Can Fluorspar be replaced in steelmaking? Eugene Pretorius Baker Refractories

Size: px
Start display at page:

Download "Can Fluorspar be replaced in steelmaking? Eugene Pretorius Baker Refractories"

Transcription

1 Can Fluorspar be replaced in steelmaking? By Eugene Pretorius Baker Refractories

2 I) Introduction The use of fluorspar in steelmaking is a controversial issue. A number of studies have shown that there are considerable environmental concerns regarding the use of fluorspar, and some plants has opted not to use fluorspar for this very reason. While fluorspar has been banned as a deliberate additive to the slags in these plants, the presence of fluorspar in mold fluxes has not been eliminated. This technical note will not address any of the environmental concerns regarding the use of fluorspar but will only focus on the technical aspects of this component in steelmaking. An attempt is made to provide a better understanding on the behavior of fluorspar in slags and then discuss possible alternative to fluorspar in steelmaking slags. II) The role of fluorspar in steelmaking slags Fluorspar is utilized for the following reasons: 1. To increase the solubility of CaO in the slag and hence improve desulfurization of the steel. 2. To act as a fluxing precursor in ladle and stainless steel reduction slags. 3. To maintain fluidity in the slag as the slag temperature decreases (VOD and ladle slags). In simple silicate slags, the solubility of CaO is limited by the precipitation of the very stable phase, Ca 2 SiO 4. The following figures of the CaO-SiO 2 system shows that once the saturation point of CaO has been reached at a specific temperature, the addition of more CaO to the slag will rapidly decrease the fluidity of the slag. It is important to note that it is dissolved lime in the liquid portion of the slag that desulfurizes the steel. The addition of more lime to a CaO-saturated slag, results in a rapid decrease in slag fluidity, which will negatively effect desulfurization. Figure 1. Phase diagram of the CaO-SiO 2 system 1 2

3 This diagram has the following important features: 1. The composition of the CaO-saturated liquid at 1600 C is: % CaO 56 % SiO The equilibrium CaO-saturation phase in contact with this liquid is Ca 2 SiO 4, which has a melting point of 2130 C. 3. The solidus temperature of this liquid is about 1464 C. 4. The area of interest in this diagram has been circled and is shown in the next figure: Liquidus Boundary % CaO - 64 % SiO 2-36 C/S = C 2912 F C 2 S + L % CaO - 56 % SiO 2-44 C/S = 1.3 L 1460 C 2660 F CaO - Saturation Refractory compatible ( Creamy ) Figure 2. Enlarged area of the CaO-SiO 2 phase diagram This diagram shows the very small area of workable slags in this system. Slags with a basicity ratio (C/S) > 1.8 will be completely solid at steelmaking temperatures. The lever rule can be used to calculate the respective amounts of liquid and solid as shown in Figure 3. % Liquid C/S Ratio %Liq Figure 3. % Liquid as a function of basicity (CaO/SiO 2 ) in the CaO-SiO 2 system at 1600 C 3

4 From the above discussion it is clear that the Ca 2 SiO 4 phase is limiting the solubility of CaO in the slag. The addition of any component to the slag that will dissolve (destabilize) Ca 2 SiO 4, will increase the solubility of CaO in the slag. In the following figure the effect of the components B 2 O 3, Al 2 O 3, CaF 2 and FeO on the Ca 2 SiO 4 stability field, is demonstrated at 1600 C. SiO C B 2 O 3 CaF 2 Al 2 O 3 FeO Ca 2 SiO 4 B 2 O 3 CaO Al 2 O 3 CaF 2 FeO Figure 4. The effect of different oxides on the liquidus phase relations of the CaO-SiO 2 system at 1600 C This figure clearly shows that B 2 O 3 is the most potent flux to bring Ca 2 SiO 4 into solution, followed by CaF 2, then Al 2 O 3 and finally FeO (in most steelmaking slags iron oxide is predominately present as Fe 2+ ) III) Considering B 2 O 3 as a flux. Figure 4 shows that the addition of B 2 O 3 to a CaO-SiO 2 slag will result in a rapid increase in the solubility of CaO. The increase in CaO content as the B 2 O 3 level increase is almost a linear relationship and can be approximated by the following equation at 1600 C: % CaO 1600 C = 1.1 * %B 2 O (Applicable for B 2 O 3 levels up to 15%) 4

5 The effect of B 2 O 3 on the solubility of CaO and desulfurization is shown in the next table Table 1. The effect of B 2 O 3 on the solubility of CaO and desulfurization at 1600 C % CaO % SiO % B 2 O Optical Basicity Sulfide Capacity Sulfur Distribution Coeff Final Sulfur (%) Optical basicity, sulfide capacity correlations, and thermodynamic data were used to calculate the final sulfur in the steel. The following parameters were considered in the calculation: Temperature ( C) 1600 Slag Amount (kg) 2000 Metal Amount (kg) Initial Sulfur (%) 0.05 Oxygen Level in Steel (ppm) 15 B 2 O 3 and steelmaking concerns The stability of B is compared to a number of typical steel components in Table 2. Table 2. Thermodynamic stability of SiO 2, B 2 O 3, MnO, and Cr 2 O 3 at 1600 C Reaction G reaction at 1600 C (kj/mole) K eq at 1600 C Si + O 2 = SiO x /3 B + O 2 = 2/3 B 2 O 3(l) x Mn + O 2 = 2 MnO x /3 Cr + O 2 = 2/3 Cr 2 O x Table 2 shows that the stability of B is similar to that of Si and that a considerable amount of B could be dissolved in the steel under typical steelmaking conditions. While boron is a desirable element in some grades of steel, in other grades of steel it could be detrimental to the physical properties of the steel. The use of B 2 O 3 as a flux to increase the solubility of CaO would therefore be limited to boron-containing grades. Furthermore, the amount of B 2 O 3 that could be added to the slag will be limited by the amount of B that can be tolerated in the steel, and still care would be required, as control will not be easy. B 2 O 3 and Refractory concerns One of the biggest drawbacks of utilizing B 2 O 3 as flux in a slag, the potential for significant refractory erosion. B 2 O 3 is a more powerful flux than fluorspar to dissolve basic oxides (CaO & MgO) as evidenced by the very high solubility of the CaO and MgO in a pure B 2 O 3 liquid at 1600 C, which are 75% and 79%, respectively. 5

6 When B 2 O 3 is utilized as a fluxing component in slags in contact with doloma refractories, CaOsaturation is an important slag requirement, since fired doloma refractories are lime-bonded. It is also important to add the B 2 O 3 in a pre-mixed form because the addition of concentrated amounts of B 2 O 3 in one area of the slag could lead to significant localized refractory wear. CaO-saturation in the slag is achieved by adding lime to maintain a slag with a "creamy" consistency at all times. Maintaining MgO saturation in a slag is more difficult for a number of reasons. A MgO source such as doloma or magnesia is not always readily available as an additive to the slag. When doloma (~58 %CaO, 38% MgO) is used it is difficult to determine when the slag is MgO-saturated because the doloma addition can result in a slag with a "creamy" consistency that could be CaOsaturated but not MgO-saturated. Furthermore, for some grades of steel, slags with high MgO content is not desirable because of the potential of spinel (MgAl 2 O 4 ) inclusions in the steel. Any magnesia-based refractory could therefore be vulnerable to significant refractory wear if in contact with B 2 O 3 -containing slags. B 2 O 3 is used in mould fluxes as a fluxing agent for the CaO-SiO 2 basic system, but this is at much lower temperatures and the B 2 O 3 also has an effect on the overall crystallization tendency, which is important. IV) Considering CaF 2 as a flux After B 2 O 3, CaF 2 is the next strongest component to destabilize Ca 2 SiO 4 and increase the solubility of CaO in the slag. The phase diagram of the CaO-CaF 2 -SiO 2 system is shown in Figure 5. Figure 5. Phase diagram of the CaO-CaF 2 -SiO 2 system 1 6

7 The most striking feature of this diagram is the tremendous increase in the solubility of CaO, when CaF 2 is added to CaO-SiO 2 slags, or when SiO 2 is added to CaO-CaF 2 slags. The combined effect of SiO 2 and CaF 2 results in a high CaO solubility, as shown by point (a) on the diagram (1600 C). The composition of the slag at this point is approximately the following: % CaO 72 % SiO 2 17 % CaF 2 11 The saturation solubility of CaO at 1600 C in CaO-CaF 2 -SiO 2 system, is plotted as a function of SiO 2 content in Figure Slag (a) in Fig % CaO in Solution % SiO2 Figure 6. Solubility of CaO as a function of SiO 2 content in CaO-CaF 2 -SiO 2 slags at 1600 C The maximum in CaO solubility is at about 12% CaF 2 in the slag. The addition of more CaF 2 to the slag, results in a decrease in CaO solubility along the CaO-saturation boundary. This is because the SiO 2 content of the slag is diluted to below 17%. Again this shows why the maximum amount of fluorspar that would ever be required in a slag is 12%. The addition of more CaF 2 would also result in an increase in fluidity that could lead to increased refractory erosion. Utilizing fluorspar as a fluxing precursor Fluorspar is often used as fluxing precursor in stainless steel reduction slags. If fluorspar is added just before the reduction mix it will melt immediately and create some liquid in the slag so that when the reductant is added it will be immersed in a partially liquid slag. The generation of a small amount of early liquid slag could greatly enhance the reduction efficiencies and kinetics (due to increased mass transfer/diffusion rates). The typical aim CaF 2 levels in the final slag should be about 3%, provided the slag contains considerable amounts of MgO (approximately 10%). If the MgO content of the final slag is less than 10% then higher CaF 2 levels might be required to obtain adequate dissolution rates. 7

