INFLUENCE OF PROCEES PARAMETERS ON DENSITY OF PARTS PRODUCED BY SELECTIVE LASER SINTERING

Size: px
Start display at page:

Download "INFLUENCE OF PROCEES PARAMETERS ON DENSITY OF PARTS PRODUCED BY SELECTIVE LASER SINTERING"

Transcription

1 INFLUENCE OF PROCEES PARAMETERS ON DENSITY OF PARTS PRODUCED BY SELECTIVE LASER SINTERING * Dr. Sushant Negi, ** Miss. Pallavi Chauhan, *** Dr. Sunil Thakur * Department of Mechanical Engineering, AP Goyal Shimla University, Shimla, India negiindia@gmail.com ** Department of Chemistry, AP Goyal Shimla University, Shimla, India chauhanpallavi26@gmail.com *** Department of Mechanical Engineering, AP Goyal Shimla University, Shimla, India sunilthakur.nith@gmail.com ABSTRACT Selective laser sintering (SLS) is one of Additive Manufacturing (AM) process, which has become popular due to its ability to use variety of powder material. Current application of SLS is not limited around prototyping as it is moving rapidly towards the fabrication of end-user products. At present, many sectors such as aerospace, automotive, artistic and biomedical are using 3D solid models (prototypes) for visual inspection, concept evaluation and kinematic testing. Therefore, SLS built parts should have better strength (i.e. density) in order to assure functional requirement for model testing or other purposes. Surface quality of AM fabricated parts very much depends on the various sintering process parameters. Hence, this article provides a brief overview of selective laser sintering (SLS), and how the process parameters namely, part bed temperature, scan speed and scan spacing influence the density of produced parts. Keywords: Selective laser sintering, laser power, scan speed, glass filled. INTRODUCTION Selective laser sintering process was developed at the University of Texas at Austin in 1986, and commercialized by DTM Corporation [1], has become popular due to the fact that the SLS process fabricates the parts without using support structure and has the ability to use a variety of powder materials. Materials that can be built in SLS include: polycarbonate (PC), nylon, nylon/glass composite, wax, ceramics, trueform (TM), elastomeric and metal-polymer powders [2, 3]. Nowadays SLS fabricated prototypes are increasingly used as functional parts that require good strength (i.e., density). However, the parts produced by SLS have low strength. It is observed that density of the produced parts very much depends on the sintering process parameters, there are a number of input parameters that can be controlled and varied to improve final part quality. Some of these input parameters (as shown in Fig. 1a) are bed temperature, layer thickness, scan spacing, scan 39

2 speed, scan length, powder characteristics and laser parameters (power density, pulse duration, pulse frequency etc.) [4]. In this present work, an attempt is made to determine the influence of laser power, scan speed, and scan spacing i.e. energy density on density of test parts. Face centred central composite design (CCD) of experiments was used to plan experiments. RSM was used to analyze and predict the effect of these parameters on roughness of test parts. 2. EXPERIMENTATION 2.1 SLS Process and Parameters Selection The SLS process involves fabricating solid parts by fusing powdered materials with the help of a CO 2 laser beam. A very thin layer of powder material is spread with a roller over the part build surface and preheated to a temperature slightly below its melting point. A laser beam follows the cross-section on the powder surface to selectively sinter and bond it in order to produce a layer of the part as presented in Fig. 1b. After completing one layer, successive layers of powder are deposited and sintered until the whole part is completed and then the un-sintered powder is removed from the parts and recycled. The advantages included the ability to use a variety of thermoplastic powders, easy postprocessing, require no no support structure. Disadvantages include abrasive surface of sintered models and costly process [5, 6]. In the present experimental work, process parameters namely, laser power, scan speed, and scan spacing were selected due to their dominant influence on part quality. The range of laser power, scan speed and scan spacing were finalized based on the maximum energy density (mentioned below) and opinions of experts. The energy density that affects the part quality can be calculated according to the given equation: [7, 8, 9]. P ED (1) V S S Where, ED = energy density (J/mm 2 ), P = laser power (W) V = scan speed (mm/s) S s = scan spacing (mm) Literature suggested that the proper sintering will not take place if value of E is below 1 J/cm 2. Whereas, it was noticed that polymer degradation starts, when value of E is above 4.8 J/cm 2. Therefore, range of these parameters has been selected by keeping all these things in mind. Different process parameters and their values which have been finalized for experimentation are presented in Table 1. All other parameters despite selected process parameters were kept fix throughout in the present work. Table 1 Different process parameters and their values used for experiment 40

3 Variable Parameters Values Laser power (W) 28, 32, 36 Scan Speed (mm/s) 2500, 3500, 4500 Scan spacing (mm) 0.25, 0.35, Sample Preparation and Measurements Parts having 13 mm 3 mm 120 mm cross section are selected as the test specimens (see Fig. 2a). Samples were built using SLS machine and material used was GF polyamide powder ((PA 3200GF) with refresh rate of 40:60; fresh and recycled powders. It is evident that properties of used powder vary from fresh powder because it undergoes through different heating cycle [2]. Therefore, it avoids the phenomena like curling and warpage. Hence in order to avoid this only 40% of fresh powder was used for experimentation. Fig. 1 shows the shape and size of the test sample used to investigate density of parts. Fabricated specimens are shown in Fig. 2. Figure 1 CAD model Figure 2 Fabricated test sample 2.3 Design of Experiment The experiments were designed and conducted by employing RSM approach. This study used the stipulated conditions according to the face-cantered CCD to plan the experiments. A total of 20 experiments were executed at three independent input variables which were varied up to three levels. This experimental work considered the following controllable process parameters to investigate their influence on the density of produced parts; laser power (A), scan speed (B), scan spacing (C). The selected process parameters with their working range are presented in Table 1. The experimental design matrix in terms of coded factor is summarized in Table 2. 41

4 Table 2 Experimental design matrix Run Laser Power (watts) Scan Speed (mm/s) Scan Spacing (mm) RESULTS AND DISCUSSION A total of 20 samples were prepared and tested as per designed plan presented in Table 2. Further analysis of variance (ANOVA) was carried out on collected data. Fig. 3 and Fig. 4 clearly show that laser power, scan speed and scan spacing have a significant effect on the density, and their respective effects have been discussed in below section. 3.1 Effect of laser power Effect of laser power on density can be seen through Fig. 3 and Fig. 4. With the increase in laser power from 28 W to 36 W density exhibited increasing trend. As the laser power increases, it transfers most of its energy to material to get it properly sintered and consequently a close packed model is generated, which leads to the improvement in density of sintered part. 3.2 Effect of scan speed Fig. 3 and Fig. 4 reveal the effect of scan speed on density. With the increase in scan speed from 2500 to 4500 mm/s, density exhibited decreasing trend. The main reason behind this phenomena is that when the scan speed increases, the energy absorbed by the sintered material at a 42

