INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14

Size: px
Start display at page:

Download "INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES. Introduction. Electrochemistry Revised 4/28/14"

Transcription

1 INTRODUCTION TO ELECTROCHEMISTRY: CURRENT, VOLTAGE, & BATTERIES Introduction Electrochemical Cells In this part of the experiment, four half cells are created by immersing metal strips of zinc, copper, aluminum, and magnesium in aqueous solutions containing salts of cations of the same element (i.e. Zn 2+, Cu 2+, Ni 2+, and Mg 2+ ). An electrochemical cell is created when two of these half cells are connected by a KCl salt bridge and a wire (the leads from the voltage probe). Six different electrochemical cells can be created from the four half cells above. A positive cell potential is measured when the black lead is connected to the anode and the red lead is connected to the cathode. Cell notation will be used to describe the electrochemical cells. A reduction table will be created by designating copper as the standard electrode. Cu 2+ (aq) + 2 e Cu(s) E = 0.00 V Cu 2+ (aq) + 4 NH 3 (aq) [Cu(NH 3 ) 4 ] 2+ (aq) K eq = 1.2 x Electrochemical Plating (Electroplating) Electrochemical plating is a method used to apply a metallic coating on surfaces (e.g. chrome plating of fenders, grills, and toasters) to protect them against corrosion and passivation, by using an electric current. The first step in electroplating is to negatively charge the object (to be coated) by connecting it to an electric circuit and applying a bias voltage. The object is then dipped into a solution containing a metal salt. The metal cations, in the solution, partake in redox reactions and eventually are reduced to a neutral metal which is deposited onto the object s surface to become a protective coating. In this experiment, the object is a copper strip and the metal salt is ZnSO 4. The positive pole of a current probe will be connected to the copper strip and the negative pole to a battery. The positive pole of the battery will be connected to an aluminum strip (Figure 1). The aluminum strip is used as the anode since it is made out of metal and therefore has the ability to conduct electrons and transfer electrons to species in solution. In practice the anode can be any type of small object made out of metal (e.g. Zn, Cu, Fe). Current Probe _ + Battery _ + Figure 1. Scheme of the electrochemical set-up. Page 1 of 5

2 The following reaction is observed at the cathode (copper): ZnSO 4 (aq) + 2 e Zn(s) + SO 4 2- (aq) As seen in the reaction above the zinc ions in the solution are reduced at the cathode to Zn(s), which is deposited onto the copper. A current probe is used to measure the current (I) passing through the system as a function of time (t, in sec). The total electrical charge passed can then be calculated (q T ) using the following equation (Faraday s Law): (1) q T = I t If the electrical charge is known, the mass of zinc (m Zn ) plated on the copper can be calculated using the following equation: qt M (2) mzn, n F where M is the molar mass of Zn (65.39 g/mol), n is the stoichiometry for the number of electrons in the half reaction, and F is Faraday s constant (96,485 C/mol) In this experiment the students will determine the mass of zinc plated on the copper strip, theoretically, using the equations above, and experimentally, from the mass of the copper strip before and after plating. Students will also calculate Avogadro s number, N A, by using the experimentally determined values of the mass of Zn(s) plated onto the copper strip and the total amount of electrical charge passed, q T, q M (3) N T A n mzn q, e where q e is the charge of one electron, and the other variables are as defined in equation (2) Safety Safety goggles and aprons must be worn in lab at all times. Part A. Nickel can cause contact dermatitis and solutions containing nickel ions may be carcinogenic. Wear gloves when handling the metal or solution. Part B. Solutions containing NH 3 must be prepared in the hoods. Ammonia and sulfuric acid solutions are corrosive and can cause burns and respiratory problems. If a spill occurs, wash all affected areas immediately and thoroughly with cold water, and inform your TA. Part C. ZnSO 4 is harmful and can cause severe irritation upon contact with eyes. When handling ZnSO 4, wear gloves and if it contacts your eyes or skin, flush with water for at least 15 min. Page 2 of 5

3 Procedures Part A. Creating Electrochemical Cells 1. Obtain a spot plate from the plastic tub in the hood and clean it before use. The stockroom will provide the following 0.1 M solutions: ZnSO 4, CuSO 4, NiSO 4, and MgSO 4, as well as their metal strips (solid Zn, Cu, Ni, and Mg). (A key to help you identify the type of each metal strip is displayed at the front of the room.) Use sandpaper to remove any impurities from the metal strips, and then rinse with water and dry. In one of the wells, put ~25 drops of CuSO 4 and a Cu strip (partially immersed in the solution) to create a Cu 2+ /Cu half cell. Repeat the same procedure with the remaining solutions and strips, recording their location on the spot plate in your ELN. As shown below in Figure 2, place the wells adjacent to each other, forming a square so they can easily be connected by a salt bridge. To make the salt bridge, take a piece of filter paper and soak it in saturated KCl solution. Figure 2. Digital image of the electrochemical cell set-up. 2. Prepare the computer for data collection by opening "Exp 28" from the Chemistry with Vernier experiment files of Logger Pro. The computer is now set to monitor potential in volts. The potential will appear in the Meter window when the leads are connected to a cell. Verify that when the voltage probe leads are touched together, the voltage displays 0.00 V. When the two leads are not in contact with a cell (or each other), a meaningless voltage may be displayed. 3. Calibrate the voltage probe: Go to the "Experiment" menu and choose "Calibrate". In the window that appears make sure the "Calibration" tab is chosen. Click on "Calibrate Now". Connect the two ends of the voltage probe together. When the voltage reading in the calibration window stabilizes enter 0.00 in the field beneath "Enter Value". Connect the Mg and Cu half cells with a salt bridge (a small strip of filter paper saturated with 1 M KCl(aq)). Connect the red voltage probe lead to the Cu strip electrode, and the black voltage probe lead to the Mg strip electrode, each by simply touching the probe to the metal that is not submerged in the solution. When the voltage reading in the calibration window stabilizes enter 2.71 in the second field beneath "Enter Value". Save this calibration set-up for the rest of the voltage measurements. 4. Select any two cells and connect them by the salt bridge (e.g. place one end of the salt bridge in the Cu cell and the other end in the Zn cell). Determine the potential by touching the Page 3 of 5