8 Utilizing Fluorspar to increase the solubility of CaO in the slag Fluorspar is most commonly added to slag in order to increase the solubility of CaO in the slag, and hence improve the desulfurization capacity of the slag. In the previous discussion on B 2 O 3 it was shown that any addition of B 2 O 3 will increase the solubility of CaO. The same is not true for fluorspar in the CaO-SiO 2 -CaF 2 system. The liquidus boundaries in Figures 4 and 5 show that a significant increase in lime solubility will only occur when the CaF 2 content of the slag exceeds about 12% at 1600 C. Furthermore, the increase in CaO solubility at "constant" CaF 2 content is strongly dependent on the SiO 2 content of the slag. The CaO solubility only increases as the SiO 2 content of the slag is decreased. Figure 7 shows the solubility of CaO as a function of the CaF 2 /(SiO 2 + CaF 2 ) ratio in the slag % CaO - 72 % SiO2-17 % CaF2-11 % CaO at Saturation % CaF % CaO - 54 % SiO2-31 % CaF %CaF2/(%SiO2+%CaF2) 0% SiO2 Figure 7. The solubility of CaO as a function of the CaF 2 and SiO 2 content of the slag. The CaF 2 contents of each of the slags are shown on the figure. In more complex steelmaking slags that also contain considerable amounts of MgO, the "minimum" level of CaF 2 required to result in an increase in CaO solubility will probably be much less. The increase in CaO solubility with increasing CaF 2 content might even be linear, similar to B 2 O 3. CaF 2 is also a very good flux for MgO and any increase in the solubility of MgO, because of CaF 2 addition, will also increase CaO solubility. This is because an increase in MgO solubility will shift the dual saturation point downward towards the CaO-MgO boundary of the diagram. Furthermore, the presence of MgO in the slag limits the stability of Ca 2 SiO 4 by the formation of CaMg-silicate phases and therefore acts as a flux for Ca 2 SiO 4. 8

9 The phase relations for the CaO-MgO-SiO 2 -CaF 2 system at 1600 C were inferred from available CaF 2 -containing binary and ternary diagrams, and are shown in the next figure. SiO 2 + CaF S+L Ca 2 SiO 4 70 Ca 3 SiO % CaF 2 8% CaF 2 12% CaF 2 Mg 2 SiO CaO Figure 8. The system CaO-MgO-SiO2-CaF 2 at 1600 C MgO This diagram shows the following important features: 1. An increase in CaO solubility as the CaF 2 content of the slag increases 2. A decrease in CaO solubility on the CaO-saturation curve as the MgO content of the slag increases towards dual saturation. 3. An increase in MgO solubility at dual saturation as the CaF 2 content of the slag increases. One of the most important features of this diagram is the increase in MgO solubility (at dual saturation) as the CaF 2 content of the slag increases. This has significant implications for magnesia-based slaglines. If fluorspar-containing slags are in contact with magnesia refractories, then significant refractory wear can occur if the slag is not MgO or CaO saturated. If the slag is CaO-saturated but MgO-unsaturated ( creamy consistency), then the extent of refractory wear could be minimized even though the slag is not fully chemically compatible with the refractories. However, if the slag is also CaO unsaturated (very liquid or watery in consistency) then severe refractory wear can occur in just one heat. The above is true for any slag, CaF 2 -containing or not, but the presence of CaF 2 accelerates the wear because of its depression of the solidus temperature of the slag, which causes deeper penetration into the refractory matrix. For some stainless steel grades with very low sulfur specifications, a second reduction slag might be required in the converter. Typically a mixture of lime and fluorspar is utilized. From Figures 9

10 5-7 it is clear that the amount of residual slag in the vessel, in combination with the lime and fluorspar additions, can yield slags with high desulfurization capabilities. Utilizing fluorspar to maintain slag fluidity In VOD operations all the reduction slags stays in the ladle until the steel is cast. An important requirement is that the slag stays reasonably liquid down to casting temperatures to facilitate alloy and wire additions. When all the fluorspar is added in a single step during reduction for fluidity control, then extensive slagline refractory wear will occur. The preferred method is to add the fluorspar in steps after reduction as the slag cools, and only as needed. This could result in significant refractory performance improvements and also decreased fluorspar consumption. The effect of fluorspar in aluminate slags Fluorspar can be very effective in increasing the solubility of CaO in silicate slags but it is not very effective in terms of increasing CaO solubility in aluminate slags (discussed later). The only benefit fluorspar could have for Al-killed grades is that it could act as the fluxing precursor before the Al is added. In these grades fluorspar is not normally necessary because the reaction of CaO and Al 2 O 3 will form a liquid slag without high-melting intermediate phases such as Ca 2 SiO 4. The only intermediate phase that can form, Ca 3 Al 2 O 6, melts at 1535 C Fluorspar and steel quality concerns The elemental constituents of CaF 2, Ca and F, has a very low solubility in steel so that there are negligible interactions between CaF 2 in the slag and the steel. This is in contrast to B 2 O 3 and Al 2 O 3 where significant slag-metal interactions are possible. The lack of slag/metal interaction of the F - with the steel is probably one of the main reasons why fluorspar is so popular as a fluidizing agent. Fluorspar and Refractory concerns In the previous discussion it was clearly shown that fluorspar in combination with SiO 2 is a very potent flux to bring CaO into solution. If lime is added to the slag until the slag is CaO-saturated there will be minimal refractory wear on lime-bonded (dolomite) refractories. However, if additional lime for saturation was not added, the presence of fluorspar in the slag could lead to accelerated refractory wear. This slag will have a lower viscosity, a lower solidus temperature and a high capacity to bring lime into solution and will lead to a deeper slag penetration into the refractory and increased refractory wear. It is important to note that it is not the presence of CaF 2 that causes refractory wear in CaO-bonded refractories but the lack of lime saturation. A very liquid silicate or aluminate slag that is CaO unsaturated, and contains no CaF 2, will also be very aggressive to the refractories. The addition of fluorspar to silicate and aluminate slags also results in an increase in the solubility of MgO in the slag (Figure 8) 2. This increase in MgO solubility could lead to significant refractory wear if additional MgO is not added to the slag or if CaO-saturation is not maintained at all times. Most steelmaking refining slags are not MgO-saturated, because only lime is typically 10

11 available as an additive. Furthermore, the very high levels of MgO required for saturation might be undesirable from a steel quality perspective. High MgO slags in contact with steel with low oxygen content could result in Mg pickup in the steel and lead to spinel inclusion formation in the steel. Based on the discussion above, it is clear that dolomite refractories might be more compatible in contact with fluorspar containing slags than magnesia-based refractories. The simple reason is that lime saturation (a dolomite refractory requirement) is much easier to achieve in practical steelmaking than MgO saturation, or dual saturation. V) Consider Al 2 O 3 as a flux From Figure 3 it can be seen that Al 2 O 3 is the third "best" component to destabilize Ca 2 SiO 4 and increase the solubility of CaO. This figure also shows that a significant minimum amount of Al 2 O 3 would be required to result in an increase in CaO solubility at 1600 C. The increase in CaO solubility above the Al 2 O 3 threshold value is also linked to the SiO 2 content of the slag, similar to the case with CaF 2 (Figure 9) % CaO % SiO2-9.6 % Al2O % CaO at saturation % Al2O3 % CaO % SiO % Al2O % SiO Al2O3/(SiO2+Al2O3) Figure 9. The solubility of CaO as Al 2 O 3 is replacing SiO 2 at 1600 C (2912 F) This figure shows that in the CaO-Al 2 O 3 -SiO 2 (CAS) system, the replacement of SiO 2 with Al 2 O 3 will initially result in a decrease in CaO solubility. A large increase in CaO solubility only occurs when the Al 2 O 3 content of the slag exceeds about 25% Al 2 O 3 and the SiO 2 content of the slag decreases from about 23% to 10% SiO 2. 11

12 Figure 9 clearly shows the interdependence of the CaO solubility on the SiO 2 and Al 2 O 3 levels of the slag. The impact of these relationships is very significant on stainless steel production. In stainless steelmaking the Al 2 O 3 in slag is generated by the partial replacement of FeSi by Al as a reductant, or FeSi containing high levels of Al. It is therefore very important to do an accurate mass-balance calculation to ensure proper Al/Si reductant ratios in order to achieve the target fluidity and desired CaO solubility. From the evaluation of the CaO-SiO 2 -CaF 2 and CaO-Al 2 O 3 -SiO 2 systems, it is clear that Al 2 O 3 is not as potent as CaF 2 to bring lime into solution, and considerably higher levels of Al 2 O 3 would be required in the slag to get the same amount of CaO into solution. Most steelmaking slags also contain MgO so that consideration of the phase relations in the CaO- MgO-Al 2 O 3 -SiO 2 (CMAS) system is very important. Fortunately, this system is well studied and the "ternary isoplethal sections" at constant MgO and Al 2 O 3 content are available. Evaluation of the CaO-MgO-Al 2 O 3 -SiO 2 system at constant MgO levels Figure 10 shows the saturation levels of CaO at 1600 C as a function of the Al 2 O 3 /(SiO 2 + Al 2 O 3 ) ratio for slags containing MgO levels of 0%, 5% and 10%, respectively. % CaO at Saturation % MgO 5% MgO 10% MgO % Al 2 O 3 = (A) (B) % Al 2 O 3 /(% SiO 2 + % Al 2 O 3 ) Figure 10. The solubility of CaO as a function of Al 2 O 3 content at 1600 C (The actual Al 2 O 3 levels of the slags are indicated in the figure) 12

