Supporting Information. Neutral water splitting catalysis with a high FF triple junction. polymer cell

Size: px
Start display at page:

Download "Supporting Information. Neutral water splitting catalysis with a high FF triple junction. polymer cell"

Transcription

1 Supporting Information Neutral water splitting catalysis with a high FF triple junction polymer cell Xavier Elias,,1 Quan Liu,,1 Carolina Gimbert-Suriñach, *,, 2 Roc Matheu, 2 Paola Mantilla- Perez, 1 Alberto Martinez-Otero, 1 Xavier Sala, 4 Jordi Martorell *,1,3 and Antoni Llobet *,2,4 1 ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain 2 Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona, Spain 3 Departament de Física, Universitat Politècnica de Catalunya, Terrassa, Spain 4 Departament de Química, Universitat Auto noma de Barcelona (UAB), Cerdanyola del Valle s, Barcelona, Spain * Corresponding authors cgimbert@iciq.es, jordi.martorell@icfo.es, allobet@iciq.cat S1

2 Outline Materials and methods S3 GC-RuO 2 anodes SST-NiMoZn cathodes ITO-CoPi anodes Electrochemical methods Instrumentation Supporting electrolytes Electrochemical cell Three electrode configuration experiments Two electrode configuration experiments (water splitting with TJSC) S5 Figure S1. Chronopotentiometry experiments comparing ITO-CoPi and GC-RuO 2 anodes. S7 Figure S2. J-V curves of triple-junction solar cell and three series-connected solar cell. S7 Figure S3. Current vs time profile of a WS reaction with triple junction solar cell, GC-RuO 2 anode and SST-NiMoZn with and without UV light. S8 Figure S4. Long time water splitting experiments S8 S2

3 GC-RuO 2 anodes Carbon substrates and geometric surface: Glassy carbon rods (HTW ) of two different diameters (5 and 10 mm) were used as graphite support for the anodes. The geometrical surface of the anodes was estimated to be 4.1 cm 2 and 10 cm 2 respectively under our working conditions unless indicated differently. The former was used for 1.5h experiments in a 20 ml total volume electrochemical cell, and the latter was used for longer experiments (>1.5 h) in a 50 ml total volume electrochemical cell. Procedure for pre-catalyst immobilization: GC-RuO 2 were prepared according to the literature. 1 A glassy carbon rod was immersed in a 0.5 mm solution of the ruthenium molecular precursor Ru-MP in acetone containing tetrabutylammoniumhexafluorophosphate (0.1 M) as supporting electrolyte. The glassy carbon rod was used as working electrode, a Pt wire as a counter electrode and SSCE as reference electrode in a three electrode configuration cell with a single compartment. The GC-Ru-PC modified electrode was used as a working electrode in a three electrode configuration in a two compartment cell at ph 7. A current of 280 μa was applied to convert the grafted ruthenium pre-catalyst (GC-Ru-PC) to RuO 2 based electrode (GC-RuO 2 ) (30 minutes for the rod d=5 mm and 45 minutes for the rod d=10 mm). The GC-RuO 2 electrode was then washed with water and air-dried. Catalyst loading, superficial concentration (Γ ) and TON The amount of ruthenium catalyst was estimated by integrating the charge under the Ru(III)/Ru(II) redox wave of GC-Ru-PC in a cyclic voltammogram at ph=7 (Q Ru ). 1 Q Ru was used to calculate the superficial concentration and TON by applying the formulas Γ ( mol cm 2) = S3

4 QRu A F and TON = Q O2 4 Q Ru. Where A is the geometrical area, F is the Faradaic constant and Q O2 is the charge of the produced oxygen assuming a 100% Faradaic efficiency. The catalyst (ruthenium) superficial concentration of our GC-RuO 2 electrodes was 0.15 nmol Ru/cm 2. SST-NiMoZn cathodes NiMoZn was electrodeposited adapting the same method reported by Nocera. 2 Stainless steel substrates were covered with tape to expose 1cm 2 and then pre-treated at -2V vs Ag/AgCl in 0.5M H 2 SO 4 for 3 min. The NiMoZn was then deposited from a solution containing NiCl 2 6H 2 O (0.04M), Na 2 MoO 4 (0.17M), Na 4 P 2 O 7 10 H 2 O (0.077M), NaHCO 3 (0.89M) and ZnCl 2 (3x10-4 M), with hydrazine (0.018M) being added immediately before plating. The current density was 50 ma cm -2 for 1 h. Afterwards the deposit was immersed in 10% KOH for 1 night, washed thoroughly with water and dried under air. ITO-CoPi anodes CoPi was deposited on ITO, covering the substrate with Teflon tape to expose 1cm 2. A two compartment electrochemical cell with a glass frit junction was used. The working compartment contained a 0.5 mm solution of Co(NO 3 ) 2 6H 2 O and 0.1M potassium phosphate (KPi) at ph 7, whereas the auxiliary side contained only KPi. The reference electrode was Ag/AgCl and Pt mesh was used as auxiliary electrode.the catalyst (cobalt) loading of the resulting electrodes was 0.30 μmol/cm 2. S4