4 voltage probes to the electrodes in the cells. Do this by bringing the black voltage probe lead in contact with one metal electrode and the red voltage probe lead in contact with the other electrode. If the voltage reads 0.00 V, then reverse the leads until you have a positive voltage. Wait about 5 seconds to take a voltage reading and record the value in your notebook. If the potential fluctuates considerably, sandpaper the electrode gently to remove oxides and impurities, and then rinse and dry it again as explained above. 5. Determine which cell was the anode and which was the cathode. If the measured voltage is positive, the cell connected to the black lead is the anode and the cell connected to the red lead is the cathode. Once you have recorded this information, measure the potentials for the remaining cells, making as many combinations of two cells as possible with the solutions provided. Be sure to note the anode and cathode for each combination and use a new salt bridge for each set of cells. Part B. Measuring the Effects of Concentration on an Electrochemical Cell 1. Measure the voltage again for the Cu/Zn cell. Add 1 drop of 6 M NH 3 solution to the Cu well (stir with a toothpick) and record the voltage. Place a piece of white paper under the spot plate to observe the color of the Cu(NH 3 ) 4 2+ complex ion that is formed. (This color test is one that is frequently used to determine the presence of copper (II) ion in a solution.) Add one more drop of NH 3 and measure the voltage again. (Did you see any voltage change?) 2. Use a disposable pipet and carefully transfer each solution from its well into the collection bottle in the hood. Place the empty spot plate into the large plastic tub in the hood. Do this carefully as a dilute bleach solution is in the tub, which can spot clothing. Part C. Electrochemical Plating of Zn on Copper 1. Mass a copper strip on a watch glass and record the mass. 2. If electrical wires with alligator clips are not available, follow these instructions to create them: a. Use a wire cutter to cut off three ~10 cm pieces of electrical wire. b. With the cutter, strip off ~1 cm of the coating from each end of each wire. c. Attach each end of the wire to its own alligator clip (through the hole in the back, Figure 3). 3. Check to make sure the voltage of your 9.0 V battery is at least 7 V. Attach the copper strip (cathode) and the positive pole of the current probe to each end of one electrical wire. Using a second electrical wire, attach the aluminum strip used in Part A (anode) and the positive pole of a 9.0 V battery. Finally attach the negative poles of the current probe and the 9.0 V battery with a third wire (Figure 1). Connect the current probe to channel 1 of the Logger Pro interface. Go to the Experiment menu and choose Data Collection. Change the length to 60 sec and click Done. Page 4 of 5

5 a) b) Figure 3. a) An aluminum electrode and b) the electrochemical plating setup 4. Pour ~40 ml of 2.0 M ZnSO 4 solution into a 100 ml beaker. Click Collect and immerse the copper and aluminum electrodes (make sure the electrodes do not touch) into the solution at the same time. Using plastic tongs, remove the copper from the solution after (exactly) 60 sec. Click Done. The current probe cannot measure current higher than 0.6 A. (If your current is flatlined at 0.6 A, add a resistor (680 ohms or 470 ohms) in series in your circuit until you observe a peak current that is less than 0.6 A, followed by a decay in the current. Rerun the 60 second trial with this new copper electrode and the resistor in the circuit. An alternative is to dilute the concentration of ZnSO 4 from 2 M to 1 M, or more, and rerun the 60 second trial.) 5. Using the air jets in the hood, dry the copper carefully, place it on a watch glass, and record the final mass, (m final m initial = mass of zinc plated on the copper). After obtaining a satisfactory plating current line (i.e. one where the current peaks at first and is then followed by a decay), determine the charge passed by selecting only data under that curve. Go to the Analyze menu and choose Statistics and record the mean of the current. Another way to determine the charge passed is go to the Analyze menu and chose Integral. Use both of these methods in order to calculate the charge passed. Compare your results. Repeat the above plating experiments for 120 sec and 180 sec. (No need to change the ZnSO 4 solution but new copper and aluminum electrodes is needed). 6. Pour the zinc solution into the waste bottle in the hood. Do not flush it down the drain. The aluminum strip should be placed in the collection beaker in the hood. Do NOT, under any circumstances, throw the solid electrodes in the trash. Wash your hands thoroughly before leaving the lab. Page 5 of 5

Nickel Electroplating

Nickel Electroplating Nickel Electroplating In a galvanic or voltaic electrochemical cell, the spontaneous reaction occurs and electrons flow from the anode (oxidation) to the cathode (reduction). In an electrolytic cell, a

More information

The final oxidation product, iron (III), then combines with oxygen and water to form iron (III) oxide, or "rust".