13 This figure has the following important features: The solubility of CaO initially decreases as Al 2 O 3 replaces SiO 2 as flux. For slags with a (%Al 2 O 3 /(%SiO 2 + %Al 2 O 3 ) ratio < 0.5 the solubility of CaO decreases as the MgO content of the slag increases. However, at ratio of about 0.5, the amount of CaO in solution is the same for MgO levels from 0-10%, indicating that MgO is acting as flux in this composition region, because total base in solution (MgO + CaO) increased. In practical terms, the %CaO/(%SiO 2 + %Al 2 O 3 ) ratio in the slag increases significantly as the MgO content of the slag increases from 0 10% at a (%Al 2 O 3 /(%SiO 2 + %Al 2 O 3 ) ratio of about 0.5. The minimum threshold Al 2 O 3 level required in the slag before an increase in CaO solubility is realized, decreases with increasing MgO content in the slag. At 0% MgO the minimum Al 2 O 3 threshold value is about 27%, for 5% MgO the Al 2 O 3 level required is about 22%, and for 10% MgO the Al 2 O 3 level required is about 15%. In all these cases the solubility of CaO only increases when the SiO 2 content of the slag is diluted. For example consider slags (A) and (B) in Figure 10 that contain 22.5 and 23% Al 2 O 3, respectively (5% MgO). Slag (A) contains 22.5% SiO 2 and only has 50% CaO in solution, whereas slag (b), which contains only 12% SiO 2, has 59% CaO in solution. This has a significant implication in terms of desulfurization. Not only are high levels of Al 2 O 3 required in the slag (>22%), but the SiO 2 level should be below 15%. These lower levels of SiO 2, together with the higher levels of [Al], will result in a decreased oxygen potential in the steel. For slags containing 10% MgO, the solubility of CaO increases when the Al 2 O 3 content of the slag exceeds about 15%. However, at an Al 2 O 3 level of approximately 20%, the solubility of CaO decreases, as the slags are now MgO saturated. From the quaternary system it can be determined that the maximum MgO level of the slag should be below 7.5 % to obtain the high CaO solubilities shown in Figure 10. Evaluation of the CaO-MgO-Al 2 O 3 -SiO 2 system at constant Al 2 O 3 levels The slags and phase relations discussed so far were all at a temperature of 1600 C (2912 F). However, it is also important to consider the phase relations at higher temperature since some steelmaking process routes operate at much higher temperatures. For example, in stainless steelmaking operations the reduction temperatures are typically around 1700 C (3092 F), while the typical tapping temperatures from the stainless steel vessel are much lower ( ). This large difference in the end of reduction temperature and the tapping temperature causes significant problems in engineering refractory compatible slags that are also "workable" in the stainless steel vessel. A slag that is designed to be liquid and compatible with the refractories at 1700 C might become too stiff at tapping temperatures. Alternatively, a slag designed to stay liquid down to tapping temperatures could cause significant refractory wear during reduction step when temperatures and turbulence in the vessel are high. Some slag regions in the CaO-MgO-SiO 2 - Al 2 O 3 system further intensify this problem, as will be demonstrated by the following discussion. In the CaO-MgO-SiO 2 system, and the CaO-MgO-SiO 2 -Al 2 O 3 system, MgO is acting as fluxing component until the MgO saturation boundary is reached. For example in the CaO-SiO 2 system, the solubility of basic oxide (CaO) is about 56% CaO at 1600 C, whereas in the CaO-MgO-SiO 2, the solubility of basic oxides (CaO + MgO) is about 61% at dual saturation (saturated with both CaO & MgO). Figure 11 shows the effect of MgO on the total base solubility (CaO + MgO) in the CMAS system. A significant shrinkage of the Ca 2 SiO 4 stability field can be observed as the MgO content of the slag increases. Also important to note is that the solubility of the basic oxides (primarily CaO) is much higher in the stability areas of Ca 3 SiO 5 and lime (CaO). 13

14 The slag compositions that are of particular interest in this system are those that are dual saturated with respect to both MgO and CaO. The CaO-saturation phase could be Ca 2 SiO 4, Ca 3 SiO 5, or CaO depending on the temperature and Al 2 O 3 content. Figure 11. Saturation lines of CaO, Ca 2 SiO 4, and Ca 3 SiO 5 in the system CaO-MgO-SiO 2 -Al 2 O 3 at 1600 C and for MgO contents up to 16%. 1 Phase relations at the 10% Al 2 O 3 plane For slags containing less than 10% Al 2 O 3, the phase relations are similar at 1600 C and 1700 C, i.e., the solubility of CaO decreases with increasing Al 2 O 3 content (Figure 10). However, for Al 2 O 3 levels at, and greater than about 10%, an small area of high CaO solubility opens up at 1700 C as shown in Figure 12. Three slags of particular interest on this diagram are labeled a, b, and c and their compositions are listed in the table below. Table 3. Slag compositions in the CaO-MgO-SiO 2 -Al 2 O 3 system at 1600 and 1700 C Slag (a) Slag (b) Slag (c) Temperature 1700 C 1700 C 1600 C % CaO % MgO % SiO % Al 2 O Equilibrium phases on the liquidus boundary Ca 3 SiO 5 + MgO Ca 2 SiO 4 + MgO Ca 2 SiO 4 + MgO 14

15 SiO 2 10% Al 2 O 3 50% 1600 C 60% c a b 1700 C CaO 10% 20% MgO Figure 12. Isothermal sections of the CaO-MgO-SiO 2 -Al 2 O 3 system through the 10% Al 2 O 3 plane and temperatures of 1600 and 1700 C Slags (a) and (b) have similar Al 2 O 3 and MgO levels, but show a significant increase in CaO solubility as the SiO 2 content decreases from 27% (slag b) to 20% (slag a). This further highlights the importance of careful mass-balance calculations of reductant and alloy additives to obtain the desired slag compositions. If slag (a) was targeted for desulfurization reasons at high temperatures, it will become very stiff and unworkable at the 1600 C because the CaO solubility decreased from 59% to 46% over a 100 C interval. Furthermore, this small window of high CaO solubility at 1700 C is only present in a very small MgO range (11-12%). It is very difficult to control the MgO content of the slag that accurately under real steelmaking conditions. Phase relations at the 15% Al 2 O 3 plane The phase relations in the CMAS system in the 15% Al 2 O 3 plane are shown in Figure 13. At this Al 2 O 3 level the window of high CaO solubility at 1700 C has opened up considerably, but a small window of high CaO solubility is now evident at 1600 C. On the 1700 C isotherm, the CaOsaturated phase in equilibrium with the liquid changes from Ca 2 SiO 4, to Ca 3 SiO 5 (g to h) and finally to CaO (h to d). At point (d) the slag is dual saturated with respect to CaO and MgO. 15

16 SiO 2 15% Al 2 O C 1700 C 50% 60% f g h e d CaO 10% 20% MgO Figure 13. Isothermal sections of the CaO-MgO-SiO 2 -Al 2 O 3 system through the 10% Al 2 O 3 plane and temperatures of 1600 and 1700 C Figure 12 and 13 show that MgO has a very important overall fluxing effect in the system by opening a "window" of slags with high CaO solubility. However, from a more detailed perspective, the solubility of CaO actually decreases with increasing MgO content on the 1700 C liquidus isotherm where lime is the equilibrium solid phase (points (h) to (d)). The following table is comparison of CaO-saturated slags in the CAS system and the CMAS system (15% Al 2 O 3 ) at 1600 and 1700 C. This table shows that at 1700 C and 15% Al 2 O 3, the right combination of MgO and SiO 2 can result in slags with a high dissolved CaO content at Al 2 O 3 levels much lower than in the CAS system (27.7% Al 2 O 3 ). Table 4. The maximum solubility of CaO in the CAS and CMAS systems Temperature 1600 C 1600 C (e) 1600 C (f) 1700 C 1700 C System CAS CMAS CMAS CAS CMAS % CaO % MgO % SiO % Al 2 O

17 While the "slag window" for high CaO slags at 1700 C is not that sensitive to MgO levels (5-12%), it is much more sensitive at 1600 C (9-11% MgO). The following conclusion can be drawn from the above diagrams: Good desulfurizing slags (high dissolved CaO content) can be generated with slags containing low levels of Al 2 O 3 (12-15%) at 1700 C, and to some extent at 1600 C. However, the fluidity of these slags are very sensitive to changes in MgO contents and could became very stiff at lower temperatures (1600 C) if the composition of the slag is not carefully controlled. These diagrams further show that if the slags are designed to be liquid at 1600 C (point f in Figure 13), then significant refractory wear of doloma based refractories can occur if these slags are in contact with the brick at 1700 C or higher. The bonding phase in fired doloma refractories is lime (CaO) and Figure 13 and Table 4 show that the solubility of CaO increases from 46% to 62% for a temperature increase from 1600 C to 1700 C. Phase relations at the 20% and 25 Al 2 O 3 planes The small "windows" of slags areas that had high CaO-solubilities at 10% and 15% Al 2 O 3 have "opened" significantly at 20 Al 2 O 3 and opened completely at 25% Al 2 O 3 (Figure 14 and 15). SiO 2 20% Al 2 O C 50% 1700 C 60% CaO 10% 20% Figure 14. Isothermal sections of the CaO-MgO-SiO 2 -Al 2 O 3 system through the 20% Al 2 O 3 plane and temperatures of 1600 and 1700 C MgO 17