5 Electrochemical methods Instrumentation All electrochemical experiments were performed using a PAR 263A EG&G potentiostat, IJ- Cambria HI-660D or IJ-Cambria HI-600D potentiostat. Supporting Electrolytes Phosphate buffered solution (47 mm) was used as electrolyte for all electrochemical experiments at ph 7. Only phosphate anions (H 2 PO4 - /HPO 2-4 ) and K + contributed to the ionic strength (I = 0.1 M). Electrochemical cell A two-compartments cell of 10 ml per compartment with a separation frit was used for both two electrode and three electrodeconfiguration electrochemical experiments unless otherwise indicated. The electrodes were placed inside and connected to the potentiostat. The solution was purged with N 2 for minutes prior to the performance of any experiment. A bigger cell (25 ml per compartment) with the same set up was used for experiments that were longer than 1.5h to collect larger amounts of hydrogen and oxygen gas. Three electrode configuration experiments All experiments were done in a two compartment cell, the reference and the working electrode were placed in the same and first compartment and the counter electrode was placed in the second compartment. The scan rate in Cyclic Voltammetries (CV) was 100 mv/s and ir compensation was applied. Chronopotentiometry was used to simulate a water splitting experiment with a solar cell, using analogous currents ( ma for the anode and ma for the cathode). The counter electrode (CE) was a Pt mesh and the Reference Electrode S5

6 (RE) was Ag/AgCl (KCl sat.). All the potentials are given against the Ag/AgCl (KCl sat.) unless indicated differently. Two electrode configuration experiments (water splitting experiments using a triple junction OPV cell) All experiments were done in a stirred two compartment electrochemical cell using 6mL of 0.1M potassium phosphate buffer (KPi) at ph7 in each compartment. The solution was purged with N 2 for minutes prior to the performance of any experiment. The amount of charge (Q) passing through the cell during the course of the experiments was measured by performing bulk electrolysis with a potentiostat at 0V bias, connecting the working lead to the ITO side of the solar cell and the reference and auxiliary leads directly to the electrode working as a cathode. In this configuration, the potentiostat works as an ammeter. Although the resistance between the two electrodes was measured before and after the gas production (R ), no ir compensation was applied. The amount of hydrogen and oxygen generated by the reactions was measured in the headspaces of each compartment of the electrochemical cell with Clark electrodes (Unisense), waiting at the end of the illuminating period until the signal was no longer increasing. In several cases hydrogen gas was also measured by Gas Chromatography coupled to thermal conductivity detectors, with results being consistent with those obtained with the Clark electrode. S6

7 Figure S1. Chronopotentiometry experiments using a two-compartment electrochemical cell, 0.1M phosphate buffer, ph = 7, Ag/AgCl reference electrode, Pt mesh as counter electrode and GC-RuO 2 (d=5mm, red) or ITO-CoPi (black) as working electrode. The anodic current was set at 0.28 ma in both experiments. The potential is given versus the Ag/AgCl electrode. Figure S2. J-V curves of triple-junction solar cell and three series-connected solar cell. S7

8 Figure S3. Current vs time profile of water splitting experiments using triple junction solar cell, GC-RuO 2 anode and NiMoZn cathode in a two compartment cell containing 0.1M phosphate buffer, ph = 7, under AM 1.5G illumination with a GG400 filter (black trace, TJSC = 8.5%), and without CG400 filter (blue trace, TJSC = 8.7%). Figure S4. Stability tests of a water splitting experiment using a triple junction solar cell ( TJSC = 8.5 %), GC-RuO 2 anode and SST-NiMoZn cathode in a two compartment cell containing 0.1M phosphate buffer, ph = 7, under AM 1.5G illumination with a GG400 filter. The current fluctuations are most likely due to the connection of the circuit with the top thin silver contact layer that slowly damages over time. S8

9 1. Matheu, R.; Francàs, L.; Chernev, P.; Ertem, M. Z.; Batista, V.; Haumann, M.; Sala, X.; Llobet, A. ACS Catalysis. 2015, 5, Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Science 2011, 334, 645. S9

Photocatalytic Hydrogen Evolution from Neutral Aqueous Solution by a Water-Soluble Cobalt(II) Porphyrin

Photocatalytic Hydrogen Evolution from Neutral Aqueous Solution by a Water-Soluble Cobalt(II) Porphyrin Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 218 Supporting information Photocatalytic Hydrogen Evolution from eutral Aqueous Solution

More information

Supporting Information. High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation

Supporting Information. High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation Supporting Information High Performance Platinized Titanium Nitride Catalyst for Methanol Oxidation O.T. Muhammed Musthafa and S.Sampath* Department of Inorganic and Physical Chemistry Indian Institute