5 unit time and a unit area decreases, and thus poor packing of the particles which leads to poor density. Figure 3 Influence of various process parameters on density. Figure 4 3D response surface graph between laser power and scan speed 3.3 Effect of scan spacing Fig. 3 shows the effect of scan spacing on density of built samples. It has been observed that with the increase in scan spacing from 0.25 mm to 0.45 mm there is decrease in density. It can be explained by the fact large scan spacing causes poor packing of the particles. Therefore, the tendency of the layers to curl and to cling with roller increases restricts the next layer from proper sintering [2], which subsequently results in a decrease in density. 43

6 3.4 Optimization Optimization was carried out to find out the optimum values by keeping the density in maximum range. Accordingly, the optimum working conditions to maximize density are presented in Table 3. Table 3 Optimization results for minimizing density S.No Laser Power (Watt) Scan speed (mm/s) Scan spacing (mm) CONCLUSIONS In this study, density of SLS built GF polyamide parts are investigated using RSM tool. From the above analysis, the following conclusions can be drawn: With the increase in laser power there is increase in the density of the parts. On the contrary with the increase in scan speed and scan spacing there is a decrease in density of sintered parts. A strong interaction has been observed between laser power and scan speed. Moreover, optimal results can be obtained using optimized working conditions; laser power 36 Watt, scan speed 2500 mm/s, scan spacing 0.25 mm. Results from this study would help to produce the end user parts with required density. REFERENCES [1]. Wang, R.J., Wang, L., Zhao, L. and Liu, Z., Influence of Process Parameters on Part Shrinkage in SLS International Journal of Advanced Manufacturing Technology, vol. 33, no. 5-6, pp , [2]. Singh, S., Sachdeva, A. and Sharma, V.S., Investigating Surface Roughness of Parts Produced by SLS Process, International Journal of Advance Manufacturing Technology, DOI /s z, [3]. Gibson, I. and Shi, D., Material Properties and Fabrication Parameters in Selective Laser Sintering Process, Rapid Prototyping Journal, Vol. 3, No.4, pp , [4]. Chatterjee, A.N., Kumar, S., Saha, P., Mishra, P, K., and Choudhury, A.R., An Experimental Design Approach to Selective Laser Sintering of Low Carbon Steel, Journal of Materials Processing Technology, vol. 136, pp , [5]. Juster, N.P., Rapid Prototyping Using the Selective Sintering Process, Assembly Automation, vol. 14, no. 2, pp.14-17,

7 [6]. Yang, H.J., Hwang, P.J and Lee, S., A Study on Shrinkage Compensation of the SLS Process by Using Taguchi Method, International Journal of Machine Tools and Manufacture, vol. 42, no. 11, pp , [7]. Jain, P.K., Pandey, P.M., and Rao, P.V.M., Effect of Delay Time on Part Strength in Selective Laser Sintering, International Journal of Advance Manufacturing Technology, Vol. 43, pp , [8]. Raghunath, N. and Pandey, P.M., Improving Accuracy Through Shrinkage Modelling by Using Taguchi Method in Selective Laser Sintering, International Journal of Machine Tools and Manufacture, Vol. 47, pp , [9]. Senthilkumaran, K., Pandey, P.M. and Rao, P.V.M., Influence of Building Strategies on the Accuracy of Parts in Selective Laser Sintering, Materials and Design, Vol. 30, pp ,

EXPERIMENTAL INVESTIGATION ON INFLUENCE OF PROCESS PARAMETERS IN SELECTIVE LASER SINTERING ON ROUNDNESS USING TAGUCHI MEDTHOD

EXPERIMENTAL INVESTIGATION ON INFLUENCE OF PROCESS PARAMETERS IN SELECTIVE LASER SINTERING ON ROUNDNESS USING TAGUCHI MEDTHOD International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN (P): 2249-689; ISSN (E): 2249-81 Vol. 7, Issue 6, Dec 217, 45-52 TJPRC Pvt. Ltd EXPERIMENTAL INVESTIGATION

More information

Investigation of Layer Thickness and Orientation on Mechanical Strength of CL20 ES Material by Selective Laser Sintering Process

Investigation of Layer Thickness and Orientation on Mechanical Strength of CL20 ES Material by Selective Laser Sintering Process Investigation of Layer Thickness and Orientation on Mechanical Strength of CL20 ES Material by Selective Laser Sintering Process Priyank S. Panchal 1, Hardik J. Patel 2, Dhaval M. Patel 3 1 P.G. Student

More information

6340(Print), ISSN (Online) Volume 4, Issue 2, March - April (2013) IAEME AND TECHNOLOGY (IJMET)

6340(Print), ISSN (Online) Volume 4, Issue 2, March - April (2013) IAEME AND TECHNOLOGY (IJMET) INTERNATIONAL International Journal of Mechanical JOURNAL Engineering OF MECHANICAL and Technology (IJMET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

Selective Laser Sintering of SiC/Polyamide Matrix Composites

Selective Laser Sintering of SiC/Polyamide Matrix Composites Selective Laser Sintering of SiC/Polyamide Matrix Composites Toby Gill and Bernard Hon Rapid Prototyping Centre Department of Engineering, The University of Liverpool, Uk. Abstract This paper presents

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 PARAMETRIC INVESTIGATION

More information

EFFECT OF EMPLOYING DIFFERENT GRADES OF RECYCLED POLYAMIDE 12 ON THE SURFACE TEXTURE OF LASER SINTERED (LS) PARTS

EFFECT OF EMPLOYING DIFFERENT GRADES OF RECYCLED POLYAMIDE 12 ON THE SURFACE TEXTURE OF LASER SINTERED (LS) PARTS EFFECT OF EMPLOYING DIFFERENT GRADES OF RECYCLED POLYAMIDE 12 ON THE SURFACE TEXTURE OF LASER SINTERED (LS) PARTS WAY Yusoff *,D.T Pham **, K.Dotchev *** * Manufacturing and Materials Engineering Department

More information

Investigation of Dimensional Accuracy/Mechanical Properties of Part Produced by Selective Laser Sintering