18 SiO 2 25% Al 2 O C 1700 C 50% 60% i j CaO 10% 20% Figure 15. Isothermal sections of the CaO-MgO-SiO 2 -Al 2 O 3 system through the 25% Al 2 O 3 plane and temperatures of 1600 and 1700 C MgO These figures clearly show that the combination of MgO and Al 2 O 3 results in a "shrinkage" of the Ca 2 SiO 4 stability field which opens up an area of slags with high CaO solubility. However, on the lime-saturated liquidus boundaries, the solubility of CaO decreases with increasing MgO content. For example, on the 1700 C liquidus boundary the solubility of CaO decreases from about 64% (0% MgO at point (i)) to about 56% where the slag is dual saturated (11% MgO at point (j)). Another interesting feature of these diagrams is the MgO content of the slag at dual saturation for the various Al 2 O 3 levels. The solubility of MgO (at dual saturation) initially decreased with increasing Al 2 O 3 content up to about 20% Al 2 O 3, but then increases again at higher Al 2 O 3 levels. 18

19 Utilizing Al 2 O 3 to increase the solubility of CaO in the slag The discussion of the phase relations in the CAS and CMAS systems have clearly shown that Al 2 O 3 could be utilized to increase the solubility of CaO in the slag. While it is theoretically possible to generate slags with a high dissolved CaO content at Al 2 O 3 levels as low as 15% at 1700 C it would be difficult to consistently generate these slags under real steelmaking conditions. More realistic Al 2 O 3 levels in the slag should be 20-25% Al 2 O 3 (preferably 25%) in order to generate slags with good fluidity at lower temperatures. The diagrams of the CMAS system also showed the importance of MgO as a fluxing component to generate slags with high dissolved lime contents. The MgO content of the slag is very important in this system and should be controlled in a very tight range (8-11% MgO). Too low or too high MgO levels could result in very stiff slags with poor desulfurizing properties. The discussion of the diagrams also demonstrated the importance of the SiO 2 content of the slag and its relationship with Al 2 O 3 on the solubility of CaO. The solubility of CaO increases rapidly as the SiO 2 content of the slags is diluted at constant Al 2 O 3 (Figures 10, 14 and 15). Al 2 O 3 and steel quality concerns In practical steelmaking, the levels of Al 2 O 3 required to generate slags with high CaO solubilities is >20% Al 2 O 3. This means that the bulk of the steel deoxidant or reductant should be Al. Partial replacement of FeSi by Al as a reductant in stainless steelmaking will be ineffective to increase the solubility of CaO. Another important factor is the SiO 2 content of the slag. The SiO 2 that is transferred from the EAF slag, together with the transfer Si and Si in alloy additions, must be considered to determine the Al required in the reduction mix to ensure adequate SiO 2 dilution (<15%). The use of Al as a deoxidizer and reductant, and the resulting high Al 2 O 3 slags, will have a large effect on the internal quality of the steel. The residual Al levels in the steel and the resultant lower dissolved oxygen level will have a significant impact on the inclusion chemistry and the timing of Al 2 O 3 precipitation. The previous discussion on the CMAS system clearly demonstrated the importance of MgO as flux in this system and that between 6 and 9% MgO would be required to enhance lime dissolution. Unfortunately, the maximum solubility of MgO in these high Al 2 O 3 slags is low (<11% MgO) so that slags with high MgO activities will be exposed to Al under fairly reducing conditions. The potential for Mg reduction and spinel formation is a real possibility. Al 2 O 3 and Refractory concerns The replacement of FeSi by Al in stainless steelmaking will result in higher reduction temperatures, which will require more coolant additions. If these coolants are not added and high temperatures (>1700 C) are prevalent during the reduction step, then significant refractory wear of doloma refractories can occur with slags with intermediate Al 2 O 3 levels (10-20% Al 2 O 3 ). The addition of sufficient lime to the slag to protect the refractories will result in liquid compatible slags at high temperatures but very stiff "unworkable" slags at lower temperatures. It is much easier to design refractory compatible and "workable" slags if the Al 2 O 3 content of the slag is between 25 and 30% Al 2 O 3. These slags are less sensitive to variations in MgO levels and the 19

20 1600 and 1700 C liquidus isotherms are closer together resulting in reasonable slag fluidity as the slag cools down. The following table summarizes the recommended target slag compositions in the CaO-MgO- Al 2 O 3 -SiO 2 system. Table 5. Target slag compositions and ranges in the CMAS system Al 2 O 3 range Comments 0 10% Al 2 O 3 No benefits in terms of CaO solubility. CaO solubility actually decreases as Al is replacing FeSi 10-20% Al 2 O 3 A very large increase in CaO solubility occurs in very specific slag areas. These slags are difficult to obtain and control under real steelmaking conditions. These slags could lead to significant refractory wear or alternatively very stiff unworkable slags at lower temperatures. It is best to avoid this slag composition range! 20 30% Al 2 O 3 The ideal target range is 25 to 30% Al 2 O 3. These slags can be designed to be refractory compatible with reasonable fluidity at lower temperatures VI) Summary and Conclusions This technical note has attempted to provide a better understanding on the effect of the fluxing components CaF 2, B 2 O 3, and Al 2 O 3 on the solubility of CaO in steelmaking slags. Fluorspar is by far the most convenient component to use as a fluxing precursor and additive to increase the solubility of CaO in the slag. The maximum levels of CaF 2 that would be required to obtain the maximum CaO solubility is about 12% CaF 2. Most operations could operate with slags with much lower CaF 2 levels, provided that some MgO is present in the slag (> 6% MgO). An important consideration is that the effect of CaF 2 on steel quality is negligible and it is practically inert to the steel. Refractory compatible slags can be designed for fluorspar-containing slags at high temperatures that will still maintain reasonable fluidity at lower temperatures. B 2 O 3 is the most potent of all three fluxes considered, not only in terms CaO solubility, but also in terms of refractory wear. The addition of B 2 O 3 as a flux is only an option in B-containing steel grades and great care should be exercised to ensure refractory compatibility. Alumina is a major slag component (> 25% Al 2 O 3 ) in Al-killed grades and is very effective to bring lime into solution and to generate good desulfurizing slags. Magnesia-carbon refractories are typically used with these slags and with good results because the solubility of MgO in these slags is fairly low (< 11% MgO). The use of Al 2 O 3 as a flux (prefused Ca-Aluminate) in low-c Si-killed steel grades is common and very effective. However, in high-c grades the level of Al 2 O 3 that can be tolerated in the slag is low (<10 % Al 2 O 3 ) because of castability issues (clogging). At these low levels, Al 2 O 3 is actually worse than SiO 2 to dissolve CaO and the only benefit is that it can act as a fluxing precursor if added as prefused Ca-Aluminate. Unfortunately, these high-c steel grades also have low sulfur requirements. In most cases a combination of SiO 2 and CaF 2 is used as fluxing additives to these grades to create slags with good desulfurization properties 20

21 without negative castability effects. The only alternative to using CaF 2 in the slags of these grades is to use scrap with very low sulfur levels. Fluorspar is commonly used in combination with FeSi in stainless steel operations as a fluxing precursor during the reduction step, and to increase the solubility of lime in the final reduction slag. The elimination of CaF 2 and the partial replacement of FeSi by Al will not be effective in improving reduction kinetics and increasing CaO solubility. For Al 2 O 3 to be effective in these slags, Al should be the bulk reductant addition and the FeSi addition and SiO 2 content of the slag should be carefully controlled. For these aluminate slags to be equivalent to a 8-10% CaF 2 - containing silicate slags in terms of lime dissolution and solubility, the Al 2 O 3 content of the slag should be around 25% Al 2 O 3. VII) References 1. Slag Atlas, edited by Verein Deutscher Eisenhüttenleute (VDEh). Verlag Stahleisen GmbH 2. Pretorius, E.B. "The effect fluorspar in steelmaking slags". Unpublished technical document. 21

Implementation of Slag Engineering Techniques at CO-Steel Raritan to Improve Melting and Refining Practices

Implementation of Slag Engineering Techniques at CO-Steel Raritan to Improve Melting and Refining Practices Implementation of Slag Engineering Techniques at CO-Steel Raritan to Improve Melting and Refining Practices Don LeMar Co-Steel Raritan 225 Elm St. Perth Amboy, NJ 08862 Eugene Pretorius Baker Refractories

More information

FUNDAMENTALS OF EAF AND LADLE SLAGS AND LADLE REFINING PRINCIPLES. Eugene Pretorius Baker Refractories

FUNDAMENTALS OF EAF AND LADLE SLAGS AND LADLE REFINING PRINCIPLES. Eugene Pretorius Baker Refractories FUNDAMENTALS OF EAF AND LADLE SLAGS AND LADLE REFINING PRINCIPLES By Eugene Pretorius Baker Refractories Epretorius@bakerref.com 1 I) Introduction TABLE OF CONTENTS II) Introduction to slag fundamentals

More information

Computer Modeling of Refractory/Slag/Metal Interactions

Computer Modeling of Refractory/Slag/Metal Interactions Computer Modeling of Refractory/Slag/Metal Interactions Eugene Pretorius and Ron Marr Baker Refractories York, PA 17405-1189 (717) 848-1501 ABS1RACT The use of computer modeling to simulate and predict

More information

Desulfurization. Eugene Pretorius and Helmut Oltmann Process Technology Group LWB Refractories

Desulfurization. Eugene Pretorius and Helmut Oltmann Process Technology Group LWB Refractories Desulfurization by Eugene Pretorius and Helmut Oltmann Process Technology Group LWB Refractories 1 Introduction In most steel grades sulfur has to be minimized below a certain level. Sulfur control is