More information

Development of Corrosion Probe based on Solid State Reference Electrodes 1 Introduction

Development of Corrosion Probe based on Solid State Reference Electrodes  1 Introduction Development of Corrosion Probe based on Solid State Reference Electrodes BYUNG GI PARK*, IN HYOUNG RHEE**, DAECHUL CHO** *FNC Technology Co. Ltd., SNU Research Park Innovation Center #421, San 4-1 Bongchun-dong,

More information

PULSE ELECTRODEPOSITION OF Pt Co CATALYST ONTO GLASSY CARBON FOR OXYGEN REDUCTION REACTION TO USE IN PEMFC

PULSE ELECTRODEPOSITION OF Pt Co CATALYST ONTO GLASSY CARBON FOR OXYGEN REDUCTION REACTION TO USE IN PEMFC PULSE ELECTRODEPOSITION OF Pt Co CATALYST ONTO GLASSY CARBON FOR OXYGEN REDUCTION REACTION TO USE IN PEMFC Jittima Sriwannaboot a,b, Nisit Tantavichet a,b,* a) Center of Excellence on Petrochemical and

More information

SUPPORTING INFORMATION FOR:

SUPPORTING INFORMATION FOR: SUPPORTING INFORMATION FOR: A New Ru Complex Capable of Catalytically Oxidize Water to Molecular Dioxygen Cristina Sens, Isabel Romero, Montserrat Rodríguez and Antoni Llobet,* Teodor Parella and Jordi

More information

Supplementary Figure 1: PXRD patterns of Ag-Al precursors, as-prepared np-ag electrodes and np-ag electrodes after 2 hours electrolysis under -0.

Supplementary Figure 1: PXRD patterns of Ag-Al precursors, as-prepared np-ag electrodes and np-ag electrodes after 2 hours electrolysis under -0. Supplementary Figure 1: PXRD patterns of Ag-Al precursors, as-prepared np-ag electrodes and np-ag electrodes after 2 hours electrolysis under -0.5 V vs. RHE. Supplementary Figure 2: Low-magnification SEM

More information

Supporting Information. Stainless steel made to rust: A robust water-splitting Catalyst with Benchmark Characteristics

Supporting Information. Stainless steel made to rust: A robust water-splitting Catalyst with Benchmark Characteristics Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting Information Stainless steel made to rust: A robust water-splitting

More information

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Jing-Fang Huang,* a and Wen-Rhone Chang a Supporting information Experimental Section

More information

A Practical Beginner s Guide to Cyclic Voltammetry

A Practical Beginner s Guide to Cyclic Voltammetry Supporting Information: Electrochemistry Training Modules For A Practical Beginner s Guide to Cyclic Voltammetry Table of Contents Safety Considerations... 1 Overview of Modules... 1 General Considerations...

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Experimental section Materials: Ni(CH 3 COO) 2 4H 2 O, SeO

More information

Supporting Information

Supporting Information Supporting Information Electrochemical reduction of CO 2 at Copper Nanofoams Sujat Sen a, Dan Liu a and G. Tayhas R. Palmore a, b, * a Department of Chemistry and b School of Engineering, Brown University,

More information

Supporting Information. Christina W. Li and Matthew W. Kanan* *To whom correspondence should be addressed.

Supporting Information. Christina W. Li and Matthew W. Kanan* *To whom correspondence should be addressed. Supporting Information CO 2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu 2 O Films Christina W. Li and Matthew W. Kanan* *To whom correspondence should be addressed.

More information

N-doped Graphite Carbon Derived from Carbon Foam for Efficient Hydrogen Evolution Reaction

N-doped Graphite Carbon Derived from Carbon Foam for Efficient Hydrogen Evolution Reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Ruthenium @ N-doped Graphite Carbon Derived from Carbon Foam for Efficient Hydrogen Evolution Reaction

More information

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System)

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) (Interim Report: Dec. 20, 2005 - Feb. 28, 2006) P. Q. Wu, Z. Qin, and D. W. Shoesmith The University of Western

More information

Supporting Information

Supporting Information Supporting Information Open Circuit (Mixed) Potential Changes Allow the Observation of Single Metal Nanoparticle Collisions with an Ultramicroelectrode Hongjun Zhou, Jun Hui Park, Fu-Ren F. Fan, Allen

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Supplementary Information for Chemical Science, DOI: 10.1039/ ((please add manuscript

More information

Fabrication of Paper-templated Structures of Noble Metals

Fabrication of Paper-templated Structures of Noble Metals Supporting Information Fabrication of Paper-templated Structures of Noble Metals Dionysios C. Christodouleas 1, Felice C. Simeone 1, Alok Tayi 1, Sonia Targ 1, James C. Weaver 2, María Teresa Fernández-Abedul

