I C A N T S C O.

F U C H S L U B R I C A N T S C O. F U C H S L U B R I C A N T S C O. SENSOR INFORMATION, CARE AND WARRANTY RM CONCENTRATION / BRIX SENSOR RANGE: 0-35 BRIX GENERAL RM CONCENTRATION SENSOR CARE AND MAINTENANCE RECOMMENDATIONS BY MANUFACTURER

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances pubs.acs.org/ef Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances Yongtae Ahn and Bruce E. Logan* Department of Civil and Environmental Engineering,

More information

The Effect of a p-n TiO2/Cu2O/ ITO Composite Junction Created using Electron Beam Evaporation on a Shewanella oneidensis MR-1

The Effect of a p-n TiO2/Cu2O/ ITO Composite Junction Created using Electron Beam Evaporation on a Shewanella oneidensis MR-1 The Effect of a p-n TiO2/Cu2O/ ITO Composite Junction Created using Electron Beam Evaporation on a Shewanella oneidensis MR-1 Powered Microbial Coupled Photoelectrochemical Fuel Cell Krishna Gorrepati

More information

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell J. Microbiol. Biotechnol. (2007),G17(1), 110 115 Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell YOON, SEOK-MIN 1, CHANG-HO CHOI 1, MIA KIM 2, MOON-SIK HYUN

More information

Brewery wastewater treatment using air-cathode microbial fuel cells

Brewery wastewater treatment using air-cathode microbial fuel cells Appl Microbiol Biotechnol (28) 78:873 88 DOI 1.17/s253-8-136-2 ENVIRONMENTAL BIOTECHNOLOGY Brewery wastewater treatment using air-cathode microbial fuel cells Yujie Feng & Xin Wang & Bruce E. Logan & He

More information

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s), 1. Which change in oxidation number represents oxidation? A) Sn 2+ (aq) Sn 4+ (aq) B) Sn 2+ (aq) Sn(s) C) Sn 4+ (aq) Sn 2+ (aq) D) Sn 4+ (aq) Sn(s) E) Sn(s) Sn 2 (aq) 2. In the reaction Sn 2+ (aq) + 2

More information

Enhancing Activity Of Electrogenic Bacteria In Microbial Fuel Cell By. 2-Bromoethanesulphonate Dosing

Enhancing Activity Of Electrogenic Bacteria In Microbial Fuel Cell By. 2-Bromoethanesulphonate Dosing Enhancing Activity Of Electrogenic Bacteria In Microbial Fuel Cell By 2-Bromoethanesulphonate Dosing A. N. Ghadge 1, Harapriya Pradhan 2, Sriranjani Prasad 3, and M. M. Ghangrekar 4* 1, 2, 4 - Department

More information

Biohydrogen production from Solid Phase- Microbial Fuel Cell (SP-MFC) spent substrate: a preliminary study.

Biohydrogen production from Solid Phase- Microbial Fuel Cell (SP-MFC) spent substrate: a preliminary study. Biohydrogen production from Solid Phase- Microbial Fuel Cell (SP-MFC) spent substrate: a preliminary study. Dr.Rosa Anna Nastro Laboratory for Energy and the Environment Department of Engineering University

More information

Supporting Information. High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation

Supporting Information. High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation Supporting Information High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation O.T. Muhammed Musthafa and S.Sampath* Department of Inorganic and Physical Chemistry Indian Institute

More information

Electricity Generation in Microbial Fuel Cells at different temperature and Isolation of Electrogenic Bacteria

Electricity Generation in Microbial Fuel Cells at different temperature and Isolation of Electrogenic Bacteria Electricity Generation in Microbial Fuel Cells at different temperature and Isolation of Electrogenic Bacteria Yujie Feng 1 *, He Lee 1,2 1 State Key Laboratory of Urban Water Resource and Environment,

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 984 Investigation of the potentials of poultry and piggery wastes for electricity generation using two configurations

More information

Light-driven microbial dissimilatory electron transfer to hematite. Dao-Bo Li, Yuan-Yuan Cheng, Ling-Li Li, Wen-Wei Li, Yu-Xi Huang, Dan-Ni Pei,

Light-driven microbial dissimilatory electron transfer to hematite. Dao-Bo Li, Yuan-Yuan Cheng, Ling-Li Li, Wen-Wei Li, Yu-Xi Huang, Dan-Ni Pei, Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 SUPPLEMENTARY INFORMATION Light-driven microbial dissimilatory electron transfer

More information

Journal of Asian Scientific Research PRELIMINARY STUDIES ON IMMOBILIZED CELLS-BASED MICROBIAL FUEL CELL SYSTEM ON ITS POWER GENERATION PERFORMANCE

Journal of Asian Scientific Research PRELIMINARY STUDIES ON IMMOBILIZED CELLS-BASED MICROBIAL FUEL CELL SYSTEM ON ITS POWER GENERATION PERFORMANCE Journal of Asian Scientific Research journal homepage: http://www.aessweb.com/journals/5003 PRELIMINARY STUDIES ON IMMOBILIZED CELLS-BASED MICROBIAL FUEL CELL SYSTEM ON ITS POWER GENERATION PERFORMANCE

More information

Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells

Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells BRUCE LOGAN,*,, SHAOAN CHENG,, VALERIE WATSON, AND GARETT ESTADT Department of Civil and Environmental Engineering,

More information

Processes and Electron Flow in a Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds

Processes and Electron Flow in a Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds Processes and Electron Flow in a Microbial Electrolysis Cell Fed with Furanic and Phenolic Compounds Xiaofei (Sophie) Zeng 1, Abhijeet P. Borole 2 and Spyros G. Pavlostathis 1 1 School of Civil & Environmental

More information

A MICROBIOLOGICAL PROCESS FOR COMBINED BIOELECTRICITY PRODUCTION AND WASTEWATER TREATMENT USING Staphyllococcus Sp.