More information

Metallurgy and lining life in basic oxygen converters

Metallurgy and lining life in basic oxygen converters Metallurgy and lining life in basic oxygen converters Good control of slag development, oxygen flow and lance practice, and use of bottom stirring and re-blow practice are key aspects of the metallurgical

More information

Oxidation of Iron, Silicon and Manganese

Oxidation of Iron, Silicon and Manganese 08 Oxidation of Iron, Silicon and Manganese AkMB Rashid Professor, Department of MME BUET, Dhaka Today s Topics Oxidation of iron Oxidation and reduction of silicon Oxidation and reduction of manganese

More information

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics 10 Sulphur Problem AkMB Rashid Professor, Department of MME BUET, Dhaka Today s Topics Introduction Behaviour of sulphur in metal and slag Oxidation of sulphur in the furnace Oxidation of sulphur in the

More information

EAF REFRACTORY PERFORMANCE AT PACIFIC STEEL NEW ZEALAND

EAF REFRACTORY PERFORMANCE AT PACIFIC STEEL NEW ZEALAND EAF REFRACTORY PERFORMANCE AT PACIFIC STEEL NEW ZEALAND Don Sanford Product Manager Refractories Chemiplas, New Zealand Ltd Level 2, 42 Upper Queen Street Auckland, New Zealand DonS@chemiplas.co.nz Brian

More information

Stainless Steelmaking

Stainless Steelmaking 16 Stainless Steelmaking Topics to discuss... Introduction Thermodynamics of decarburization of chromium melt Technology of stainless steel making Introduction Stainless steels contain typically 10-30

More information

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation 17 Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation Topics to discuss... Secondary steelmaking Synthetic slag practice Injection ladle metallurgy Deoxidation Secondary

More information

Electric Arc Furnace Simulation User Guide Version 1

Electric Arc Furnace Simulation User Guide Version 1 Electric Arc Furnace Simulation User Guide Version 1 1 Introduction and Disclaimer...2 2 Introduction to Electric Arc Furnace Steelmaking...2 2.1 Basic Concepts... 2 2.2 Heating and Melting... 2 2.3 Other

More information

RECYCLING PRACTICES OF SPENT MgO-C REFRACTORIES

RECYCLING PRACTICES OF SPENT MgO-C REFRACTORIES Journal of Minerals & Materials Characterization & Engineering, Vol. 1, No.2, pp69-78, 2002 Printed in the USA. All rights reserved RECYCLING PRACTICES OF SPENT MgO-C REFRACTORIES Kyei-Sing Kwong and James

More information

SECONDARY STEELMAKING

SECONDARY STEELMAKING 1 SECONDARY STEELMAKING Using a thermodynamic database and Researchers at Steel Authority of India Ltd (SAIL) have been using thermodynamic databases and FactSage 6.4 software to optimise the parameters

More information

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka 09 Phosphorous Problem AkMB Rashid Professor, Department of MME BUET, Dhaka Today s Topics Behaviour of phosphorous in metal and slag Oxidation of phosphorous Effect of temperature Effect of metal and

More information

Lecture 14 Modern trends in BOF steelmaking

Lecture 14 Modern trends in BOF steelmaking Lecture 14 Modern trends in BOF steelmaking Contents: Post combustion Technology of post combustion Potential post combustion issues Slag splashing What is required for slag splashing Liquidus temperature

More information

Effect of Charge Materials on Slag Formation in Ductile Iron Melts

Effect of Charge Materials on Slag Formation in Ductile Iron Melts Effect of Charge Materials on Slag Formation in Ductile Iron Melts C. Labrecque, M. Gagné and E. Planque Rio Tinto Iron & Titanium Inc. Sorel-Tracy, Quebec, Canada ABSTRACT The formation of an oxide slag

More information

A.K. LAHIRI. Thermodynamics of refining in electric furnace steelmaking

A.K. LAHIRI. Thermodynamics of refining in electric furnace steelmaking Thermodynamics of refining in electric furnace steelmaking A. K. LAHIRI Department of Metallurgy, Indian Institute of Science, Bangalore-560 012 Introduction In general, the input impurity levels in the

More information

AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES

AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES P. N. Chaudhary & J. Pal Scientists, National Metallurgical Laboratory, Jamshedpur ABSTRACT The steelmaking slag

More information

Trial on the Applicaton of Capillary Phenomenon of Solid CaO to Desulfurization of Liquid Fe

Trial on the Applicaton of Capillary Phenomenon of Solid CaO to Desulfurization of Liquid Fe Title Author(s) Citation Trial on the Applicaton of Capillary Phenomenon of Solid CaO to Desulfurization of Liquid Fe Tanaka, Toshihiro; Ogiso, Yumi; Ueda, Mitsuru; Lee, Joonho ISIJ INternational. 50(8)

More information

An optimal and consistent production process in a BOF

An optimal and consistent production process in a BOF Steelmaking Computer supported calculation and evaluation of BOF slag composition The addition of the correct quantity of slag formers for optimum metallurgical operation, lining wear and yield is an essential

More information

Advanced vision systems to control ladle slag carry-over

Advanced vision systems to control ladle slag carry-over 1 Advanced vision systems to control ladle slag carry-over Mattias Ek, Mårten Görnerup, Metsol AB, SE-114 24 Stockholm, Sweden. Corresponding author: Mårten Görnerup marten@metsol.se +46 709 32 16 84.

More information

THE EFFECT OF ALUMINA IN FERROMANGANESE SLAG

THE EFFECT OF ALUMINA IN FERROMANGANESE SLAG THE EFFECT OF ALUMINA IN FERROMANGANESE SLAG Kai Tang and Sverre Olsen 1 SINTEF Materials and Chemistry, Trondheim, Norway, kai.tang@sintef.no 1 Department of Materials Technology, Norwegian University

More information

Corrosion of Nozzle Refractories by Liquid Inclusion in High Oxygen Steels

Corrosion of Nozzle Refractories by Liquid Inclusion in High Oxygen Steels , pp. 1281 1288 Corrosion of Nozzle Refractories by Liquid Inclusion in High Oxygen Steels Mun-Kyu CHO 1) and In-Ho JUNG 2) 1) Research Institute of Industrial Science and Technology, Pohang, Republic

More information

RECOVERY OF CHROMIUM FROM STAINLESS STEEL SLAGS

RECOVERY OF CHROMIUM FROM STAINLESS STEEL SLAGS MultiScience - XXX. microcad International Multidisciplinary Scientific Conference University of Miskolc, Hungary, 21-22 April 2016, ISBN 978-963-358-113-1 RECOVERY OF CHROMIUM FROM STAINLESS STEEL SLAGS

More information

THE INFLUENCE OF BRIQUETTED SYNTHETIC SLAGS ON STEEL REFINING IN LADLE

THE INFLUENCE OF BRIQUETTED SYNTHETIC SLAGS ON STEEL REFINING IN LADLE Acta Metall. Slovaca Conf. 189 THE INFLUENCE OF BRIQUETTED SYNTHETIC SLAGS ON STEEL REFINING IN LADLE Ladislav Socha 1)*, Jiří Bažan 1), Pavel Machovčák 2), Aleš Opler 2), Petr Styrnal 3) 1) VŠB Technical

More information

Project title: Research Area: Motivation of the project: Goals: Planned experimental strategy to reach the proposed goal:

Project title: Research Area: Motivation of the project: Goals: Planned experimental strategy to reach the proposed goal: Project title: Analysis of thermodynamic models of steelmaking refining slags Research Area: Extractive Metallurgy: Control of Metallurgical Processes Motivation of the project: Thermodynamic models for

More information

Carbide Capacity of CaO SiO 2 CaF 2 ( Na 2 O) Slags at K

Carbide Capacity of CaO SiO 2 CaF 2 ( Na 2 O) Slags at K ISIJ International, Vol. 44 (004), No., pp. 3 8 Carbide Capacity of CaO SiO CaF ( Na O) Slags at 1 773 K Joo Hyun PARK and Dong Joon MIN 1) Stainless Steel Research Group, Technical Research Laboratory,

More information

EAF burdening How can EAF burdening best utilise DRI? Rutger Gyllenram Kobolde & Partners

EAF burdening How can EAF burdening best utilise DRI? Rutger Gyllenram Kobolde & Partners EAF burdening How can EAF burdening best utilise DRI? Rutger Gyllenram Kobolde & Partners www.kobolde.com Disclaimer Examples given in this presentation are just examples, given in order to illustrate

More information

Activities of SiO 2 in Some CaO Al 2 O 3 SiO 2 ( 10%MgO) Melts with Low SiO 2 Contents at K

Activities of SiO 2 in Some CaO Al 2 O 3 SiO 2 ( 10%MgO) Melts with Low SiO 2 Contents at K ISIJ International, Vol. 47 (007), No. 6, pp. 805 810 Activities of SiO in Some CaO Al O 3 SiO ( 10%MgO) Melts with Low SiO Contents at 1 873 K YoungJo KANG, 1) Du SICHEN ) and Kazuki MORITA 3) 1) Graduate

More information

New software for Simulations of Metal-Slag Interactions. ACCESS Workshop/Users-Meeting September 25, 2007 Thermo-Calc Software, Stockholm, Sweden