The final oxidation product, iron (III), then combines with oxygen and water to form iron (III) oxide, or rust. EXPERIMENT 19 Corrosion and Electrolytic Cells CORROSION OF IRON Corrosion is a naturally occurring redox process that oxidizes metals to their oxides and/or sulfides. In Part A we will be focusing primarily

More information

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle:

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle: REACTIONS OF COPPER Copper will undergo many types of reactions. In this experiment you will observe a sequence of copper reactions. The sequence begins with copper metal and ends with copper metal, so

More information

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+

An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ An Oxidation-Reduction Titration: The Reaction of Fe 2+ and Ce 4+ LAB ADV COMP 8 From Advanced Chemistry with Vernier, Vernier Software & Technology, 2004 INTRODUCTION A titration, as you recall, is a

More information

EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS

EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS EXTRA CREDIT - EXPERIMENT G ELECTROCHEMISTRY ACTIVITY OF METALS INTRODUCTION The objective of this experiment is to develop an abbreviated activity series of metals using: 1. Displacement reactions 2.

More information

Pre-Lab Exercises Lab 5: Oxidation and Reduction

Pre-Lab Exercises Lab 5: Oxidation and Reduction Pre-Lab Exercises Lab 5: Oxidation and Reduction Name Date Section 1. What is oxidation? 2. What is reduction? 3. Look at the reaction 2 H 2O 2 H 2 + O 2. Is this an oxidation-reduction reaction? If so,

More information

Alchemy: A Cross-Curricular Activity Copper, Silver, and Gold Redox Reactions

Alchemy: A Cross-Curricular Activity Copper, Silver, and Gold Redox Reactions Alchemy: A Cross-Curricular Activity Copper, Silver, and Gold Redox Reactions SCIENTIFIC Introduction Turn an ordinary copper penny into silver and then into gold! Get rich quick by demonstrating this

More information

Experimental technique. Revision 1. Electroplating an iron key with copper metal

Experimental technique. Revision 1. Electroplating an iron key with copper metal Experimental technique. Revision 1 Electroplating an iron key with copper metal Aim To investigate whether Faraday s laws apply to the electroplating of a brass key with nickel Procedure The apparatus

More information

Experiment 3: Determination of an Empirical Formula

Experiment 3: Determination of an Empirical Formula Background Information The composition of a compound is defined by its chemical formula, which gives the number ratio of the different elements in the compound. For example, water has a fixed composition

More information

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION EXPERIMENT 10 (2 Weeks) Chemistry 100 Laboratory TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION It is useful to classify reactions into different types, because products of reactions can be predicted.

More information

Activity of metals SCIENTIFIC. Demonstration and Inquiry. Introduction. Concepts. Background. Inquiry Approach. Demonstration Questions

Activity of metals SCIENTIFIC. Demonstration and Inquiry. Introduction. Concepts. Background. Inquiry Approach. Demonstration Questions Activity of Metals Demonstration and Inquiry SCIENTIFIC Introduction Chemical reactions are not formulas on a piece of paper they are dynamic and exciting events! The demonstration of aluminum with copper(ii)

More information

Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO (s) Cu 2+ (aq) Cu (s)

Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO (s) Cu 2+ (aq) Cu (s) Cycle of Copper Reactions Lab Exercise The following is a protocol for the multi-step transformation of copper metal based upon the following chemical transformations: Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO

More information

Electrochemistry. 2Mg + O 2

Electrochemistry. 2Mg + O 2 Goals Assemble and run a salt water battery Maximize the generated electric current Make calculations based on data Background is a branch of scientific study that has been around for hundreds of years.

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen EXPERIMENT The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen PURPOSE In this experiment you will determine the volume of the hydrogen gas which is produced when a sample of

More information

D A T A L O G G I N G

D A T A L O G G I N G The Physical Sciences Initiative Chemistry Inservice D A T A O G G I N G The Electrochemical Series for Graphic Calculator & Computer Nov 2001 1 The Electrochemical Series. This experiment will allow the

More information

Exploring Factors Effecting Deposition, Morphology, and Thickness of Thin Metallic Layer of Copper

Exploring Factors Effecting Deposition, Morphology, and Thickness of Thin Metallic Layer of Copper NNIN Nanotechnology Education Teacher s Preparatory Guide Exploring Factors Effecting Deposition, Morphology, and Thickness of Thin Metallic Layer of Copper Purpose: Students will create thin layers of

More information

PERCENT Y IELD: COPPER T Ra NSFORMATIONS

PERCENT Y IELD: COPPER T Ra NSFORMATIONS Experiment 4 Name: 39 PERCENT Y IELD: COPPER T Ra NSFORMATIONS In this experiment, you will carry out and observe a reaction sequence where copper metal is the starting material that undergoes a series

More information

Potentiometric titration

Potentiometric titration Potentiometric titration TEC Related concept Potentiometric titration, redox reaction, Nernst equation, quantitative analysis. Principle In a potentiometric titration, the equivalence point is detected

More information

A Cycle of Copper Reactions

A Cycle of Copper Reactions EXPERIMENT A Cycle of Copper Reactions PURPOSE To demonstrate a series of copper reactions: starting with copper metal, oxidizing the metal to put it into solution and then, form a copper hydroxide, an