Investigation of Dimensional Accuracy/Mechanical Properties of Part Produced by Selective Laser Sintering International Journal of Applied Science and Engineering 2012. 10, 1: 59-68 Investigation of Dimensional Accuracy/Mechanical Properties of Part Produced by Selective Laser Sintering Sharanjit Singh *,

More information

Process Capability Study of Selective Laser Sintering for Plastic Components

Process Capability Study of Selective Laser Sintering for Plastic Components I J M S E Serials Publications 8(2) 2017 : July-December pp. 135-139 Process Capability Study of Selective Laser Sintering for Plastic Components Ru p i n d e r Si n g h 1 a n d Ra n v i j a y Ku m a r

More information

THE DEVELOPMENT OF A SLS COMPOSITE MATERIAL. Paul Forderhase Kevin McAlea Richard Booth DTM Corporation Austin, TX ABSTRACT

THE DEVELOPMENT OF A SLS COMPOSITE MATERIAL. Paul Forderhase Kevin McAlea Richard Booth DTM Corporation Austin, TX ABSTRACT THE DEVELOPMENT OF A SLS COMPOSITE MATERIAL Paul Forderhase Kevin McAlea Richard Booth DTM Corporation Austin, TX 78754 ABSTRACT The development of a commercial SLS nylon-based composite material (LNC

More information

PROTOTYPES. Gestión de Compras have the means to get prototypes with state-of-art processes according to customer drawings.

PROTOTYPES. Gestión de Compras have the means to get prototypes with state-of-art processes according to customer drawings. PROTOTYPES Gestión de Compras have the means to get prototypes with state-of-art processes according to customer drawings. PRODUCT: Most manufacturing companies are involved in product development, a process

More information

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM Adrian P. POP 1, Petru UNGUR 1, Gheorghe BEJINARU MIHOC 2 1 University of Oradea, e-mail: adippop@yahoo.com; petru_ungur@yahoo.com; 2 Transilvania University

More information

Additive Manufacturing Research Group, Wolfson School, Loughborough University, Ashby Road, Loughborough, United Kingdom. LE11 3TU

Additive Manufacturing Research Group, Wolfson School, Loughborough University, Ashby Road, Loughborough, United Kingdom. LE11 3TU Powder pre-conditioning for the LS process Majewski, C.E., Horsford, P.M., and Hopkinson, N., Additive Manufacturing Research Group, Wolfson School, Loughborough University, Ashby Road, Loughborough, United

More information

SELECTIVE LASER SINTERING OF METAL MOLDS: THE RAPIDTOOLTM PROCESS. Uday Hejmadi Kevin McAlea

SELECTIVE LASER SINTERING OF METAL MOLDS: THE RAPIDTOOLTM PROCESS. Uday Hejmadi Kevin McAlea SELECTIVE LASER SINTERING OF METAL MOLDS: THE RAPIDTOOLTM PROCESS ABSTRACT Uday Hejmadi Kevin McAlea Materials and Process Development Group DTM Corp., Austin TX 78759 Complex three dimensional parts can

More information

Additive Layer Manufacturing: Current & Future Trends

Additive Layer Manufacturing: Current & Future Trends Additive Layer Manufacturing: Current & Future Trends L.N. Carter, M. M. Attallah, Advanced Materials & Processing Group Interdisciplinary Research Centre, School of Metallurgy and Materials Additive Layer

More information

SLS POWDER LIFE STUDY

SLS POWDER LIFE STUDY SLS POWDER LIFE STUDY J. Choren, V. Gervasi, T. Herman, S. Kamara, and J. Mitchell Rapid Prototyping Center, Milwaukee School of Engineering 1025 N. Broadway, Milwaukee, WI 53202 ABSTRACT Producing acceptable

More information

SELECTIVE LASER SINTERING OF POLYAMIDE12 COMPOSITES. Mengxue Yan, Xiaoyong Tian* and Gang Pengr

SELECTIVE LASER SINTERING OF POLYAMIDE12 COMPOSITES. Mengxue Yan, Xiaoyong Tian* and Gang Pengr 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 SELECTIVE LASER SINTERING OF POLYAMIDE12 COMPOSITES Mengxue Yan, Xiaoyong Tian* and Gang Pengr State Key Laboratory of

More information

DIRECT LASER SINTERING OF BOROSILICATE GLASS

DIRECT LASER SINTERING OF BOROSILICATE GLASS DIRECT LASER SINTERING OF BOROSILICATE GLASS F. Klocke, A. McClung and C. Ader Fraunhofer Institute for Production Technology IPT, Aachen, Germany Reviewed, accepted August 4, 2004 Abstract Despite the

More information

Research on relationship between depth of fusion and process parameters in lowtemperature T. KIGURE*, Y.YAMAUCHI*, T. NIINO

Research on relationship between depth of fusion and process parameters in lowtemperature T. KIGURE*, Y.YAMAUCHI*, T. NIINO Solid Freeform Fabrication 218: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Research on relationship between depth

More information

Additive Manufacturing Technology November

Additive Manufacturing Technology November Additive Manufacturing Technology November 2012 www.3trpd.co.uk Phil Kilburn DMLS Sales Manager Agenda About 3T RPD Ltd Overview of Additive Manufacturing Manufacturing directly in metals Arcam - Electron

More information

Additive Manufacturing Challenges Ahead

Additive Manufacturing Challenges Ahead Additive Manufacturing Challenges Ahead Dr. S. SELVI Associate Professor, Dept. of Mechanical Engineering Institute of Road and Transport Technology, Erode 638 316. selvimech@yahoo.com Received 25, November

More information

STUDIES ON WETTABILITY OF STAINLESS STEEL 316L POWDER IN LASER MELTING PROCESS

STUDIES ON WETTABILITY OF STAINLESS STEEL 316L POWDER IN LASER MELTING PROCESS Journal of Engineering Science and Technology Vol. 9, No. 5 (2014) 533-540 School of Engineering, Taylor s University STUDIES ON WETTABILITY OF STAINLESS STEEL 316L POWDER IN LASER MELTING PROCESS KURIAN

More information

LASER SINTERING OF PA12/PA4,6 POLYMER COMPOSITES. D. Strobbe*, P. Van Puyvelde, J.-P. Kruth*, B. Van Hooreweder*,

LASER SINTERING OF PA12/PA4,6 POLYMER COMPOSITES. D. Strobbe*, P. Van Puyvelde, J.-P. Kruth*, B. Van Hooreweder*, Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper LASER SINTERING OF PA12/PA4,6 POLYMER

More information

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999]