A MICROBIOLOGICAL PROCESS FOR COMBINED BIOELECTRICITY PRODUCTION AND WASTEWATER TREATMENT USING Staphyllococcus Sp. A MICROBIOLOGICAL PROCESS FOR COMBINED BIOELECTRICITY PRODUCTION AND WASTEWATER TREATMENT USING Staphyllococcus Sp. A.V. Pethkar* 1, Kalyani Kale 1, Priyanka Belgaonkar 1, Vaishali Bagul 1, V. S. Kale

More information

ppm Dissolved Oxygen Measurement

ppm Dissolved Oxygen Measurement ppm Dissolved Oxygen Measurement INTRODUCTION Dissolved oxygen (D.O.) levels are used as a general indicator of water quality. Oxygen is essential to life and vital for countless aquatic forms. D.O. level

More information

Treatment of Domestic Wastewater & Generation of Electricity Using Microbial Fuel Cells

Treatment of Domestic Wastewater & Generation of Electricity Using Microbial Fuel Cells Treatment of Domestic Wastewater & Generation of Electricity Using Microbial Fuel Cells Dr. Babitha Rani.H 1, Dr. N Krishna Murthy 2, Swathi D L 3, Shivom S Revankar 4, Praveen Sawant 5 1,2,3,4,5 School

More information

Bioelectrochemistry 90 (2013) Contents lists available at SciVerse ScienceDirect. Bioelectrochemistry

Bioelectrochemistry 90 (2013) Contents lists available at SciVerse ScienceDirect. Bioelectrochemistry Bioelectrochemistry 90 (2013) 30 35 Contents lists available at SciVerse ScienceDirect Bioelectrochemistry journal homepage: www.elsevier.com/locate/bioelechem Controlling the occurrence of power overshoot

More information

IN 1910, M. C. Potter first observed the ability of E. coli to produce electricity [1]. Ever since,

IN 1910, M. C. Potter first observed the ability of E. coli to produce electricity [1]. Ever since, I. INTRODUCTION IN 1910, M. C. Potter first observed the ability of E. coli to produce electricity [1]. Ever since, scientists have studied the ability of microbes to produce electric potentials in depth,

More information

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS REPORT OF THE FINAL PROJECT ENTITLED: DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS by Veeraraghavan S Basker Department of Chemical Engineering University of South Carolina

More information

Energy Harvesting From River Sediment Using a Microbial Fuel Cell: Preliminary Results

Energy Harvesting From River Sediment Using a Microbial Fuel Cell: Preliminary Results Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Energy Harvesting From iver Sediment sing a Microbial Fuel Cell: Preliminary esults 1, 2 Philippe NAMO, 3 Matthieu PICOT,

More information

The late Nobel laureate Richard Smalley often

The late Nobel laureate Richard Smalley often Downloaded via 148.251.232.83 on July 15, 2018 at 09:52:00 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. MICROBIAL Challenges and Harnessing

More information

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System)

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) (Interim Report: Dec. 20, 2005 - Feb. 28, 2006) P. Q. Wu, Z. Qin, and D. W. Shoesmith The University of Western

More information

Biofilm Community Structure and Resource Availability in Experimental Flow Cells

Biofilm Community Structure and Resource Availability in Experimental Flow Cells Biofilm Community Structure and Resource Availability in Experimental Flow Cells China A. Hanson Microbial Diversity 2008 MBL, Woods Hole Contact Info: Department of Ecology and Evolutionary Biology University

More information

An Introduction to Sediment Microbial Fuel Cells: Can Electricity really be Dirt Cheap?

An Introduction to Sediment Microbial Fuel Cells: Can Electricity really be Dirt Cheap? An Introduction to Sediment Microbial Fuel Cells: Can Electricity really be Dirt Cheap? Norlinda Connolly Mansfield High School Mansfield, WA & Patrick Yecha Lyle High School Lyle, WA Washington State

More information

Performance of membrane-less microbial fuel cell treating wastewater and evect of electrode distance and area on electricity production

Performance of membrane-less microbial fuel cell treating wastewater and evect of electrode distance and area on electricity production Bioresource Technology 98 (27) 2879 2885 Performance of membrane-less microbial fuel cell treating wastewater and evect of electrode distance and area on electricity production M.M. Ghangrekar, V.B. Shinde

More information

OEST 740. Marine Biofilms: Ecology and Impact. Spring Instructor: Kristina Mojica

OEST 740. Marine Biofilms: Ecology and Impact. Spring Instructor: Kristina Mojica OEST 740 Marine Biofilms: Ecology and Impact Spring 008 Instructor: Kristina Mojica Biocorrosion This chapter considers the issue of biofilm based bacterial assisted corrosion (i.e. biocorrosion) of metals

More information