More information

PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND

PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND Chemistry 112 PREPARATION & ANALYSIS OF AN IRON COORDINATION COMPOUND PART A: PREPARATION OF AN IRON COORDINATION COMPOUND A. INTRODUCTION In this experiment you will synthesize the iron coordination compound,

More information

COPPER CYCLE EXPERIMENT 3

COPPER CYCLE EXPERIMENT 3 COPPER CYCLE EXPERIMENT 3 INTRODUCTION One simple way to state the aim of chemistry is: The study of matter and its transformations. In this experiment, a copper sample will appear in five different forms

More information

Copper Odyssey. Chemical Reactions of Copper

Copper Odyssey. Chemical Reactions of Copper Name Lab Partner(s) Copper Odyssey Chemical Reactions of Copper Date Period Elemental copper metal will be converted into copper (II) ion and then brought through a series of compound conversions until

More information

Protecting against corrosion by passification

Protecting against corrosion by passification Teacher's/Lecturer's Sheet Protecting against corrosion by passification (Item No.: P7402000) Curricular Relevance Area of Expertise: Chemistry Education Level: Age 16-19 Topic: Physical chemistry Subtopic:

More information

Voltaic Cells. An Energizing Experience. Using the energy of a spontaneous redox reaction to do work. aka Galvanic Cells.

Voltaic Cells. An Energizing Experience. Using the energy of a spontaneous redox reaction to do work. aka Galvanic Cells. Voltaic Cells aka Galvanic Cells Using the energy of a spontaneous redox reaction to do work. Chapter 20 An Energizing Experience 1 A piece of copper is dropped into an aqueous solution of zinc nitrate,

More information

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES 1 CONSERVATION OF MATTER AND CHEMICAL PROPERTIES I. OBJECTIVES AND BACKGROUND The object of this experiment is to demonstrate the conservation of matter- or more particularly, the conservation of "atoms"

More information

Electrochemistry LEC Electrogravimetric determination of copper. What you need: What you can learn about. Principle and tasks

Electrochemistry LEC Electrogravimetric determination of copper. What you need: What you can learn about. Principle and tasks Electrochemistry LEC 06 What you can learn about Quantitative analysis Electrolysis Gravimetry Overpotential and electrode polarisation Principle and tasks Electrogravimetry is an important analytical

More information

The Synthesis of Copper Metal

The Synthesis of Copper Metal CHEM 109 Introduction to Chemistry Revision 1.0 The Synthesis of Copper Metal To learn about Oxidation-Reduction reactions. To learn about Half-Reactions and Half-Cells. To learn about the Activity of

More information

ELECTROCHEMISTRY: ELECTROPLATING

ELECTROCHEMISTRY: ELECTROPLATING ELECTROCHEMISTRY: ELECTROPLATING Hello, I m Hafizah, a chemistry teacher from Muar Science School in Malaysia. We are going to discuss about an interesting chemistry topic related to electroplating but

More information

USER MANUAL ON PROFESSIONAL ELECTROCHEMICAL STATION EPS-30A

USER MANUAL ON PROFESSIONAL ELECTROCHEMICAL STATION EPS-30A 1 USER MANUAL ON PROFESSIONAL ELECTROCHEMICAL STATION EPS-30A PRODUCT INTRODUCTION: This electrochemical station is a professional, high performance plating/forming equipment designed to plate, form, strip,

More information

MAROOCHYDORE SHS. Student booklet. Name. ame: : Teacher:

MAROOCHYDORE SHS. Student booklet. Name. ame: : Teacher: MAROOCHYDORE SHS 1 Including: Section 1 : METALS and REACTIVITY Section 2 : REDOX Section 3 : GALVANIC CELLS Section 4 : ELECTROLYSIS Student booklet Name ame: : Teacher: 1-1 - Worksheet 1.1 METALS Please

More information

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment ADVANCED AP PLACEMENT CHEMISTRY Introduction Activity Series An activity series of metals is a table of metals arranged in the order of their decreasing chemical activity or the ease at which the metal

More information

Dissolved Oxygen Probe (Order Code: DO-BTA)

Dissolved Oxygen Probe (Order Code: DO-BTA) Dissolved Oxygen Probe (Order Code: DO-BTA) The Vernier Dissolved Oxygen Probe uses a Clark-type polarographic electrode to measure the concentration of dissolved oxygen in water. You can use this sensor

More information

Module 2, Add on Lesson Conductivity Sensor. Student. 90 minutes

Module 2, Add on Lesson Conductivity Sensor. Student. 90 minutes Module 2, Add on Lesson Conductivity Sensor 90 minutes Student Purpose of this lesson Investigate the variation of resistance with conductivity Construct a sensor to measure the conductivity of water Graph

More information

Module 2, Add on Lesson Conductivity Sensor. Teacher. 90 minutes

Module 2, Add on Lesson Conductivity Sensor. Teacher. 90 minutes Module 2, Add on Lesson Conductivity Sensor 90 minutes Teacher Purpose of this lesson Investigate the variation of resistance with conductivity Construct a sensor to measure the conductivity of water Graph

More information

Metal Finishing Products and Service META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS"