Literature Review [P. Jacobs, 1992] Needs of Manufacturing Industry [X. Yan, P. Gu, 1996] Karapatics N., 1999] Literature Review Based on this knowledge the work of others relating to selective laser sintering (SLSLM) of metal is reviewed, leading to a statement of aims for this PhD project. Provides background

More information

3 Major 3d printing process and technology introduction

3 Major 3d printing process and technology introduction 3 Major 3d printing process and technology introduction Summary After several decades of development, Now there are a variety of 3D printing technology process, from the categories divided into extrusion

More information

The search for laser sinterable polymers: identification of key material parameters Leander Verbelen

The search for laser sinterable polymers: identification of key material parameters Leander Verbelen STREAM SBO POLYFORCE The search for laser sinterable polymers: identification of key material parameters Leander Verbelen Introduction Polyforce consortium machine development Jean-Pierre Kruth KU Leuven

More information

Additive Manufacturing Technology

Additive Manufacturing Technology Additive Manufacturing Technology ME 012193 Spring I 2018 By Associate Prof. Xiaoyong Tian Cell:13709114235 Email: leoxyt@mail.xjtu.edu.cn Lecture 02 Fundmental AM processes Interactions in AM processes

More information

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN

3D Printing Park Hong-Seok. Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN 3D Printing 2016. 05. 25 Park Hong-Seok Laboratory for Production Engineering School of Mechanical and Automotive Engineering University of ULSAN http://lpe.ulsan.ac.kr Why Do We Need 3d Printing? Complexity

More information

Material and Method Material

Material and Method Material Solid Freeform Fabrication 2016: Proceedings of the 26th 27th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Implementation of tophat profile

More information

Producing Metal Parts

Producing Metal Parts Producing Metal Parts CNC vs. Additive Manufacturing www.3dhubs.com METAL KIT 2 Introduction This Kit discusses how to select the right manufacturing process for metal parts by comparing CNC and Additive

More information

Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering

Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering Production and Characterization of Uniform and Graded Porous Polyamide Structures Using Selective Laser Sintering M. Erdal 1, S. Dag 2, Y. A. C. Jande 3 and C. M. Tekin 4 Department of Mechanical Engineering,

More information

Optimization of process parameters of PIM process using DOE technique Taguchi

Optimization of process parameters of PIM process using DOE technique Taguchi Optimization of process parameters of PIM process using DOE technique Taguchi 1 Sanjay Kumar Sharma, 2 Vikas Sharma, 3 Manish Dadhich, 4 Sheetal Kumar Jain1, 5 Dhirendra Agarwal 1,2,3,4 Design Engineer,

More information

Keywords Rapid Prototyping, Rapid Manufacture, Selective Laser Sintering, Post-processing, Material properties.

Keywords Rapid Prototyping, Rapid Manufacture, Selective Laser Sintering, Post-processing, Material properties. POST-PROCESSING OF DURAFORM PARTS FOR RAPID MANUFACTURE H. Zarringhalam and N. Hopkinson Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, UK Abstract In recent years

More information

An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture. Ivor Davies. RP&T Centre WMG, University of Warwick

An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture. Ivor Davies. RP&T Centre WMG, University of Warwick An Overview of Methods for Rapid Prototyping and Near Net Shape Manufacture Ivor Davies RP&T Centre WMG, University of Warwick 2 Contents Rapid Prototyping Basic Principle Data Requirements RP Processes

More information

EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW

EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW EFFECT OF DEVELOPED FLUX AND PROCESS PARAMETERS ON HARDNESS OF WELD IN SAW Gyanendra Singh 1, Vivek Mishra 2,Vijay Shankar Yadav 3 1 Assistant Professor Mechanical Engineeering, Invertis University, Bareilly

More information

PHYSICO-MECHANICAL PROPERTIES CHARACTERIZATION OF THE PARTS FROM PA 2200 MANUFACTURED BY SELECTIVE LASER SINTERING TECHNOLOGY

PHYSICO-MECHANICAL PROPERTIES CHARACTERIZATION OF THE PARTS FROM PA 2200 MANUFACTURED BY SELECTIVE LASER SINTERING TECHNOLOGY PHYSICO-MECHANICAL PROPERTIES CHARACTERIZATION OF THE PARTS FROM PA 2200 MANUFACTURED BY SELECTIVE LASER SINTERING TECHNOLOGY Borzan C.Ş.; Berce P.; Chezan H.; Sabău E.; Radu S.A.; Ridzon M.; borzan_cristina@ymail.com

More information

REVIEW ON IMPORTANCE OF ELECTRODES IN ELECTRICAL DISCHARGE MACHINING PROCESS

REVIEW ON IMPORTANCE OF ELECTRODES IN ELECTRICAL DISCHARGE MACHINING PROCESS REVIEW ON IMPORTANCE OF ELECTRODES IN ELECTRICAL DISCHARGE MACHINING PROCESS 1 1 Research Scholar, patel.nayan8888@gmail.com Mechanical, Sardar Vallabhbhai Patel Institute of Technology, Vasad, Gujarat,

More information

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process Supriya Shashikant Patil 1 Dr. Sachin K Patil 2 1 PG Student, Production Engineering Department, ajarambapu Institute of

More information

Fundamentals of Design for Welding. Kelly Bramble 32.1

Fundamentals of Design for Welding. Kelly Bramble 32.1 Fundamentals of Design for Welding Kelly Bramble 32.1 Fundamentals of Design for Welding Copyright, Engineers Edge, LLC www.engineersedge.com All rights reserved. No part of this training program may be

More information

Johnathon Wright Application Engineer Phoenix Analysis & Design Technologies www. PADTInc.com

Johnathon Wright Application Engineer Phoenix Analysis & Design Technologies www. PADTInc.com Johnathon Wright Application Engineer Phoenix Analysis & Design Technologies www. PADTInc.com PADT is an Engineering Services Company Three Business Groups Simulation Training, Sales & Services Product

More information

Boeing s Vision for Rapid Progress between Dream and Reality

Boeing s Vision for Rapid Progress between Dream and Reality Boeing s Vision for Rapid Progress between Dream and Reality Jeffrey DeGrange Senior Manager Advanced Manufacturing Research & Development St. Louis, Missouri USA Euro-uRapid 2006 Frankfurt, Germany November

More information

Freeform Fabrication of Aluminum Alloy Prototypes Using Laser Melting

Freeform Fabrication of Aluminum Alloy Prototypes Using Laser Melting Freeform Fabrication of Aluminum Alloy Prototypes Using Laser Melting Hideki KYOGOKU 1, Masashi HAGIWARA 2, and Toshifumi SHINNO 1 1 Faculty of Engineering, Kinki University Higashihiroshima, Hiroshima