More information

Tin Coated Viral-Nanoforests as Sodium-Ion. Battery Anodes

Tin Coated Viral-Nanoforests as Sodium-Ion. Battery Anodes Supporting information Tin Coated Viral-Nanoforests as Sodium-Ion Battery Anodes Yihang Liu, Yunhua Xu, Yujie Zhu, James N. Culver, Cynthia A. Lundgren, Kang Xu,*, and Chunsheng Wang*, Sn anodes fabrication:

More information

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS REPORT OF THE FINAL PROJECT ENTITLED: DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS by Veeraraghavan S Basker Department of Chemical Engineering University of South Carolina

More information

Bi-functional RuO 2 /Co 3 O 4 Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst

Bi-functional RuO 2 /Co 3 O 4 Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst This journal is The Royal Society of Chemistry 0 7 8 9 0 7 8 9 0 7 Supporting Information Bi-functional RuO /Co O Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst Jong

More information

Supporting Information

Supporting Information Supporting Information An electrokinetic separation route to source dialysate from excess fluid in blood Beatrise Berzina, Robbyn K. Anand* Department of Chemistry, Iowa State University, Ames, Iowa 50010,

More information

Hydrothermal Synthesis of CoWO4 as Active Material for Supercapacitor Electrode

Hydrothermal Synthesis of CoWO4 as Active Material for Supercapacitor Electrode , pp.409-413 http://dx.doi.org/10.14257/astl.2016.139.81 Hydrothermal Synthesis of CoWO4 as Active Material for Supercapacitor Electrode Vaibhav Lokhande 1, Taeksoo Ji 1 * 1 Department of Electronics and

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 Discovery of New Oxygen Evolution Reaction Electrocatalysts by Combinatorial Investigation of the Ni La Co Ce Oxide

More information

Comparison between the article and script of thesis

Comparison between the article and script of thesis Comparison between the article and script of thesis All nanomaterials and a part of results presented and discussed in this article titled Efficient multi-metallic anode catalysts in a PEM water electrolyzer

More information

Supporting Information

Supporting Information Supporting Information Title: Platinum Particles Supported On Titanium Nitride: An Efficient Electrode Material for the Oxidation of Methanol in Alkaline Media Authors: M. M. Ottakam Thotiyl, T. Ravikumar

More information

Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly

Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly Eric Broaddus, Jared Fernandez, and Scott A. Gold Institute for Micromanufacturing,

More information

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT

ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT ELECTROCHEMICAL REDUCTION OF TITANIUM DIOXIDE THIN FILM IN LiCl-KCl-CaCl 2 EUTECTIC MELT Yasushi Katayama Department of Applied Chemistry, Faculty of Science and Technology, Keio University 3-14-1, Hiyoshi,

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

Supporting Information for Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting

Supporting Information for Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting Supporting Information for Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting William D. Chemelewski 1,2, Heung-Chan Lee 2,3, Jung-Fu Lin 1,4, Allen J. Bard 1,2,3,

More information

Niobium Powder Production in Molten Salt by Electrochemical Pulverization

Niobium Powder Production in Molten Salt by Electrochemical Pulverization Niobium Powder Production in Molten Salt by Electrochemical Pulverization Boyan Yuan * and Toru H. Okabe ** *: Graduate Student, Department of Materials Engineering, University of Tokyo **: Associate Professor,

More information

Electronic Supplementary Information. for

Electronic Supplementary Information. for Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 216 Electronic Supplementary Information for A robust iron oxyhydroxide water

More information

Mass Transport Effects on Electroreduction of Carbon Dioxide

Mass Transport Effects on Electroreduction of Carbon Dioxide Mass Transport Effects on Electroreduction of Carbon Dioxide Tiek Aun Tan 1, Sara Yasina binti Yusuf 1 and Umi Fazara Muhd Ali 1 1 Universiti Malaysia Perlis Abstract: The electrochemical reduction of

More information

and Curtis P. Berlinguette.*,, Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1.

and Curtis P. Berlinguette.*,, Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1. Supplementary Materials for Photodecomposition of metal nitrate and chloride compounds yields amorphous metal oxide films Jingfu He, David M. Weekes, Wei Cheng, Kevan E. Dettelbach, Aoxue Huang, Tengfei

More information

Supporting Information

Supporting Information Supporting Information Effect of water electrolysis catalysts on carbon corrosion in polymer electrolyte membrane fuel cells Sang-Eun Jang, Hansung Kim* Department of Chemical and Biomolecular Engineering,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Table of Contents Experimental Procedures Results and Discussion References Author Contributions Experimental Procedures Apparatus and materials: Molten salt electrodeposition was conducted in a SiO 2

More information

1 Supplementary Information. 2 Table of contents Materials Preparation of Ru-MeCN complex

1 Supplementary Information. 2 Table of contents Materials Preparation of Ru-MeCN complex Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 015 1 Supplementary Information Table of contents 3 1. Materials 4. Preparation

More information

Ru Atom-modified Covalent Triazine Framework as a Robust Electrocatalyst for Selective Alcohol Oxidation in Aqueous Electrolytes