New software for Simulations of Metal-Slag Interactions. ACCESS Workshop/Users-Meeting September 25, 2007 Thermo-Calc Software, Stockholm, Sweden Computational Thermodynamics and Kinetics New software for Simulations of Metal-Slag Interactions ACCESS Workshop/Users-Meeting September 25, 2007, Stockholm, Sweden http://www.thermocalc.com Phone: +46-8-545

More information

The formation of an inner slag layer during the dissolution of MgO particles in ladle slag

The formation of an inner slag layer during the dissolution of MgO particles in ladle slag The formation of an inner slag layer during the dissolution of MgO particles in ladle slag Deyong Wang, Maofa Jiang, Xiaobing Li, Tongsheng Zhang and Chengjun Liu Dept. Ferrous Metallurgy, School of Materials

More information

Lecture 17 Alternative Charge Materials in EAF

Lecture 17 Alternative Charge Materials in EAF Lecture 17 Alternative Charge Materials in EAF Contents: Introduction Types of metallic charge materials Carbon content in DRI Charging methods Key words: Sponge iron, DRI, electric arc furnace, UHP furnaces

More information

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron Use of DRI in EAF s Gregory L. Dressel Dressel Technologies Pawleys Island, SC Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron Introduction When melting DRI or HBI

More information

Thermodynamic determination of low melting area in CaO-Al 2 O 3 -SiO 2 -MgO-MnO system inclusion and its control in spring steel

Thermodynamic determination of low melting area in CaO-Al 2 O 3 -SiO 2 -MgO-MnO system inclusion and its control in spring steel Thermodynamic determination of low melting area in CaO-Al 2 O 3 -SiO 2 -MgO-MnO system inclusion and its control in spring steel Bo ZHANG 1),2), Fuming WANG 1),2) and Changrong LI 3) 1) School of Metallurgical

More information

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production Qi-xing YANG 1 2 2, Dong-feng HE 2 3 1 Abstract: Wastes from stainless steel production were briquetted together

More information

Sulphur bonding in solidified ladle slags

Sulphur bonding in solidified ladle slags POSCH, W., PREβLINGER, H., MAYR, M., KLEPP, K., and HIEBLER, H. Sulphur bonding in solidified ladle slags. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of

More information

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory

Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory Effect of Silicon Carbide on Reactions between Molten Steel and Fused Magnesia Silicon Carbide Composite Refractory Interactions between MgO SiC composite and liquid steel resulted in decomposition of

More information

EFFECT OF ACTIVITY COEFFICIENT ON PHOSPHATE STABILITY IN MOLTEN SLAGS

EFFECT OF ACTIVITY COEFFICIENT ON PHOSPHATE STABILITY IN MOLTEN SLAGS EFFECT OF ACTIVITY COEFFICIENT ON PHOSPHATE STABILITY IN MOLTEN SLAGS Moon Kyung Cho & Dong Joon Min Yonsei University, Korea ABSTRACT Recently, demands of special alloys which would be achieved with high

More information

DISSOLUTION RATE OF PURE CaO AND INDUSTRIAL LIME IN CONVERTER SLAGS*

DISSOLUTION RATE OF PURE CaO AND INDUSTRIAL LIME IN CONVERTER SLAGS* 74 DISSOLUTION RATE OF PURE CaO AND INDUSTRIAL LIME IN CONVERTER SLAGS* Elizaveta Cheremisina 1 Johannes Schenk 2 Ludwig Nocke 3 Alexander Paul 4 Gerald Wimmer 5 Abstract In steelmaking process lime serves

More information

Process and Refining Characteristics of ESR using MgO containing Slag Systems

Process and Refining Characteristics of ESR using MgO containing Slag Systems Process and Refining Characteristics of ESR using MgO containing Slag Systems S. Radwitz 1, H. Scholz 2, B. Friedrich 1, H. Franz 2 1 IME Process Metallurgy and Metal Recycling, RWTH Aachen University

More information

Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking

Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking Thermodynamic database of P 2 O 5 -containing oxide system for De-P process in steelmaking *In-Ho JUNG, Pierre HUDON, Wan-Yi KIM, Marie-Aline VAN ENDE, Miftaur RAHMAN, Gabriel Garcia CURIEL, Elmira Moosavi

More information

MgO modification of slag from stainless steelmaking

MgO modification of slag from stainless steelmaking ERIKSSON, J and BJÖRKMAN, B. MgO modification of slag from stainless steelmaking. VII International Conference on Molten Slags Fluxes and Salts, The South African Institute of Mining and Metallurgy, 2004.

More information

Activity Measurement of CaO SiO 2 AlO 1.5 MgO Slags Equilibrated with Molten Silicon Alloys

Activity Measurement of CaO SiO 2 AlO 1.5 MgO Slags Equilibrated with Molten Silicon Alloys ISIJ International, Vol. 40 (000), No. 6, pp. 561 566 Activity Measurement of CaO SiO AlO 1.5 MgO Slags Equilibrated with Molten Silicon Alloys Kousuke KUME, Kazuki MORITA 1), Takahiro MIKI ) and Nobuo

More information

SOLUBILITY OF MgO IN CaO-BASED SLAGS

SOLUBILITY OF MgO IN CaO-BASED SLAGS SOLUBILITY OF MgO IN CaO-BASED SLAGS Sung-Mo Jung & Chang-Hee Rhee Pohang University of Science and Technology, Korea Dong-Joon Min Yonsei University, Korea ABSTRACT The solubilities of MgO obtained from

More information

GTOX. a multipurpose oxide + database. GTT Users Meeting, Herzogenrath K. Hack 1, T. Jantzen 1, Elena Yazhenskhik 2, Michael Müller 2

GTOX. a multipurpose oxide + database. GTT Users Meeting, Herzogenrath K. Hack 1, T. Jantzen 1, Elena Yazhenskhik 2, Michael Müller 2 GTOX a multipurpose oxide + database GTT Users Meeting, 28.06.2017 Herzogenrath K. Hack 1, T. Jantzen 1, Elena Yazhenskhik 2, Michael Müller 2 1, 2 IEK2-FZ Jülich Contents of presentation A bit of history

More information

Use of Direct Reduced Iron in the Electric Furnace P CaO + MgO... o. 20. Mn Cr... <o.o05

Use of Direct Reduced Iron in the Electric Furnace P CaO + MgO... o. 20. Mn Cr... <o.o05 Use of Direct Reduced Iron in the Electric Furnace DIRECTLY reduced iron is coming more and more into the headlines of the steelmaking industry and interest is widespread and increasing. Much work has

More information

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide PAN, X. and ERIC, R.H. Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide. VII International Conference on Molten Slags Fluxes and

More information

Formation of MgO Al 2 O 3 Inclusions in High Strength Alloyed Structural Steel Refined by CaO SiO 2 Al 2 O 3 MgO Slag

Formation of MgO Al 2 O 3 Inclusions in High Strength Alloyed Structural Steel Refined by CaO SiO 2 Al 2 O 3 MgO Slag , pp. 885 890 Formation of MgO Al 2 O 3 Inclusions in High Strength Alloyed Structural Steel Refined by CaO SiO 2 Al 2 O 3 MgO Slag Min JIANG, Xinhua WANG, Bin CHEN and Wanjun WANG School of Metallurgical

More information

Analysis of parameters affecting end blow manganese content at oxygen steelmaking

Analysis of parameters affecting end blow manganese content at oxygen steelmaking Celso Dias Barão (Barão Consultoria Empresarial) Carlos Antônio da Silva, Itavahn Alves da Silva (Universidade Federal de Ouro Preto - UFOP) Analysis of parameters affecting end blow manganese content

More information

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation

Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation Title Author(s) Citation Evaluation of Viscosity of Molten SiO_2-CaO-MgO- Al_2O_3 Slags in Blast Furnace Operation Nakamoto, Masashi; Tanaka, Toshihiro; Lee, Joonho; Usui, Tateo ISIJ International. 44(12)

More information

Xiao YANG, Hiroyuki MATSUURA and Fumitaka TSUKIHASHI

Xiao YANG, Hiroyuki MATSUURA and Fumitaka TSUKIHASHI , pp. 702 711 Reaction Behavior of P 2 O 5 at the Interface between Solid 2CaO SiO 2 and Liquid CaO SiO 2 FeO x P 2 O 5 Slags Saturated with Solid 5CaO SiO 2 P 2 O 5 at 1 573 K Xiao YANG, Hiroyuki MATSUURA

More information

Effect of Slag Composition on Inclusion Control in LF-VD Process for Ultra-low Oxygen Alloyed Structural Steel

Effect of Slag Composition on Inclusion Control in LF-VD Process for Ultra-low Oxygen Alloyed Structural Steel Available online at www.sciencedirect.com Procedia Earth and Planetary Science 2 (2011) 89 97 The Second International Conference on Mining Engineering and Metallurgical Technology Effect of Slag Composition

More information

EXPERIMENTAL INVESTIGATION OF PHASE EQUILIBRIA OF SUBSYSTEMS IN THE MnO-SiO 2 -Al 2 O 3 -MnS SYSTEM

EXPERIMENTAL INVESTIGATION OF PHASE EQUILIBRIA OF SUBSYSTEMS IN THE MnO-SiO 2 -Al 2 O 3 -MnS SYSTEM EXPERIMENTAL INVESTIGATION OF PHASE EQUILIBRIA OF SUBSYSTEMS IN THE MnO-SiO 2 -Al 2 O 3 -MnS SYSTEM Dae-Hee Woo, Henri Gaye & Hae-Geon Lee Pohang University of Science and Technology, Korea Youn-Bae Kang