More information

INFLUENCE OF CUTTING PARAMETERS ON SURFACE ROUGHNESS IN TURNING OF INCONEL 718 WITH COATED CARBIDE TOOLS

INFLUENCE OF CUTTING PARAMETERS ON SURFACE ROUGHNESS IN TURNING OF INCONEL 718 WITH COATED CARBIDE TOOLS I J M S E Serials Publications 8(1) 2017 : January-June pp. 71-75 INFLUENCE OF CUTTING PARAMETERS ON SURFACE ROUGHNESS IN TURNING OF INCONEL 718 WITH COATED CARBIDE TOOLS SUNIL KUMAR 1, DILBAG SINGH 2

More information

High Speed Sintering for 3D printing applications

High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications Neil Hopkinson, Adam Ellis, Adam Strevens, Manolis Papastavrou and Torben Lange, Xaar plc Introduction

More information

Comparison of Material Properties and Microstructure of Specimens Built Using the 3D Systems Vanguard HS and Vanguard HiQ+HS SLS Systems

Comparison of Material Properties and Microstructure of Specimens Built Using the 3D Systems Vanguard HS and Vanguard HiQ+HS SLS Systems University of Dayton ecommons Mechanical and Aerospace Engineering Faculty Publications Department of Mechanical and Aerospace Engineering -007 Comparison of Material Properties and Microstructure of Specimens

More information

AN INVESTIGATION OF MACHINABILITY & SURFACE INTEGRITY ON ALUMINIUM AND TITANIUM CARBIDE COMPOSITE MATERIAL USING ABRASIVE WATER JET MACHINING

AN INVESTIGATION OF MACHINABILITY & SURFACE INTEGRITY ON ALUMINIUM AND TITANIUM CARBIDE COMPOSITE MATERIAL USING ABRASIVE WATER JET MACHINING International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 10, October 2017, pp. 369 378, Article ID: IJMET_08_10_041 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=10

More information

INTERNATIONAL JOURNAL OF PRODUCTION TECHNOLOGY AND MANAGEMENT (IJPTM)

INTERNATIONAL JOURNAL OF PRODUCTION TECHNOLOGY AND MANAGEMENT (IJPTM) INTERNATIONAL JOURNAL OF PRODUCTION TECHNOLOGY AND MANAGEMENT (IJPTM) International Journal of Production Technology and Management (IJPTM), ISSN 0976 68 (Print), ISSN 0976 69 (Online) Volume, Issue, January

More information

H. Nouri*, B. Khoshnevis* *Department of Industrial and Systems Engineering, University of Southern California, 3710 Mcclintock Avenue, 90089

H. Nouri*, B. Khoshnevis* *Department of Industrial and Systems Engineering, University of Southern California, 3710 Mcclintock Avenue, 90089 Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Selective Separation Shaping of Polymeric Parts H.

More information

IMPROVED ENERGY DELIVERY FOR SELECTIVE LASER SINTERING Carl Deckard and David Miller Clemson University Clemson, SC ABSTRACT INTRODUCTION

IMPROVED ENERGY DELIVERY FOR SELECTIVE LASER SINTERING Carl Deckard and David Miller Clemson University Clemson, SC ABSTRACT INTRODUCTION IMPROVED ENERGY DELIVERY FOR SELECTIVE LASER SINTERING Carl Deckard and David Miller Clemson University Clemson, SC 29634 ABSTRACT Selective Laser Sintering (SLS) is a leadingtechnology in the important

More information

Additive Manufacturing or 3D prototyping. OO, November the 18 th

Additive Manufacturing or 3D prototyping. OO, November the 18 th Additive Manufacturing or 3D prototyping OO, November the 18 th Definition Additive Manufacturing is defined in ASTM F2792-12 as an assembly process of successive thin layer of materials by using numerical

More information

Experimental Investigations on Prototypes Produced From Selective Laser Sintering

Experimental Investigations on Prototypes Produced From Selective Laser Sintering Experimental Investigations on Prototypes Produced From Selective Laser Sintering V Sandeepa Assistant Professor Geethanjali College of Engineering and Technology. ABSTRACT To increase productivity, industry

More information

What is Rapid Prototyping?

What is Rapid Prototyping? Rapid Prototyping New Technologies for the Classroom What is Rapid Prototyping? A set of processes that allows a concept or idea to be turned into a three-dimensional physical object, usually in a matter

More information

INVESTIGATION ON THE EFFECT OF TENSILE STRENGTH ON FDM BUILD PARTS USING TAGUCHI-GREY RELATIONAL BASED MULTI-RESPONSE OPTIMIZATION

INVESTIGATION ON THE EFFECT OF TENSILE STRENGTH ON FDM BUILD PARTS USING TAGUCHI-GREY RELATIONAL BASED MULTI-RESPONSE OPTIMIZATION International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 12, December 2017, pp. 53 60, Article ID: IJMET_08_12_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=12

More information

APPLICATION OF RESPONSE SURFACE MODELING FOR DETERMINATION OF FLUX CONSUMPTION IN SUBMERGED ARC WELDING BY THE EFFECT OF VARIOUS WELDING PARAMETERS

APPLICATION OF RESPONSE SURFACE MODELING FOR DETERMINATION OF FLUX CONSUMPTION IN SUBMERGED ARC WELDING BY THE EFFECT OF VARIOUS WELDING PARAMETERS Int. J. Mech. Eng. & Rob. Res. 2012 Krishankant et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved APPLICATION OF RESPONSE SURFACE MODELING

More information

MULTI RESPONSE OPTIMIZATION OF PROCESS PARAMETERS FOR EDM OF COPPER AND HIGH SPEED STEEL

MULTI RESPONSE OPTIMIZATION OF PROCESS PARAMETERS FOR EDM OF COPPER AND HIGH SPEED STEEL MULTI RESPONSE OPTIMIZATION OF PROCESS PARAMETERS FOR EDM OF COPPER AND HIGH SPEED STEEL B Suneel Kumar* 1,P satish kumar 2 and Ch v s parameswra rao 3 1,2,3 PBR Visvodaya Institute of Technology and Science,

More information

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore 560 100 DEPARTMENT OF MECHANICAL ENGINEERING SCHEME AND SOLUTION - I ST INTERNAL TEST Subject :

More information

Metal Composite. Bourelll,3

Metal Composite. Bourelll,3 Metal Composite the SLS Process James Badrinarayan2, J. W. Barlow2, J. J. Beaman l, and 1. Department ofmechanical Engineering Department of Chemical Engineering 3. Center for Materials Science and Engineering