Metal Finishing Products and Service META-MATE ZINCATE 40 A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT OF ALUMINUM AND ITS ALLOYS Metal Chem,inc. Metal Finishing Products and Service 29 Freedom Court Greer, SC 29650 864.877.6175 Fax 864.877.6176 DATA SHEET META-MATE ZINCATE 40 "A CONCENTRATED LIQUID ZINCATE FORMULATION FOR THE PRETREATMENT

More information

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s),

Sn 2+ (aq) + 2 Ag + (aq) Sn 4+ (aq) + 2 Ag(s), 1. Which change in oxidation number represents oxidation? A) Sn 2+ (aq) Sn 4+ (aq) B) Sn 2+ (aq) Sn(s) C) Sn 4+ (aq) Sn 2+ (aq) D) Sn 4+ (aq) Sn(s) E) Sn(s) Sn 2 (aq) 2. In the reaction Sn 2+ (aq) + 2

More information

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection

Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Unit 5 Review Electrolytic, Electrochemical Cells, Corrosion, & Cathodic Protection Determine the half reactions for each cell and the cell voltage or minimum theoretical voltage. 1. Zn / Mg electrochemical

More information

Inquiry Question Solid Copper, Silver, Gold! Or is it? Exploring electroplating!

Inquiry Question Solid Copper, Silver, Gold! Or is it? Exploring electroplating! Inquiry Question Solid Copper, Silver, Gold! Or is it? Exploring electroplating! Name: Date: As much as solid precious metals are great to have, not many of us can afford them. Many items we use such as

More information

Set 3 Marking Scheme : Electrochemistry Na +, H + -, NO 3, OH -, OH - Na +, H + OH - Its lower than in electrochemical series

Set 3 Marking Scheme : Electrochemistry Na +, H + -, NO 3, OH -, OH - Na +, H + OH - Its lower than in electrochemical series 8. Write the formula of all ions present in the electrolyte. Write the formula of ion/ions which is/are attracted to anode and cathode. Which is selectively discharged? Give a reason. Write the half equation

More information

Extracting a metal from its ore 2004 by David A. Katz. All rights reserved.

Extracting a metal from its ore 2004 by David A. Katz. All rights reserved. Extracting a metal from its ore 2004 by David A. Katz. All rights reserved. Minerals are solid elements or compounds found naturally in the Earth's crust. Those minerals that contain sufficient metal to

More information

ME 280 Lab #1. Lüders Strain Evaluation of Stress Concentration and Electrochemical Embrittlement of Spring Steel

ME 280 Lab #1. Lüders Strain Evaluation of Stress Concentration and Electrochemical Embrittlement of Spring Steel ME 280 Lab #1 Lüders Strain Evaluation of Stress Concentration and Electrochemical Embrittlement of Spring Steel Overview: In one portion of this lab, you will observe the propagation of a Lüder s band

More information

(aq) + 5e - Mn 2+ (aq) + 4H 2

(aq) + 5e - Mn 2+ (aq) + 4H 2 EXPERIMENT 20 Titrimetric Determination of Iron INTRODUCTION Potassium permanganate is widely used as an oxidizing agent in titrimetric analysis. In acidic solution, a permanganate ion undergoes reduction

More information

Forensics with TI-Nspire Technology

Forensics with TI-Nspire Technology Forensics with TI-Nspire Technology 2013 Texas Instruments Incorporated 1 education.ti.com Science Objectives Identify characteristics of different soils to demonstrate that a suspect has been at a scene.

More information

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment.

Rusting is an example of corrosion, which is a spontaneous redox reaction of materials with substances in their environment. CORROSION WHAT IS CORROSION? Corrosion is the deterioration of a metal as a result of chemical reactions between it and the surrounding environment. Rusting is an example of corrosion, which is a spontaneous

More information

Solution Concentrations

Solution Concentrations Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Compact Electro Plating Machine - CEPM-2A USER MANUAL

Compact Electro Plating Machine - CEPM-2A USER MANUAL 1 Compact Electro Plating Machine - CEPM-2A USER MANUAL PRODUCT INTRODUCTION: This compact electroplating machine is a high performance compact plating unit that is especially designed for coating all

More information

APPLICATIONS OF ELECTROCHEMISTRY

APPLICATIONS OF ELECTROCHEMISTRY APPLICATIONS OF ELECTROCHEMISTRY SPONTANEOUS REDOX REACTIONS APPLICATIONS OF ELECTROCHEMICAL CELLS BATTERIES A galvanic cell, or series of combined galvanic cells, that can be used as a source of direct

More information

CHM Gravimetric Chloride Experiment (r7) 1/5

CHM Gravimetric Chloride Experiment (r7) 1/5 CHM 111 - Gravimetric Chloride Experiment (r7) 1/5 Purpose You will perform one of the basic types of quantitative analysis - the gravimetric analysis. You will be asked to determine the percentage of

More information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy. ELECTROLYSIS: -the process of supplying electrical energy to a molten ionic compound or a solution containing ions so as to produce a chemical change (causing a non-spontaneous chemical reaction to occur).