Ru Atom-modified Covalent Triazine Framework as a Robust Electrocatalyst for Selective Alcohol Oxidation in Aqueous Electrolytes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information Ru Atom-modified Covalent Triazine Framework as a Robust Electrocatalyst

More information

Electrocatalytic Oxidation of Vitamin B6 on a Chemically Modified Electrode

Electrocatalytic Oxidation of Vitamin B6 on a Chemically Modified Electrode Tamkang Journal of Science and Engineering, Vol. 5, No. 4, pp. 219-222 (2002) 219 Electrocatalytic Oxidation of Vitamin B6 on a Chemically Modified Electrode Jyh-Myng Zen, Jyh-Cheng Chen and Annamalai

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2018 Supporting Information Tuning nanosheet Fe 2 O 3 photoanode with C 3 N 4

More information

Heng-Pan Yang, Sen Qin, Ying-Na Yue, Li Liu, Huan Wang* and Jia-Xing Lu**

Heng-Pan Yang, Sen Qin, Ying-Na Yue, Li Liu, Huan Wang* and Jia-Xing Lu** Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Supplementary information for Entrapment of a pyridine derivative within

More information

A Distinct Platinum Growth Mode on Shaped Gold Nanocrystals

A Distinct Platinum Growth Mode on Shaped Gold Nanocrystals A Distinct Platinum Growth Mode on Shaped Gold Nanocrystals Sungeun Yang, a Na-Young Park, b Joung Woo Han, a Cheonghee Kim, a Seung-Cheol Lee b and Hyunjoo Lee a * a Department of Chemical and Biomolecular

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

Supporting Information. [Submitted to Analyst] Nanopipette Delivery: Influence of Surface Charge. Wenqing Shi, Niya Sa, Rahul Thakar, Lane A.

Supporting Information. [Submitted to Analyst] Nanopipette Delivery: Influence of Surface Charge. Wenqing Shi, Niya Sa, Rahul Thakar, Lane A. Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2014 Supporting Information [Submitted to Analyst] Nanopipette Delivery: Influence of Surface Charge

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Sodium-ion battery based on ion exchange membranes as electrolyte and separator Chengying Cao, Weiwei Liu, Lei Tan, Xiaozhen Liao and Lei Li* School of Chemical and Chemistry Engineering, Shanghai Jiaotong

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supporting Information Electrochemically-Triggered Motion of Catalytic Nanomotors Percy Calvo-Marzal, Kalayil Manian Manesh, Daniel Kagan, Shankar Balasubramanian, Maria Cardona, Gerd-Uwe Flechsig,

More information

Supporting Information

Supporting Information Supporting Information Experimental Methods Pt ALD. The precursor used for ALD was trimethyl-methylcyclopentadienyl-platinum(iv) (MeCpPtMe 3 ) (Strem Chemicals, 99%), which has been widely reported for

More information

Electrochemistry Written Response

Electrochemistry Written Response Electrochemistry Written Response January 1999 7. Balance the following redox reaction in acidic solution: RuO 4 + P Ru(OH) 2 2+ + H 3 PO 3 (acid) (3 marks) 8. A technician tests the concentration of methanol,

More information

Supporting Information

Supporting Information Supporting Information Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α Phase Nickel-Cobalt Hydroxide Nanodendrite Forests By Anirudh Balram, Hanfei Zhang, and Sunand

More information

Nanorods For Solar Water Oxidation.

Nanorods For Solar Water Oxidation. Effect of Oxygen Evolution Catalysts On Hematite Nanorods For Solar Water Oxidation. Young-Rae Hong *a, Zhaolin Liu *a, Sharifah Fatanah B. S. A. Al-Bukhari ab, Coryl Jing Jun Lee ab, Daniel L. Yung ac,

More information

Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell

Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell Supporting material: Electrochemical characterization Carbon multiwalled nanotube (MWNT) buckypaper was fabricated

More information

Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide

Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide Journal of Power Sources 92 (2001) 163±167 Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide E.E. Kalu a,*, T.T. Nwoga

More information

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4,

Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Preparation of Bi-Based Ternary Oxide Photoanodes, BiVO 4, Bi 2 WO 6 and Bi 2 Mo 3 O 12, Using Dendritic Bi Metal Electrodes Donghyeon Kang, a, Yiseul Park, a, James C. Hill, b and Kyoung-Shin Choi a,*

More information

Supporting information

Supporting information Supporting information Cu 2 O-Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media Han Xu, Jin-Xian Feng, Ye-Xiang Tong, and Gao-Ren Li* MOE Laboratory of

More information

Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications Supporting Information Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications Naoki Morimoto, Takuya Kubo and Yuta Nishina 1. Materials. Graphite (SP-1) was purchased

More information

Chemistry Instrumental Analysis Lecture 24. Chem 4631

Chemistry Instrumental Analysis Lecture 24. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 24 measurement of current as a function of applied potential using working electrode. Historically 1 st voltammetry was polarography developed by Heyrovsky