More information

4/28/2014. Sharif University of Technology. Session # 12. Instructor. Class time. Course evaluation. Department of Industrial Engineering

4/28/2014. Sharif University of Technology. Session # 12. Instructor. Class time. Course evaluation. Department of Industrial Engineering Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology Session # 12 Instructor Omid Fatahi Valilai, Ph.D. Industrial Engineering Department, Sharif University

More information

A hybrid response surface methodology and simulated annealing algorithm

A hybrid response surface methodology and simulated annealing algorithm 2011 International Conference on Computer Communication and Management Proc.of CSIT vol.5 (2011) (2011) IACSIT Press, Singapore A hybrid response surface methodology and simulated annealing algorithm (A

More information

Processing and Characterizations of Eucalyptus-PA12 Composite by Laser Sintering

Processing and Characterizations of Eucalyptus-PA12 Composite by Laser Sintering Processing and Characterizations of Eucalyptus-PA12 Composite by Laser Sintering Kaiyi Jiang 1,2,Yanling Guo 1*, David L. Bourell 2* 1. College of Mechatronics Engineering, Northeast Forestry University,

More information

STATISTICAL MODELING FOR ALUMINA LASER SINTERING

STATISTICAL MODELING FOR ALUMINA LASER SINTERING 111 Military Technical College Kobry El-Kobbah, Cairo, Egypt. 17 th International Conference on Applied Mechanics and Mechanical Engineering. STATISTICAL MODELING FOR ALUMINA LASER SINTERING E. M. Fayed

More information

TESTING POWDER DISTRIBUTION METHODS FOR SELECTIVE LASER SINTERING

TESTING POWDER DISTRIBUTION METHODS FOR SELECTIVE LASER SINTERING 11th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING 20-22 April 2016, Tallinn, Estonia TESTING POWDER DISTRIBUTION METHODS FOR SELECTIVE LASER SINTERING Campbell, K.; Nichols, B.; Söderholm,

More information

Impact of Laser Power and Build Orientation on the Mechanical Properties of Selectively Laser Sintered Parts

Impact of Laser Power and Build Orientation on the Mechanical Properties of Selectively Laser Sintered Parts Proceedings of The National Conference On Undergraduate Research (NCUR) 2013 University of Wisconsin La Crosse, WI April 11 13, 2013 Impact of Laser Power and Build Orientation on the Mechanical Properties

More information

Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN:

Andreas Gebhardt. Understanding Additive Manufacturing. Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN: Andreas Gebhardt Understanding Additive Manufacturing Rapid Prototyping - Rapid Tooling - Rapid Manufacturing ISBN: 978-3-446-42552-1 For further information and order see http://www.hanser.de/978-3-446-42552-1

More information

QUALITY IMPROVEMENT OF PLASTIC INJECTION MOLDED PRODUCT USING DOE AND TAGUCHI TECHNIQUES

QUALITY IMPROVEMENT OF PLASTIC INJECTION MOLDED PRODUCT USING DOE AND TAGUCHI TECHNIQUES QUALITY IMPROVEMENT OF PLASTIC INJECTION MOLDED PRODUCT USING DOE AND TAGUCHI TECHNIQUES Varun Sharma 1,Ashish Goyal 1,Sanjay Kumar Sharma 2, Vikas Sharma 2 1 Manufacturing Engineering Department, Manipal

More information

Opportunities, Challenges and Applications of Advanced Manufacturing ( Additive manufacturing) and Medical Devices Technologies

Opportunities, Challenges and Applications of Advanced Manufacturing ( Additive manufacturing) and Medical Devices Technologies Opportunities, Challenges and Applications of Advanced Manufacturing ( Additive manufacturing) and Medical Devices Technologies presented by Yeong Wai Yee Assistant Professor School of Mechanical and Aerospace

More information

Additive Manufacturing in the Nuclear Industry

Additive Manufacturing in the Nuclear Industry Additive Manufacturing in the Nuclear Industry Greg Hersak Mechanical Equipment Development May 4, 2018-1- Additive Manufacturing (AM) in the Nuclear Industry Agenda Overview of AM technologies Challenges

More information

CHAPTER - 1 INTRODUCTION

CHAPTER - 1 INTRODUCTION CHAPTER - 1 INTRODUCTION 1. 1.1 Polymer Matrix Composites Composite materials are formed by combining two or more materials that have different properties. The constituent materials work together to give

More information

FUZZY MODELING OF RECAST LAYER FORMATION IN LASER TREPAN DRILLING OF SUPERALLOY SHEET

FUZZY MODELING OF RECAST LAYER FORMATION IN LASER TREPAN DRILLING OF SUPERALLOY SHEET INTERNATIONAL JOURNAL OF MANUFACTURING TECHNOLOGY AND INDUSTRIAL ENGINEERING (IJMTIE) Vol. 2, No. 2, July-December 2011, pp. 55-59 FUZZY MODELING OF RECAST LAYER FORMATION IN LASER TREPAN DRILLING OF SUPERALLOY

More information

EFFECT OF SINTERING PARAMETERS AND FLOW AGENT ON THE MECHANICAL PROPERTIES OF HIGH SPEED SINTERED ELASTOMER. Farhana Norazman and Neil Hopkinson

EFFECT OF SINTERING PARAMETERS AND FLOW AGENT ON THE MECHANICAL PROPERTIES OF HIGH SPEED SINTERED ELASTOMER. Farhana Norazman and Neil Hopkinson EFFECT OF SINTERING PARAMETERS AND FLOW AGENT ON THE MECHANICAL PROPERTIES OF HIGH SPEED SINTERED ELASTOMER Farhana Norazman and Neil Hopkinson Department of Mechanical Engineering, The University of Sheffield,

More information

RICOH AM S5500P. 15 m/sec. RICOH Additive Manufacturing Machine. Selective Laser Sintering. Materials. Scan Speed. Layer Thickness.

RICOH AM S5500P. 15 m/sec. RICOH Additive Manufacturing Machine. Selective Laser Sintering. Materials. Scan Speed. Layer Thickness. RICOH Additive Manufacturing Machine RICOH AM S5500P Selective Laser Sintering Materials PA 12 PA 11 PA 6 PP Scan Speed 15 m/sec Layer Thickness Build Volume 0.08 0.20mm (W)550mm (D)550mm (H)500mm Polymer

More information

RICOH AM S5500P. 15 m/sec. RICOH Additive Manufacturing Machine. Selective Laser Sintering. Materials. Scan Speed. Layer Thickness.