More information

Lecture 25: Principles of degassing

Lecture 25: Principles of degassing Lecture 25: Principles of degassing Contents Introduction Principles Side reactions General considerations Fluid flow in degassing Material balance in de gassing Key words: Degassing, gases in steel, ladle

More information

KITAMURA Laboratory ( )

KITAMURA Laboratory ( ) [Research Activities] KITAMURA Laboratory (2008.4 2009.3) Base Materials Processing Research Field Research Center for Sustainable Materials Engineering The production processes of base materials, such

More information

Current Refractory Technology and Practices in the Steel Industry

Current Refractory Technology and Practices in the Steel Industry Current Refractory Technology and Practices in the Steel Industry April 26, 2017 Rakesh K. Dhaka 2016 Steel Production in Numbers United States 4 th largest producer of steel in the world Source: World

More information

Mselly Nzotta Uddeholms AB HAGFORS. Senior Researcher, Process Development, Process Metallurgy

Mselly Nzotta Uddeholms AB HAGFORS. Senior Researcher, Process Development, Process Metallurgy Mselly Nzotta Uddeholms AB HAGFORS Senior Researcher, Process Development, Process Metallurgy WELCOME TO UDDEHOLMS AB RESEARCH FUND FOR COAL AND STEEL WELCOME TO UDDEHOLMS AB Development of steel grade

More information

THERMODYNAMICS OF MANGANESE OXIDE IN CaO-SIO 2 -MgO SAT. -Cr 2 O 3 -MnO SLAGS FOR THE PRODUCTION OF HIGH MN STAINLESS STEEL

THERMODYNAMICS OF MANGANESE OXIDE IN CaO-SIO 2 -MgO SAT. -Cr 2 O 3 -MnO SLAGS FOR THE PRODUCTION OF HIGH MN STAINLESS STEEL THERMODYNAMICS OF MANGANESE OXIDE IN CaO-SIO 2 -MgO SAT. -Cr 2 O 3 -MnO SLAGS FOR THE PRODUCTION OF HIGH MN STAINLESS STEEL Mane Aline Van Ende, Muxiner Guo, Peter Jones, Bart Blanpain & Patrick Wollants

More information

Properties and corrosion of alumina-magnesia-carbon refractories

Properties and corrosion of alumina-magnesia-carbon refractories Properties and corrosion of alumina-magnesia-carbon refractories A post-firing expansion of aluminamagnesia-carbon (AMC) refractories can close joints and densify the brick structure. Many positive reports

More information

MSE 351 Engineering Ceramics I

MSE 351 Engineering Ceramics I Kwame Nkrumah University of Science & Technology, Kumasi, Ghana MSE 351 Engineering Ceramics I Ing. Anthony Andrews (PhD) Department of Materials Engineering Faculty of Mechanical and Chemical Engineering

More information

Sulphide Capacities of CaO Al 2 O 3 SiO 2 MgO MnO Slags in the Temperature Range K

Sulphide Capacities of CaO Al 2 O 3 SiO 2 MgO MnO Slags in the Temperature Range K ISIJ International, Vol. 49 (009), No., pp. 56 63 Sulphide Capacities of CaO Al O 3 SiO MgO MnO Slags in the Temperature Range 673 773 K Yoshinori TANIGUCHI,,) Nobuo SANO 3) and Seshadri SEETHARAMAN )

More information

The Study on Sulfur and Nickel Distribution Behavior of Nickel between Fe-Ni alloy and MgO-FeO-SiO 2 Slag System

The Study on Sulfur and Nickel Distribution Behavior of Nickel between Fe-Ni alloy and MgO-FeO-SiO 2 Slag System The Study on Sulfur and Nickel Distribution Behavior of Nickel between Fe-Ni alloy and MgO-FeO-SiO 2 Slag System Ki Deok Kim 1), Hyung Sub Eom 2), Eun Jin Jung 1), Wan Wook Huh 1), and Dong Joon Min 1)

More information

Low Carbon Steels, Collected in the Refining Treatment and Continuous Casting Stages

Low Carbon Steels, Collected in the Refining Treatment and Continuous Casting Stages Vol. Materials 7, No. Research, 4, 2004Vol. 7, No. 4, 517-521, Study of 2004. the Nature of Non-Metallic Inclusions in Samples of Aluminum and Silicon Killed 2004 517 Study of the Nature of Non-Metallic

More information

CHALLENGES IN PROCESS METALLURGY L. TENG, T. MATSUSHITA AND S. SEETHARAMAN

CHALLENGES IN PROCESS METALLURGY L. TENG, T. MATSUSHITA AND S. SEETHARAMAN Association of etallurgical Engineers of Serbia AES Review paper UDC:669.001.6:001.892=20 CHALLENGES IN PROCESS ETALLURGY L. TENG, T. ATSUSHITA AND S. SEETHARAAN Department of aterials Science and Engineering,

More information

Lecture 42: Self Assessment questions. 1a) Explain the role of a basic oxidising slag in steelmaking. (04)

Lecture 42: Self Assessment questions. 1a) Explain the role of a basic oxidising slag in steelmaking. (04) Lecture 42: Self Assessment questions 1a) Explain the role of a basic oxidising slag in steelmaking. (04) 1b) Carry-over of the basic oxidising slag from the converter is undesirable to the transfer ladle.

More information

REDUCING REFRACTORY COST USING NEW ASCC BRICKS FOR HOT IRON TRANSPORT

REDUCING REFRACTORY COST USING NEW ASCC BRICKS FOR HOT IRON TRANSPORT REDUCING REFRACTORY COST USING NEW ASCC BRICKS FOR HOT IRON TRANSPORT PENG, DEJIANG HE, ZHONGYANG YU, TERRY PUYANG REFRACTORY GROUP LTD. Drawings Outline Optimum Design Material Selection: Tar-Impregnated

More information

Slag-metal equilibrium calculations for estimation of oxygen activity in molten steel during ladle treatment

Slag-metal equilibrium calculations for estimation of oxygen activity in molten steel during ladle treatment Slag-metal equilibrium calculations for estimation of oxygen activity in molten steel during ladle treatment J. Ekengård *, M. Andersson *, P. Jönsson * and J. Lehmann ** * Royal Institute of Technology,

More information

THEORY AND APPLICATION OF MAGNESIA RAMMING MATERIAL IN FERROALLOY REFINING FURNACES

THEORY AND APPLICATION OF MAGNESIA RAMMING MATERIAL IN FERROALLOY REFINING FURNACES THEORY AND APPLICATION OF MAGNESIA RAMMING MATERIAL IN FERROALLOY REFINING FURNACES S. Wang 1, Y. Jin 2 and G. Li 2 1 Jilin Ferroalloy Company Limited, No.21 Heping Street, Jilin, 132062, China. E-mail:

More information

REFINING STEELS PRODUCED IN ELECTRIC ARC FURNACE

REFINING STEELS PRODUCED IN ELECTRIC ARC FURNACE U.P.B. Sci. Bull., Series B, Vol. 75, Iss. 2, 2013 ISSN 1454-2331 REFINING STEELS PRODUCED IN ELECTRIC ARC FURNACE Valentin MINCU 1, Nicolae CONSTANTIN 2 Characteristics and properties of cast and forged

More information

THE INFLUENCE OF SLAG EVOLUTION ON BOF DEPHOSPHORISATION

THE INFLUENCE OF SLAG EVOLUTION ON BOF DEPHOSPHORISATION THE INFLUENCE OF SLAG EVOLUTION ON BOF DEPHOSPHORISATION A thesis submitted in fulfillment of the requirements for the award of the degree MASTER OF ENGINEERING From UNIVERSITY OF WOLLONGONG By MARK SWINNERTON,

More information

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff

Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff Metallurgy of Aluminum Die Casting Alloys EC 305 Dave Neff Dave Neff OUTLINE Where aluminum comes from Why alloys are useful Alloy designation and nomenclature Specific roles of alloy elements Properties

More information

Influence of Sulfur on the Reaction between MnO SiO 2 FeO Oxide and Fe Mn Si Solid Alloy by Heat Treatment

Influence of Sulfur on the Reaction between MnO SiO 2 FeO Oxide and Fe Mn Si Solid Alloy by Heat Treatment , pp. 2678 2686 Influence of Sulfur on the Reaction between MnO SiO 2 FeO Oxide and Fe Mn Si Solid Alloy by Heat Treatment Kyung-Ho KIM, 1) * Hiroyuki SHIBATA 2) and Shin-ya KITAMURA 2) 1) Formerly Graduate

More information

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm

Mould fluxes for steelmaking - composition design and characterisation of properties. Research Institute, Stockholm Mould fluxes for steelmaking - composition design and characterisation of properties Carl-Åke Däcker KIMAB, Corrosion and Metals Research Institute, Stockholm The main functions for mould powder - and

More information

Analysis of Hot Metal Desiliconization Behavior in Converter Experiments by Coupled Reaction Model

Analysis of Hot Metal Desiliconization Behavior in Converter Experiments by Coupled Reaction Model , pp. 316 325 Analysis of Hot Metal Desiliconization Behavior in Converter Experiments by Coupled Reaction Model Minoru ISHIKAWA Corporate Research & Development Laboratories, Sumitomo Metal Industries,

More information

Using Automated Inclusion Analysis for Casting Process Improvements

Using Automated Inclusion Analysis for Casting Process Improvements Missouri University of Science and Technology Scholars' Mine Materials Science and Engineering Faculty Research & Creative Works Materials Science and Engineering 12-1-28 Using Automated Inclusion Analysis

More information

Slag formation during high-temperature interactions between SiO 2 -containing refractories and iron melts with oxygen