More information

Supporting Information for

Supporting Information for Supporting Information for 3D Nitrogen-Doped Graphene Aerogel-Supported Fe 3 O 4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction Zhong-Shuai Wu, Shubin Yang, Yi Sun, Khaled

More information

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency

Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Three-dimensional NiFe Layered Double Hydroxide Film for Highefficiency Oxygen Evolution Reaction

More information

Crystalline Copper (II) Phthalocyanine Catalysts for. Electroctrochemical Reduction of Carbon Dioxide in Aqueous Media

Crystalline Copper (II) Phthalocyanine Catalysts for. Electroctrochemical Reduction of Carbon Dioxide in Aqueous Media Supporting Information Crystalline Copper (II) Phthalocyanine Catalysts for Electroctrochemical Reduction of Carbon Dioxide in Aqueous Media Shoko Kusama*, Teruhiko Saito, Hiroshi Hashiba, Akihiro Sakai,

More information

Applied Surface Science

Applied Surface Science Applied Surface Science 255 (2009) 4192 4196 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc Electrodeposited ruthenium oxide thin films

More information

Cobalt-Manganese Oxide/Carbon-nanofiber Composite Electrodes for Supercapacitors

Cobalt-Manganese Oxide/Carbon-nanofiber Composite Electrodes for Supercapacitors Int. J. Electrochem. Sci., 4 (29) 1489-1496 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Cobalt-Manganese Oxide/Carbon-nanofiber Composite Electrodes for Supercapacitors Sang

More information

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal

ACCELERATED CORROSION TESTING OF GALVANIC COUPLES. James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal ACCELERATED CORROSION TESTING OF GALVANIC COUPLES James F. Dante, Josh Averett, Fritz Friedersdorf, and Christy Vestal Luna Innovations 706 Forest St. Suite A Charlottesville, VA 22903 dantej@lunainnovations.com

More information

Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount.

Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount. Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount. S1 Supplementary Figure S2 Photography. Photography illustration of

More information

Supporting Information. Electro-triggering and electrochemical monitoring of dopamine

Supporting Information. Electro-triggering and electrochemical monitoring of dopamine Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information Electro-triggering and electrochemical monitoring of dopamine exocytosis

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Small gold nanoparticles interfaced to electrodes through molecular linkers: A platform to enhance electron transfer and increase electrochemically active surface area Samantha

More information

ELECTROCHEMICAL SYNTHESIS OF POLYPYRROLE (PPy) and PPy METAL COMPOSITES ON COPPER and INVESTIGATION OF THEIR ANTICORROSIVE PROPERTIES

ELECTROCHEMICAL SYNTHESIS OF POLYPYRROLE (PPy) and PPy METAL COMPOSITES ON COPPER and INVESTIGATION OF THEIR ANTICORROSIVE PROPERTIES ELECTROCHEMICAL SYNTHESIS OF POLYPYRROLE (PPy) and PPy METAL COMPOSITES ON COPPER and INVESTIGATION OF THEIR ANTICORROSIVE PROPERTIES Sibel Zor, Hatice Özkazanç Kocaeli University, Department of Chemistry,

More information

A membrane-free ferrocene-based high-rate semiliquid

A membrane-free ferrocene-based high-rate semiliquid Supporting Information A membrane-free ferrocene-based high-rate semiliquid battery Yu Ding,, Yu Zhao,, and Guihua Yu, * Materials Science and Engineering Program and Department of Mechanical Engineering,

More information

Supporting Information for. Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible alloys using combinatorial sputtering

Supporting Information for. Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible alloys using combinatorial sputtering Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for Exploring a wider range of Mg-Ca-Zn metallic glass as biocompatible

More information

Electrochemical Detection of Pyocyanin in Nanochannels with Integrated Palladium Reference Electrodes

Electrochemical Detection of Pyocyanin in Nanochannels with Integrated Palladium Reference Electrodes Supplemental Information Electrochemical Detection of Pyocyanin in Nanochannels with Integrated Palladium Reference Electrodes Thaddaeus A. Webster, Edgar D. Goluch Testing of the finished devices was

More information

Supporting information for: Trends in Activity and Dissolution on RuO 2 under Oxygen Evolution

Supporting information for: Trends in Activity and Dissolution on RuO 2 under Oxygen Evolution Supporting information for: Trends in Activity and Dissolution on RuO 2 under Oxygen Evolution Conditions: Particles versus Well-Defined Extended Surfaces Roy, Claudie a ; Rao, Reshma R; b Stoerzinger,

More information

Membraneless Hydrogen Peroxide Micro Semi-Fuel Cell for Portable Applications

Membraneless Hydrogen Peroxide Micro Semi-Fuel Cell for Portable Applications Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information for Membraneless Hydrogen Peroxide Micro Semi-Fuel Cell