More information

OXIDATION-REDUCTION EXPERIMENT

OXIDATION-REDUCTION EXPERIMENT Chem 112 OXIDATION-REDUCTION EXPERIMENT INTRODUCTION An oxidation-reduction (redox) reaction involves the movement of electrons from one reactant to another. Many reactions that you have already studied

More information

UNIT-I ELECTROCHEMISTRY PART-A

UNIT-I ELECTROCHEMISTRY PART-A UNIT-I ELECTROCHEMISTRY PART-A 1. What is electrochemistry? 2. What do you understand by electrode potential? 3. Define E.M.F of an electrochemical cell? 4. Define (a) Single electrode potential (b) Standard

More information

Aluminazing One of the most common minerals on the planet is also one of the most versatile. GRADES

Aluminazing One of the most common minerals on the planet is also one of the most versatile. GRADES Aluminazing One of the most common minerals on the planet is also one of the most versatile. GRADES 9-12 Time Required: 2 class periods (90 minutes) without extension Gather materials (see activity pages).

More information

What is Electroplating?

What is Electroplating? Electroplating 1 What is Electroplating? An electrochemical process where metal ions are transferred from a solution and are deposited as a thin layer onto surface of a cathode. The setup is composed DC

More information

PORTABLE ph METER PRICE CODE NUMBER MODEL 100

PORTABLE ph METER PRICE CODE NUMBER MODEL 100 PORTABLE METER MODEL 100 PRICE CODE NUMBER 56-0032 Refer to Bulletin A-301. OPERATION AND SERVICE GUIDE O-670A DEC. 1997 GENERAL INFORMATION Model 100 meter is designed for measuring over the entire 0

More information

Evaluation copy. Total Dissolved Solids. Computer INTRODUCTION

Evaluation copy. Total Dissolved Solids. Computer INTRODUCTION Total Dissolved Solids Computer 12 INTRODUCTION Solids are found in streams in two forms, suspended and dissolved. Suspended solids include silt, stirred-up bottom sediment, decaying plant matter, or sewage-treatment

More information

DOWNLOAD PDF CYCLE OF COPPER REACTIONS

DOWNLOAD PDF CYCLE OF COPPER REACTIONS Chapter 1 : Copperâ chlorine cycle - Wikipedia CYCLE OF COPPER REACTIONS. PURPOSE: The goal of the experiment is to observe a series of reactions involving copper that form a cycle and calculate the percent

More information

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected

What happens if we connect Zn and Pt in HCl solution? Corrosion of platinum (Pt) in HCl. 1. If Zn and Pt are not connected Corrosion of platinum (Pt) in HCl Now if we place a piece of Pt in HCl, what will happen? Pt does not corrode does not take part in the electrochemical reaction Pt is a noble metal Pt acts as a reference

More information

Chemical Reactions Lab. Please remember, this power point is posted online

Chemical Reactions Lab. Please remember, this power point is posted online Chemical Reactions Lab Please remember, this power point is posted online Chemical Reactions Lab This lab will be a partial formal write up, the data table and conclusion will be HIGH Priority! You may

More information

Collecting a Surface Water Sample

Collecting a Surface Water Sample Collecting a Surface Water Sample CAUTION: Never carry or lift the pole above your head, as touching power lines could cause electrocution. Notes: Students (

More information

Electricity and Chemistry

Electricity and Chemistry Electricity and Chemistry Electrochemistry: It is a branch of chemistry that deals with the reactions involving the conversion of chemical energy into electrical energy and vice-versa. Electrochemical

More information

Effects of Acid Rain on Plants

Effects of Acid Rain on Plants Environmental Chemistry Lab Effects of Acid Rain on Plants Acid precipitation is one of the effects of air pollution. When pollutants that contain nitrogen or sulfur react with water vapor in clouds, dilute

More information

GRADE: 10 CHEMISTRY MCQ (TERM-1)

GRADE: 10 CHEMISTRY MCQ (TERM-1) GRADE: 10 CHEMISTRY MCQ (TERM-1) 1 When ferrous sulphate crystals are heated, the colour of the residue formed is : (a) red (b) brown (c) orange (d) green. 2 A small amount of quick lime is taken in a

More information

Biochemical Oxygen Demand

Biochemical Oxygen Demand Biochemical Oxygen Demand Computer 20 Oxygen available to aquatic organisms is found in the form of dissolved oxygen. Oxygen gas is dissolved in a stream through aeration, diffusion from the atmosphere,

More information

Chemistry Themed MATERIALS Part 2 Reactivity of Metals and Redox

Chemistry Themed MATERIALS Part 2 Reactivity of Metals and Redox Chemistry Themed MATERIALS Part 2 Reactivity of Metals and Redox 2016-2017 1 2 Chemistry in the Community-2016-2017 Materials: Reactivity of Metals and Redox W 10/5 Balancing Quiz Demo AgNO 3 + Cu and

More information

Collecting a Surface Water Sample

Collecting a Surface Water Sample FIELD PROCEDURE Collecting a Surface Water Sample CAUTION: Never carry or lift the pole above your head, as touching power lines could cause electrocution. Notes: Students (

More information

There s also got to be a wire, but that s kind of taken for granted.

There s also got to be a wire, but that s kind of taken for granted. RedOx Pt 2 Electrochemical Cells (AKA simple batteries) An electrochemical cell has 3 major components: 1. The Cathode (and it s corresponding solution) 2. The Anode (and it s corresponding solution) 3.

More information

March Chemistry Project v3. Chemistry Project

March Chemistry Project v3. Chemistry Project Chemistry Project Investigate and compare the quantitative effects of changing (a) metal types and (b) fruit/vegetable type on the emf (voltage) produced across two different metals, when the electrolytes

More information

Acid Rain and Its Effect on Surface Water. Evaluation copy. Figure 1: Typical rain ph in United States.