RICOH AM S5500P. 15 m/sec. RICOH Additive Manufacturing Machine. Selective Laser Sintering. Materials. Scan Speed. Layer Thickness. RICOH Additive Manufacturing Machine RICOH AM S5500P Selective Laser Sintering Materials PA 12 PA 11 PA 6 PP Scan Speed 15 m/sec Layer Thickness Build Volume 0.08 0.20mm (W)550mm (D)550mm (H)500mm Polymer

More information

SYSTEMATIC FORM DEVIATIONS OF ADDITIVE MANUFACTURED PARTS - METHODS OF THEIR IDENTIFICATION AND CORRECTION

SYSTEMATIC FORM DEVIATIONS OF ADDITIVE MANUFACTURED PARTS - METHODS OF THEIR IDENTIFICATION AND CORRECTION SYSTEMATIC FORM DEVIATIONS OF ADDITIVE MANUFACTURED PARTS - METHODS OF THEIR IDENTIFICATION AND CORRECTION Bogdan GALOVSKYI 1, Matthias FLESSNER 2, Andreas LODERER 2 and Tino HAUSOTTE 2 1 Institute of

More information

FINAL PROJECT REPORT FORM

FINAL PROJECT REPORT FORM FINAL PROJECT REPORT FORM IMCRC Project number 251 Budget code J11774 INVESTIGATOR DETAILS Principal Investigator Co-investigator 1 Co-investigator 2 Title Dr Mr Forename(s) Neil Barry Surname Hopkinson

More information

Chapter 14 Synthesis, Fabrication, and Processing of Materials

Chapter 14 Synthesis, Fabrication, and Processing of Materials Chapter 14 Synthesis, Fabrication, and Processing of Materials Concept Check 14.1 Question: (a) Cite two advantages of powder metallurgy over casting. (b) Cite two disadvantages. Answer: (a) Advantages

More information

Introduction. Keywords Lasers, Sintering, Coatings technology, Metals. Paper type Research paper

Introduction. Keywords Lasers, Sintering, Coatings technology, Metals. Paper type Research paper Preparation and selective laser sintering of nylon-coated metal powders for the indirect SLS process State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science

More information

Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014

Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 Powder Metallurgy Bachelor of Industrial Technology Management with Honours Semester I Session 2013/2014 TOPIC OUTLINE What Is Powder Metallurgy (P.M)? Powder Metallurgy Processes Blending And Mixing Compaction

More information

Selective Inhibition Sintering: Advancements & Systematic Research approaches for the process development

Selective Inhibition Sintering: Advancements & Systematic Research approaches for the process development Selective Inhibition Sintering: Advancements & Systematic approaches for the process development Sagar M Baligidad 1, K Elangovan 2 and S Gopi 3 1 scholar, Visvesvaraya Technological University, Belgaum,

More information

Improvement of recycle rate in laser sintering by low temperature process T. KIGURE*, T. NIINO

Improvement of recycle rate in laser sintering by low temperature process T. KIGURE*, T. NIINO Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Improvement of recycle rate in laser

More information

The University of Texas at Austin Mechanical Engineering Department, Cockrell School of Engineering Austin, TX

The University of Texas at Austin Mechanical Engineering Department, Cockrell School of Engineering Austin, TX In-Situ Thermal Image Correlation with Mechanical Properties of Nylon-12 in SLS Walker Wroe, Jessica Gladstone, Timothy Phillips, Austin McElroy, Scott Fish, Joseph Beaman The University of Texas at Austin

More information

How properties of thermoplastics are affected by processing.

How properties of thermoplastics are affected by processing. How properties of thermoplastics are affected by processing. Nick Barron Global Industry Manager Oil & Gas, Röchling nbarron@sustaplast.de 2nd June 2016 Material processing and its effects - NKF 1 Presentation

More information

A METHOD TO ELIMINATE ANCHORS/SUPPORTS FROM DIRECTLY LASER MELTED METAL POWDER BED PROCESSES. K.Mumtaz*, P.Vora and N.Hopkinson*

A METHOD TO ELIMINATE ANCHORS/SUPPORTS FROM DIRECTLY LASER MELTED METAL POWDER BED PROCESSES. K.Mumtaz*, P.Vora and N.Hopkinson* A METHOD TO ELIMINATE ANCHORS/SUPPORTS FROM DIRECTLY LASER MELTED METAL POWDER BED PROCESSES K.Mumtaz*, P.Vora and N.Hopkinson* Additive Manufacturing Research Group, Wolfson School of Mechanical Engineering,

More information

INFLUENCE OF MOLD PROPERTIES ON THE QUALITY OF INJECTION MOLDED PARTS

INFLUENCE OF MOLD PROPERTIES ON THE QUALITY OF INJECTION MOLDED PARTS PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 49, NO. 2, PP. 115 122 (2005) INFLUENCE OF MOLD PROPERTIES ON THE QUALITY OF INJECTION MOLDED PARTS József Gábor KOVÁCS and Tibor BERCSEY Faculty of Mechanical

More information

PROCESS OPTIMIZATION FOR THE RAPID FABRICATION OF CELLULOSE ACETATE SCAFFOLDS BY SELECTIVE LASER SINTERING

PROCESS OPTIMIZATION FOR THE RAPID FABRICATION OF CELLULOSE ACETATE SCAFFOLDS BY SELECTIVE LASER SINTERING PROCESS OPTIMIZATION FOR THE RAPID FABRICATION OF CELLULOSE ACETATE SCAFFOLDS BY SELECTIVE LASER SINTERING Gean V. Salmoria 1, Priscila Klauss 1, Janaina L. Leite 1, Rodrigo A. Paggi 1, Alexandre Lago

More information

PROCESSING AND MATERIALS EFFICIENCY IN FUSED DEPOSITION MODELING: A COMPARATIVE STUDY ON PARTS MAKING USING ABS AND PLA POLYMERS

PROCESSING AND MATERIALS EFFICIENCY IN FUSED DEPOSITION MODELING: A COMPARATIVE STUDY ON PARTS MAKING USING ABS AND PLA POLYMERS PROCESSING AND MATERIALS EFFICIENCY IN FUSED DEPOSITION MODELING: A COMPARATIVE STUDY ON PARTS MAKING USING ABS AND PLA POLYMERS Yopi Yusuf Tanoto 1, Juliana Anggono 1,2 and Wesley Budiman 1,2 1 Department