More information

Corrosion Rate Measurement on C-Steel

Corrosion Rate Measurement on C-Steel Measurements of corrosion rate on Carbon-steel using Electrochemical (potentiodynamic Polarization, EIS etc.) technique. Corrosion Rate Measurement on C-Steel Abdullah Al Ashraf 1. Introduction: The degradation

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand

Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry. Sethuraman, Vijay Anand Report On Adsorption/Desorption Studies of CO on PEM Electrodes Using Cyclic Voltammetry Sethuraman, Vijay Anand I. AIM: The aim of this study is to calculate the adsorption and desorption rate constants

More information

Solution. Yoshio Takasu*, Norihiro Yoshinaga and Wataru Sugimoto

Solution. Yoshio Takasu*, Norihiro Yoshinaga and Wataru Sugimoto Oxygen Reduction Behavior of RuO 2 /Ti, IrO 2 /Ti and IrM (M: Ru, Mo, W, V) O x /Ti Binary Oxide Electrodes in a Sulfuric Acid Solution Yoshio Takasu*, Norihiro Yoshinaga and Wataru Sugimoto Department

More information

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy.

Electrochemical cells use spontaneous redox reactions to convert chemical energy to electrical energy. ELECTROLYSIS: -the process of supplying electrical energy to a molten ionic compound or a solution containing ions so as to produce a chemical change (causing a non-spontaneous chemical reaction to occur).

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supporting Information Copyright Royal Society of Chemistry, London,

More information

Supporting Information

Supporting Information Supporting Information Selective Electrochemical Separation and Recovery of Uranium from mixture of Uranium(VI) and Lanthanide(III) ions in aqueous medium Rahul Agarwal* +# and Manoj Kumar Sharma +# +

More information

Supporting Information

Supporting Information Supporting Information Carbon-supported Pt Ru nanoparticles prepared in glyoxylate-reduction system promoting precursorsupport interaction Ki Chul Park, *a In Young Jang, a Winadda Wongwiriyapan, a Shingo

More information

Fabrication of 1D Nickel Sulfide Nanocrystals with High

Fabrication of 1D Nickel Sulfide Nanocrystals with High Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Fabrication of 1D Nickel Sulfide Nanocrystals with High Capacitances and Remarkable Durability

More information

Supporting Information High-Current-Density, Long-Duration Cycling of Soluble Organic Active Species for Non-Aqueous Redox Flow Batteries

Supporting Information High-Current-Density, Long-Duration Cycling of Soluble Organic Active Species for Non-Aqueous Redox Flow Batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information High-Current-Density, Long-Duration Cycling of Soluble

More information

THE ELECTROLYTIC DEPOSITION OF CARBON FROM MOLTEN Li 2 CO 3

THE ELECTROLYTIC DEPOSITION OF CARBON FROM MOLTEN Li 2 CO 3 THE ELECTROLYTIC DEPOSITION OF CARBON FROM MOLTEN LJ 2 COT THE ELECTROLYTIC DEPOSITION OF CARBON FROM MOLTEN Li 2 CO 3 ii I n>11111 III : MK0400059 A.T.Dimitrov!. - Faculty of Technology and Metallurgy,

More information

Supplementary Information. Reversible superconductor-insulator transition in LiTi 2 O 4 induced by

Supplementary Information. Reversible superconductor-insulator transition in LiTi 2 O 4 induced by Supplementary Information Reversible superconductor-insulator transition in LiTi 2 O 4 induced by Li-ion electrochemical reaction K. Yoshimatsu 1,*, M. Niwa 1, H. Mashiko 1, T. Oshima 1 & A. Ohtomo 1,2

More information

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R.

Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells. Jennifer M. Pringle,* Vanessa Armel and Douglas R. Supplementary Information. Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells Jennifer M. Pringle,* Vanessa Armel and Douglas R. MacFarlane Experimental. 3,4-ethylenedioxythiophene

More information

Supplementary Figure S1. CV curves of gold wire and seamless solid/nanoporous Au electrodes in 0.5 M H 2 SO 4 solution at a scan rate of 100 mv S -1.

Supplementary Figure S1. CV curves of gold wire and seamless solid/nanoporous Au electrodes in 0.5 M H 2 SO 4 solution at a scan rate of 100 mv S -1. Supplementary Figure S1. CV curves of gold wire and seamless solid/nanoporous Au electrodes in 0.5 M H 2 SO 4 solution at a scan rate of 100 mv S -1. The seamless solid/nanoporous Au electrode was obtained

More information

INVITATION FOR QUOTATION. TEQIP-II/2017/ntst/Shopping/1

INVITATION FOR QUOTATION. TEQIP-II/2017/ntst/Shopping/1 INVITATION FOR QUOTATION TEQIP-II/2017/ntst/Shopping/1 30-Oct-2017 To, Sub: Invitation for Quotations for supply of Goods Dear Sir, 1. You are invited to submit your most competitive quotation for the