Acid Rain and Its Effect on Surface Water. Evaluation copy. Figure 1: Typical rain ph in United States. Acid Rain and Its Effect on Surface Water Computer 16 Acid rain can be very harmful to the environment. It can kill fish by lowering the ph of lakes and rivers. It can harm trees and plants by burning

More information

EXPERIMENT 7A. Chemical Separation by Filtration and Recrystallization INTRODUCTION

EXPERIMENT 7A. Chemical Separation by Filtration and Recrystallization INTRODUCTION EXPERIMENT 7A Chemical Separation by Filtration and Recrystallization INTRODUCTION The solubilities of solid substances in different kinds of liquid solvents vary widely. Substances that we call salts

More information

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline EXPERIMENT 5 Molecular Absorption Spectroscopy: Determination of Iron with 1,10-Phenanthroline UNKNOWN Submit a clean, labeled 100-mL volumetric flask to the instructor so that your unknown iron solution

More information

Deruster 11 J Product Code: Revised Date: 01/26/2009. Deruster 11 J

Deruster 11 J Product Code: Revised Date: 01/26/2009. Deruster 11 J Deruster 11 J DESCRIPTION Deruster 11 J is a powdered, cyanide-free, highly alkaline water soluble product used to remove rust, heat scale, weld scale, smuts, certain fabrication oils, and to strip paint

More information

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY Unit 2 Metals Part 2 Metals differ in their reactivity with other chemicals and this influences their uses. Describe observable changes when metals react

More information

The determination of copper in brass

The determination of copper in brass The determination of copper in brass Objective - To determine the amount of copper in a brass sample Background Brass is an alloy made of copper and zinc. Most brass contains about 60% copper. The proportions

More information

Unit - 04 Metals. Fe Fe e Cu Cu e Cu e Cu Fe e Fe Score (2) Time (2 minute)

Unit - 04 Metals. Fe Fe e Cu Cu e Cu e Cu Fe e Fe Score (2) Time (2 minute) Chemistry Standard - X Unit - 4 Metals Concept: Displacement reactions of metals 1. Copper gets deposited on the surface of the iron nail if the nail is kept immersed in copper sulphate. Choose the reactions

More information

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1 CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1 TECHNIQUES: chemical and physical changes, reactions, observations READING: PHYSICAL AND CHEMICAL CHANGES e.g. Tro chapter 1 SAFETY: Safety

More information

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem

Thermodynamics and Electrode Potential ME Dr. Zuhair M. Gasem Thermodynamics and Electrode Potential ME 472-062 Copyright Dr. Zuhair M. Gasem Corrosion Science and Engineering 2 Corrosion Science Engineering: corrosion forms, and controlling methods Chpater2 Thermodynamics

More information

Aluminum air battery activity

Aluminum air battery activity Aluminum air battery activity Overview: Students design and build the simplest possible battery with aluminum foil, salt water and copper wire. Essential Question: How can we capture the energy released

More information

Using KODAK EKTACOLOR RA Bleach-Fix Regenerator II

Using KODAK EKTACOLOR RA Bleach-Fix Regenerator II Using Regenerator II CURRENT INFORMATION SUMMARY December 2017 CIS-222 By regenerating bleach-fix for Process RA-4, you can reduce the bleach-fix contribution to BOD, COD, and iron in the processing effluent

More information

A Hydrogen Powered Bottle Rocket

A Hydrogen Powered Bottle Rocket A Hydrogen Powered Bottle Rocket Rockets are made by filling plastic water bottles with a mixture of hydrogen gas and oxygen gas. The rocket is launched by igniting the mixture with a flame. The bottle

More information

Zinc 17. Part 2 Practical work

Zinc 17. Part 2 Practical work Zinc 17 Part 2 Practical work 18 Zinc and Zirconia (per group) Teacher s notes Using carbon to extract copper from copper oxide could be used as an introduction to extracting less-reactive metals by displacement.

More information

METAL FINISHING. (As per revised VTU syllabus: )

METAL FINISHING. (As per revised VTU syllabus: ) METAL FINISHING (As per revised VTU syllabus: 2015-16) Definition: It is a process in which a specimen metal (article) is coated with another metal or a polymer in order to modify the surface properties

More information

Total Dissolved Solids

Total Dissolved Solids Total Dissolved Solids LabQuest 12 INTRODUCTION Solids are found in streams in two forms, suspended and dissolved. Suspended solids include silt, stirred-up bottom sediment, decaying plant matter, or sewage-treatment

More information

Deciding how to handle waste produced from manufacturing

Deciding how to handle waste produced from manufacturing 27 Reclaiming the Metal l a b o r at o ry Deciding how to handle waste produced from manufacturing is challenging. It can be diluted or incinerated, as you saw in previous activities. In some cases, it

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Honors Chemistry / / SOL Questions Chapter 1 Each of the following questions below appeared on an SOL Chemistry Exam. For each of the following bubble in the correct answer on your scantron. 1. The

More information

Phase Diagrams Revised: 1/27/16 PHASE DIAGRAMS. Adapted from Bill Ponder, Collin College & MIT OpenCourseWare INTRODUCTION