More information

ABRASIVE WEAR PROPERTIES OF GRAPHITE FILLED PA6 POLYMER COMPOSITES

ABRASIVE WEAR PROPERTIES OF GRAPHITE FILLED PA6 POLYMER COMPOSITES Int. J. Mech. Eng. & Rob. Res. 2012 Ch Lakshmi Srinivas et al., 2012 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 1, No. 3, October 2012 2012 IJMERR. All Rights Reserved ABRASIVE WEAR PROPERTIES OF

More information

Models available: Markforged Onyx One Markforged X3 Many FDM models from numerous OEM s worldwide

Models available: Markforged Onyx One Markforged X3 Many FDM models from numerous OEM s worldwide Markforged Onyx One Markforged X3 Many FDM models from numerous OEM s worldwide FFF uses a string of solid material (filament), pushing it through a heated nozzle and melting it in the process. The printer

More information

Prediction and Control of Cutting Parameters for Machining Al-Sic MMC Material by Wire Cut EDM Process

Prediction and Control of Cutting Parameters for Machining Al-Sic MMC Material by Wire Cut EDM Process RESEARCH ARTICLE OPEN ACCESS Prediction and Control of Cutting Parameters for Machining Al-Sic MMC Material by Wire Cut EDM Process C.V. Sriram [1], Dr Ch.V.S.Parameswara Rao [2] Research Scholar [1],

More information

Chapter 7 Evaluation of Injection-Molding Phenomena Part 1: Measurement of temperature distribution in the molded materials

Chapter 7 Evaluation of Injection-Molding Phenomena Part 1: Measurement of temperature distribution in the molded materials Chapter 7 Evaluation of Injection-Molding Phenomena Part 1: Measurement of temperature distribution in the molded materials 1. Evaluation of Injection-Molding Phenomena It is effective to evaluate the

More information

OPTIMIZATION OF CASTING PARAMETERS FOR CASTING OF AL/RHA/RM HYBRID COMPOSITES USING TAGUCHI METHOD

OPTIMIZATION OF CASTING PARAMETERS FOR CASTING OF AL/RHA/RM HYBRID COMPOSITES USING TAGUCHI METHOD OPTIMIZATION OF CASTING PARAMETERS FOR CASTING OF AL/RHA/RM HYBRID COMPOSITES USING TAGUCHI METHOD A. PAVAN KUMAR #1, B. JYOTHU NAIK *2, CH. VENKATA RAO #3, SADINENI RAMA RAO *4 1 M. Tech Student, Mechanical

More information

Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers

Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers Lasers in Manufacturing Conference 2015 Influence of temperature gradients on the part properties for the simultaneous laser beam melting of polymers Tobias Laumer a-c, Thomas Stichel a,b, Michael Schmidt

More information

NEW PRODUCT DEVELOPMENT BY RAPID PROTOTYPING

NEW PRODUCT DEVELOPMENT BY RAPID PROTOTYPING Proceedings of the National Conference on Trends and Advances in Mechanical Engineering, YMCA Institute of Engineering, Faridabad, Haryana.., Dec 9-10, 2006. NEW PRODUCT DEVELOPMENT BY RAPID PROTOTYPING

More information

RAPID PROTOTYPING STUDY NO.1 INTRODUCTION TO RPT

RAPID PROTOTYPING STUDY NO.1 INTRODUCTION TO RPT INTRODUCTION TO RPT STUDY NO.1 RAPID PROTOTYPING Rapid prototyping (RP) is a technology wherein the physical modeling of a design is done using a specialized machining technology. The systems used in rapid

More information

LASIMM - AM production of large scale engineering structures

LASIMM - AM production of large scale engineering structures LASIMM - AM production of large scale engineering structures E. Assunção 1, L. Quintino 1, F. Martina 2, S. Williams 2, I. Pires 3, A. Lopez 3 1 EWF European Federation for Welding, Joining and Cutting

More information

Optimization of Notch Parameter on Fracture Toughness of Natural Fiber Reinforced Composites Using Taguchi Method

Optimization of Notch Parameter on Fracture Toughness of Natural Fiber Reinforced Composites Using Taguchi Method Journal of Materials Science & Surface Engineering Vol. 3 (), 015, pp 44-48 Contents lists available at http://www.jmsse.org/ Journal of Materials Science & Surface Engineering Optimization of Notch Parameter

More information

ADDITIVE MANUFACTURING CERTIFICATE PROGRAM BODY OF KNOWLEDGE

ADDITIVE MANUFACTURING CERTIFICATE PROGRAM BODY OF KNOWLEDGE ADDITIVE MANUFACTURING CERTIFICATE PROGRAM BODY OF KNOWLEDGE RUBRIC 1.0 OVERVIEW of AM 1.1 Definition of AM 1.1.1 Evolution of AM definitions 1.1.2 Current ASTM 1.2 Key Elements of AM 1.2.1 Sources of

More information

Use of an Alternative Ink in the High Speed Sintering Process

Use of an Alternative Ink in the High Speed Sintering Process Use of an Alternative Ink in the High Speed Sintering Process Luke Fox, Adam Ellis & Neil Hopkinson Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD, UK Abstract REVIEWED

More information

A = 1.06 Jlm Frequency = 40 khz Incident power= W Scan speeds = 2 cmls - 6 cmls Beam diameter =0.5 mm Substrate temperature = 21 0 C to 6QoC

A = 1.06 Jlm Frequency = 40 khz Incident power= W Scan speeds = 2 cmls - 6 cmls Beam diameter =0.5 mm Substrate temperature = 21 0 C to 6QoC Uday Lakshminarayan 1, Stan Ogrydiziak2 and H.L. Marcus 1,2 lcenter for Materials Science and Engineering, 2Dept. ofmechanical Engineering, University of Texas at Austin, Austin, TX 78712. ABSTRACT This

More information

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING Bo Cheng and Kevin Chou Mechanical Engineering Department The University of Alabama Tuscaloosa, AL 35487 Accepted August

More information

What exactly is 3D printing, the new manufacturing

What exactly is 3D printing, the new manufacturing pubs.acs.org/macroletters 3D Printing Gets a Boost and Opportunities with Polymer Materials Manfred Hofmann* 3D Systems SA, Rte de l Ancienne Papeterie, CH-1723 Marly, Switzerland Downloaded via 148.251.232.83

More information

What exactly is 3D printing, the new manufacturing

What exactly is 3D printing, the new manufacturing pubs.acs.org/macroletters 3D Printing Gets a Boost and Opportunities with Polymer Materials Manfred Hofmann* 3D Systems SA, Rte de l Ancienne Papeterie, CH-1723 Marly, Switzerland Downloaded via 148.251.232.83

More information