More information

Supporting Information

Supporting Information Supporting Information Novel DMSO-based Electrolyte for High Performance Rechargeable Li-O 2 Batteries Dan Xu, a Zhong-li Wang, a Ji-jing Xu, a Lei-lei Zhang, a,b and Xin-bo Zhang a* a State Key Laboratory

More information

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China

Supporting Information. on Degradation of Dye. Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University, Beijing, , China Supporting Information A New Type of BiPO 4 Oxy-acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye Chengsi Pan and Yongfa Zhu* Department of Chemistry, Tsinghua University,

More information

Chapter 3. Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode

Chapter 3. Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode Chapter 3 Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode 3. Electrocatalytic Oxidation of Glucose on Copper Oxide Modified Copper Electrode In order to combat the drawbacks

More information

Supporting Information. Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production

Supporting Information. Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production Supporting Information Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production Youn Jeong Jang, Yoon Bin Park, Hyo Eun Kim, Yo Han Choi,

More information

ELECTROCHEMICAL PROPERTIES OF CoCl 2 (PPh 3 ) 2

ELECTROCHEMICAL PROPERTIES OF CoCl 2 (PPh 3 ) 2 CHAPTER 5 ELECTROCHEMICAL PROPERTIES OF CoCl 2 (PPh 3 ) 2 This chapter dwells on characterization of the synthesized CoCl 2 (PPh 3 ) 2 in a mixture of acetonitrile and pentanol (1:1), using both electrochemical

More information

Jagadeesh Bhattarai * Central Department of Chemistry, Tribhuvan Univ., GPO Box 2040, Kathmandu, Nepal.

Jagadeesh Bhattarai * Central Department of Chemistry, Tribhuvan Univ., GPO Box 2040, Kathmandu, Nepal. The Effect of Antimony in the Intermediate IrO 2 -SnO 2 Sb 2 O 5 Oxide Layer on Titanium Substrate for Oxygen Evolution Mn 1-x-y Mo x Sn y O 2+x Anodes in Seawater Electrolysis Jagadeesh Bhattarai * Central

More information

Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education,

Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Supporting Information Portable, Self-Powered and Light-Addressable Photoelectrochemical Sensing Platforms using ph Meter Readouts for High-Throughput Screening of Thrombin Inhibitor Drugs Juan Wang, a

More information

Supporting Information

Supporting Information Supporting Information Fast, ultrasensitive detection of reactive oxygen species using a carbon nanotube based-electrocatalytic intracellular sensor Frankie J Rawson 1 *, Jacqueline Hicks 1, Nicholas Dodd

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supplementary Information Probing the active sites of Co 3 O 4 for acidic

More information

Preparation of porous manganese hydroxide film and its application in supercapacitors

Preparation of porous manganese hydroxide film and its application in supercapacitors Indian Journal of Chemistry Vol. 46A, May 2007, pp. 736-741 Preparation of porous manganese hydroxide film and its application in supercapacitors Zhen Fan, Jinhua Chen*, Feng Sun, Lei Yang, Yan Xu & Yafei

More information

Supplementary Figure 1. Supplementary Figure 2.

Supplementary Figure 1. Supplementary Figure 2. Supplementary Figure 1. STEM annular dark field (ADF) image of NiO/Ni-CNT showing non-uniform coating of NiO nanoparticles on Ni cores (the red circles show individual NiO nanoparticles with different

More information

Benzoquinone-Hydroquinone Couple for Flow Battery

Benzoquinone-Hydroquinone Couple for Flow Battery Mater. Res. Soc. Symp. Proc. 1491, mrsf12-1491-c08-09 doi:10.1557/opl.2012.1737 (2013) Benzoquinone-Hydroquinone Couple for Flow Battery Saraf Nawar, 1 Brian Huskinson, 2 and Michael Aziz 2 1 Harvard College,

More information

Supplementary Materials for

Supplementary Materials for www.advances.sciencemag.org/cgi/content/full/1/2/e1400215/dc1 Supplementary Materials for Near-infrared driven decomposition of metal precursors yields amorphous electrocatalytic films Danielle A. Salvatore,

More information

Supporting Information

Supporting Information Supporting Information Electrochemical Tandem Synthesis of Oximes from Alcohols Using KNO 3 as Nitrogen Source Mediated by Tin Microspheres in Aqueous Medium Li Zhang, He Chen, Zhenggen Zha*, Zhiyong Wang*

More information

COMPARATIVE CORROSION BEHAVIOR OF PURE COPPER AND BRASS IN 3.5% NaCl SOLUTION

COMPARATIVE CORROSION BEHAVIOR OF PURE COPPER AND BRASS IN 3.5% NaCl SOLUTION COMPARATIVE CORROSION BEHAVIOR OF PURE COPPER AND BRASS IN 3.5% NaCl SOLUTION Lidia BENEA, Eliza DĂNĂILĂ Competences Center: Interfaces-Tribocorrosion-Electrochemical Systems (CC-ITES), Faculty of Engineering,

More information