Phase Diagrams Revised: 1/27/16 PHASE DIAGRAMS. Adapted from Bill Ponder, Collin College & MIT OpenCourseWare INTRODUCTION PHASE DIAGRAMS Adapted from Bill Ponder, Collin College & MIT OpenCourseWare INTRODUCTION A phase diagram is a graphical representation of the physical states of a substance as they relate to temperature

More information

As you saw in the last activity, a computer is made of many parts,

As you saw in the last activity, a computer is made of many parts, 23 Producing Circuit Boards R EA D I N G As you saw in the last activity, a computer is made of many parts, each manufactured from one or more materials. One essential part of a computer, and of many other

More information

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1)

EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) EMA4303/5305 Electrochemical Engineering Lecture 05 Applications (1) Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University Corrosion Definition Electrochemical attack of metals

More information

Instructions of Using Eco-Goldex E Series Reagent in E-Waste Gold Stripping and Gold Recovery Procedures

Instructions of Using Eco-Goldex E Series Reagent in E-Waste Gold Stripping and Gold Recovery Procedures Instructions of Using Eco-Goldex E Series Reagent in E-Waste Gold Stripping and Gold Recovery Procedures Prepared by John Guo (P. Geo, Ph D) Eco-Goldex.com Tel: +1 438-825-5288 Email: john@eco-goldex.com

More information

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A

CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A CHEMISTRY 112 EXAM 3 JUNE 17, 2011 FORM A 1. Consider the following reaction: A + B C + D What are the signs of ΔH and ΔS for the reaction to always be spontaneous? ΔH ΔS A. + + B. C. + D. + 2. What is

More information

GraspIT AQA GCSE Chemical changes

GraspIT AQA GCSE Chemical changes A. Reactivity of metals The reactivity series, metal oxides and extractions 1. Three metals, X, Y and Z were put into water. The reactions are shown below: a) Use the diagrams to put metals X, Y and Z

More information

GraspIT AQA GCSE Chemical changes

GraspIT AQA GCSE Chemical changes A. Reactivity of metals The reactivity series, metal oxides and extractions 1. Three metals, X, Y and Z were put into water. The reactions are shown below: a) Use the diagrams to put metals X, Y and Z

More information

A Hydrogen Powered Bottle Rocket

A Hydrogen Powered Bottle Rocket A Hydrogen Powered Bottle Rocket Rockets are made by filling plastic water bottles with a mixture of hydrogen gas and oxygen gas. The rocket is launched by igniting the mixture with a flame. The bottle

More information

Explain whether this process is oxidation or reduction.

Explain whether this process is oxidation or reduction. 1 Electroplating steel objects with silver involves a three-step process. step 1 A coating of copper is applied to the object. step 2 A coating of nickel is applied to the object. step 3 The coating of

More information

H N 2. Decolorizing carbon O. O Acetanilide

H N 2. Decolorizing carbon O. O Acetanilide Experiment 1: Recrystallization of Acetanilide Reading Assignment Mohrig 2 4 (Glassware, Reagents, & Heating) & 14 15 (Melting Point & Recrystallization) The purification of organic compounds is a tedious,

More information

From Turbid to Clear: How Flocculation Cleans Up Drinking Water

From Turbid to Clear: How Flocculation Cleans Up Drinking Water From Turbid to Clear: How Flocculation Cleans Up Drinking Water https://www.sciencebuddies.org/science-fair-projects/project-ideas/enveng_p039/environmental-engineering/clean-drinking-water-flocculation

More information

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.

Duncan. UNIT 8 - Chemical Equations BALANCING EQUATIONS PRACTICE WORKSHEET 14.) C2H6 + O2 CO2 + H2O. 2.) Na + I2 NaI 3.) N2 + O2 N2O 4. BALANCING EQUATIONS PRACTICE WORKSHEET 1.) CH4 + O2 CO2 + H2O 2.) Na + I2 NaI 3.) N2 + O2 N2O 4.) N2 + H2 NH3 5.) KI + Cl2 KCl + I2 6.) HCl + Ca(OH)2 CaCl2 + H2O 7.) KClO3 KCl + O2 8.) K3PO4 + HCl KCl

More information

Evaluation copy. Chloride and Salinity. Computer INTRODUCTION

Evaluation copy. Chloride and Salinity. Computer INTRODUCTION Chloride and Computer 15 INTRODUCTION Chloride Chloride, in the form of the Cl ion, is one of the major inorganic anions, or negative ions, in saltwater and freshwater. It originates from the dissociation

More information

Ocean Water. Evaluation copy

Ocean Water. Evaluation copy Ocean Water Experiment 12 If you were to view the planet Earth from space, you would see that most of its surface is covered by water. Most of this is ocean water that cannot be consumed. Why can t ocean

More information

PURDUE UNIVERSITY ELECTROPLATING GOLD PROCESS SPECIFICATION RF LAB. Professor in charge: William Chappell MSEE 289

PURDUE UNIVERSITY ELECTROPLATING GOLD PROCESS SPECIFICATION RF LAB. Professor in charge: William Chappell MSEE 289 RF LAB Professor in charge: William Chappell MSEE 289 Author: Bob Salisbury Date: 11/21/2007 Revised 6/16/2008 6/16/2008 page 1 of 11 SCOPE... 3 PURPOSE... 3 REFERENCE DOCUMENTS... 3 MATERIALS... 3 EQUIPMENT...

More information