Slag formation during high-temperature interactions between SiO 2 -containing refractories and iron melts with oxygen KAPILASHRAMI, E., SAHAJWALLA, V., and SEETHARAMAN, S. Slag formation during high-temperature interactions between SiO 2 -containing refractories and iron melts with oxygen. VII International Conference

More information

Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al

Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al , pp. 223 2238 Dissolution Behavior of Mg from MgO into Molten Steel Deoxidized by Al Akifumi HARADA, 1) Gaku MIYANO, 2) Nobuhiro MARUOKA, 3) Hiroyuki SHIBATA 3) and Shin-ya KITAMURA 3) * 1) Graduate Student,

More information

Arch. Metall. Mater. 62 (2017), 2,

Arch. Metall. Mater. 62 (2017), 2, Arch. Metall. Mater. 62 (2017), 2, 885-889 DOI: 10.1515/amm-2017-0130 J. FALKUS* # AN EVALUATION OF THE STABILITY OF MOULD FLUX PROPERTIES IN THE PROCESS OF CONTINUOUS STEEL CASTING This paper presents

More information

GSMPM BLOW CHARGE MODEL IMPLEMENTATION AT ARCELORMITTAL TUBARÃO*

GSMPM BLOW CHARGE MODEL IMPLEMENTATION AT ARCELORMITTAL TUBARÃO* GSMPM BLOW CHARGE MODEL IMPLEMENTATION AT ARCELORMITTAL TUBARÃO* Henrique Silva Furtado 1 Lourival Silva Machado 2 Roberto Dalmaso 3 Abstract This paper presents the results obtained on the exchange of

More information

Melt corrosion of refractories in the nonferrous industry and the electric arc furnace: A thermochemical approach*

Melt corrosion of refractories in the nonferrous industry and the electric arc furnace: A thermochemical approach* Pure Appl. Chem., Vol. 83, No. 5, pp. 1093 1104, 2011. doi:10.1351/pac-con-10-10-05 2011 IUPAC, Publication date (Web): 4 April 2011 Melt corrosion of refractories in the nonferrous industry and the electric

More information

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS INTEXT QUESTIONS GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS Question 6.1: Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method? If the ore or the gangue

More information

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA

IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA IRON AND STEEL INDUSTRY DEVELOPMENT AND TECHNOLOGICAL INNOVATION IN CHINA Kuang-di Xu Chinese Academy of Engineering, China ABSTRACT China s iron and steel industry enjoys accelerated development thanks

More information

Research Article Adoption of Sinter Addition in Steelmaking Converter to Control Spitting

Research Article Adoption of Sinter Addition in Steelmaking Converter to Control Spitting Metallurgy Volume 2015, Article ID 187042, 5 pages http://dx.doi.org/10.1155/2015/187042 Research Article Adoption of Sinter Addition in Steelmaking Converter to Control Spitting Sanjay Kumar Gupta, 1

More information

The Effect of Cation Species on the Sulfide Capacity in CaO-FeO-Al 2 O 3 -SiO 2 Melts

The Effect of Cation Species on the Sulfide Capacity in CaO-FeO-Al 2 O 3 -SiO 2 Melts The Effect of Cation Species on the Sulfide Capacity in CaO-FeO-Al 2 Melts Joon Sung Choi*, Youngjoo Park, Sunghee Lee and Dong Joon Min Department of Materials Science and Engineering Contents Introduction

More information

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting joe.poveromo@rawmaterialsiron.com DR Pellet Quality & MENA Applications Chemistry Considerations direct reduction processes: chemical

More information

THERMODYNAMIC MODEL AND DATABASE FOR GASEOUS SPECIES IN MOLTEN OXIDE SLAGS

THERMODYNAMIC MODEL AND DATABASE FOR GASEOUS SPECIES IN MOLTEN OXIDE SLAGS THERMODYNAMIC MODEL AND DATABASE FOR GASEOUS SPECIES IN MOLTEN OXIDE SLAGS Youn-Bae Kang & Arthur Pelton École Polytechnique, Canada ABSTRACT A thermodynamic model has been developed in the framework of

More information

< > The Experience of ArcelorMittal Lázaro Cardenas Flat Carbon. By R. Lule 1), F.Lopez 2), J. Espinoza 3) R. Torres 4) & R.D.

< > The Experience of ArcelorMittal Lázaro Cardenas Flat Carbon. By R. Lule 1), F.Lopez 2), J. Espinoza 3) R. Torres 4) & R.D. 3 table of contents THE PRODUCTION OF STEELS APPLYING 100% DRI FOR NITROGEN REMOVAL The Experience of ArcelorMittal Lázaro Cardenas Flat Carbon By R. Lule 1), F.Lopez 2), J. Espinoza 3) R. Torres 4) &

More information

Why do we need new inclusion experimental techniques?

Why do we need new inclusion experimental techniques? University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2012 Why do we need new inclusion experimental techniques? Neslihan Dogan

More information

MODELLING CR CONTAINING SLAGS FOR PGM SMELTING

MODELLING CR CONTAINING SLAGS FOR PGM SMELTING MODELLING CR CONTAINING SLAGS FOR PGM SMELTING Ling Zhang, Shouyi Sun & Sharif Jahanshahi CSIRO Minerals, Australia ABSTRACT Thermodynamic and some of the transport properties of multi-component slags

More information

Hot Metal Desulfurization by CaO SiO 2 CaF 2 Na 2 O Slag Saturated with MgO

Hot Metal Desulfurization by CaO SiO 2 CaF 2 Na 2 O Slag Saturated with MgO ISIJ International, Vol. 50 (00), No., pp. 5 Hot Metal Desulfurization by CaO SiO CaF Na O Slag Saturated with MgO Moon Kyung CHO, ) Jin CHENG, ) Joo Hyun PARK ) and Dong Joon MIN ) ) Department of Metallurgical

More information

Table of Contents. Preface...

Table of Contents. Preface... Preface... xi Chapter 1. Metallurgical Thermochemistry... 1 1.1. Introduction... 1 1.2. Quantities characterizing the state of a system and its evolution... 3 1.2.1. The types of operations... 3 1.2.2.

More information

Cold rolled non-oriented (CRNO) silicon steel production at Rourkela Steel Plant, SAIL

Cold rolled non-oriented (CRNO) silicon steel production at Rourkela Steel Plant, SAIL Cold rolled non-oriented (CRNO) silicon steel production at Rourkela Steel Plant, SAIL Rourkela Steel Plant is the largest producer of cold rolled non-oriented (CRNO) steels in India. Control of steelmaking,

More information

General Principle of Isolation of Elements (NCERT)

General Principle of Isolation of Elements (NCERT) Question 6.1: Copper can be extracted by hydrometallurgy but not zinc. Explain. The reduction potentials of zinc and iron are lower than that of copper. In hydrometallurgy, zinc and iron can be used to

More information

TUNDISH SLAG CAPACITY TO ABSORB INCLUSIONS WHEN USING CALCIUM ALUMINATE BASED COVERING MATERIAL COMBINED WITH RICE HULL ASH*

TUNDISH SLAG CAPACITY TO ABSORB INCLUSIONS WHEN USING CALCIUM ALUMINATE BASED COVERING MATERIAL COMBINED WITH RICE HULL ASH* TUNDISH SLAG CAPACITY TO ABSORB INCLUSIONS WHEN USING CALCIUM ALUMINATE BASED COVERING MATERIAL COMBINED WITH RICE HULL ASH* Márcia Maria da Silva Monteiro Pereira 1 Marco Túlio Lima 2 Gérson Tolentino

More information

Effect of MgO and Al 2 O 3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution

Effect of MgO and Al 2 O 3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution DEO. B, HALDER. J, SNOEIJER. B, OVERBOSCH. A, and BOOM. R. Effect of MgO and Al 2 O 3 variations in oxygen steelmaking (BOF) slag on slag morphology and phosphorus distribution. VII International Conference

More information

ANALYSIS OF HETEROGENEOUS NUCLEATION IN DUCTILE IRON

ANALYSIS OF HETEROGENEOUS NUCLEATION IN DUCTILE IRON ANALYSIS OF HETEROGENEOUS NUCLEATION IN DUCTILE IRON TMS 1, Simon N. Lekakh 2 1 TMS (The Minerals, Metals & Materials Society); 184 Thorn Hill Rd.; Warrendale, PA 15086-7514, USA 2 Missouri University

More information

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following.

1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. 315 Problems 1. Use the Ellingham Diagram (reproduced here as Figure 0.1) to answer the following. (a) Find the temperature and partial pressure of O 2 where Ni(s), Ni(l), and NiO(s) are in equilibrium.

More information

Unit Ladle-Furnace: Slag Forming Conditions and Stabilization

Unit Ladle-Furnace: Slag Forming Conditions and Stabilization International Conference with Elements of School for Young Scientists on Recycling and Utilization of Technogenic Formations (2017) Conference Paper Unit Ladle-Furnace: Slag Forming Conditions and Stabilization

More information

Lecture 23: Injection ladle metallurgy

Lecture 23: Injection ladle metallurgy Lecture 23: Injection ladle metallurgy Contents: Injection of solid powders Desulphurization Mechanism Illustration Alloying with gas injection Heating of steel Keywords: alloying, permanent contact, ladle

More information

State of the thermodynamic database for the BOFdePhos project

State of the thermodynamic database for the BOFdePhos project State of the thermodynamic database for the BOFdePhos project K. Hack, T. Jantzen, GTT-Technologies, Herzogenrath GTT Users Meeting, July 2015, Herzogenrath Contents Old LD converter model database Necessary

More information