Study on Mechanical Properties of Aluminum Alloy AA 6351-T6 using TIG Welding

Size: px
Start display at page:

Download "Study on Mechanical Properties of Aluminum Alloy AA 6351-T6 using TIG Welding"

Transcription

1 ISSN (ONLINE): 2-78, ISSN (PRINT): Volume-6, Issue-2, March-April 16 International Journal of Engineering and Management Research Page Number: Study on Mechanical Properties of Aluminum Alloy AA 61-T6 using TIG Welding Kumar Gaurav 1, Sunil Kumar 2 1 Research Scholar, Department of Mechanical Engineering, PPIMT, HISAR, (Haryana), INDIA 2 Assistant Professor in Department of Mechanical Engineering, PPIMT, HISAR, (Haryana), INDIA ABSTRACT Preparations of AA61 T6 for nine specimens were cut of dimension 1x1x6 with the use of cutter from nine welded specimens. That specimen has weld bead at its centre and HAZ zone. The specimens were subjected to coarse grinding on bench grinder. Coarse grinding is required to planarize the specimen. Then the specimens were filed using hand file in one direction to remove burs and pre preparation for polishing. Specimens were polished initially on emery paper of 6 grit grade for rough polishing then on 1 grit grade for fine polishing followed with grit grade emery paper and then grit grade for highly fine polishing. After pre polishing specimens were polished on satin cloth for smooth and shiny surface finish on motor driven polishing disk. Fine polishing was done in a cloth polishing mill using diamond paste as polishing agent. The purpose of final polishing is to remove only surface damage. If the damage from these steps is not complete, the rough polishing step should be repeated. Finally the samples were etched for microstructure study. Keywords--- Aluminum Alloy Aa 61-T6, Mechanical Properties, Tig Welding I. INTRODUCTION Welding is a process for joining different materials. The large bulk materials that are metals, their alloys and other materials such as thermoplastics are joined by welding process. Welding process may be defined as join of similar and dissimilar materials by means of heat. Pressure may be also employed in many processes. There are various ways of classifying the welding and allied processes on the basis of Source of heat, i.e., flame arc, etc. Type of interaction i.e. liquid/liquid (fusion welding) or solid/solid (solid state welding). In general various welding and allied processes are classified as follows: 1. Gas welding (a) Air-acetylene welding, (b) oxy-acetylene welding, (c) oxy-hydrogen welding (d) pressure gas welding 2. Arc welding (a) Carbon Arc welding, (b) shielded metal Arc welding (c) Flux cord Arc welding (d) submerged Arc welding (e) TIG (GTAW) welding (f) MIG (GMAW) welding (g) plasma Arc welding, (h Electro slag welding and electro gas welding (i) stud Arc welding 3. Resistance welding (a) Spot welding, (b) seam welding, (c) projection welding, (d) resistance Butt welding, (d) flash butt welding (f) percussion welding, (g) High frequency Resistance welding 4. Solid state welding (a) Cold welding, (b) diffusion welding, (c) Explosive welding, (d) forge welding,(e) friction welding, (f) hot pressure welding,(g) roll welding(h) ultrasonic welding. Thermo chemical welding process (a) Thermit chemical welding, (b) atomic hydrogen welding 6. Radiant energy welding process (a) Electron beam welding (b) laser beam welding Tungsten inert-gas welding, as the name suggests, is a process in which the source of heat is an arc formed between a non-consumable tungsten electrode and the work piece, and the arc and the molten puddle are protected from atmospheric contamination (i.e. oxygen and nitrogen) with a gaseous shield of inert-gas such as argon, helium or argon-helium mixture. Filler metal, if required, is added externally to the arc in the form of bare wire by the welder. It is often referred to in abbreviated form as TIG welding some authors prefer to call it inert gas tungsten arc welding. This is a transformer, a rectifier or a motor generator set, depending on the application. The 818 Copyright 16. Vandana Publications. All Rights Reserved.

2 ISSN (ONLINE): 2-78, ISSN (PRINT): power source characteristic is essentially drooping type, which means that power sources designed for and used in manual metal arc welding A (MMAW) can be directly used for TIG welding. For better arc stability and a smooth arc, the OCV of the power source should be between 7 and 8 V (RMS). Argon is monatomic gas (i.e. its molecule consists of one atom instead of two atoms in the case of common gases like oxygen, nitrogen, chlorine, etc.) it is extracted from the atmosphere by liquefaction of air and refined to 99.9% purity. It is supplied as compressed gas in cylinders. II. LITERATURE REVIEW A.F. Norman, V. Drazhner, P.B. Prangnell (1999) studied on Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an AI-Cu Mg-Mn alloy. The weld metal microstructures of autogenours TIG welds have been investigated for a welding condition using an AI-Cu-Mg-Mn alloy. It was found that a combination of high welding speeds and low power densities porvied the thermal conditions required for the nucleation and growth of equiaxed grains in the weld pool, providing heterogeneous nucleation sites are available. The most likely origin of the nucleants is from a combination of dendrite fragments and TiB2 particles that survive in the weld pool. The finest microstructure was observed in the centre of the weld pool. The finest microstructure was observed in the centre of the weld and in attributed to the higher cooling rates which operate along the weld centerline. Composition profiles across the dendrite side arms were measured in the TEM and were found to follow a scheil type segregation behavior where there is negligible back diffusion in the solid. The measured core concentration of the dendrite side arms was found to rise with increasing welding speed and was attributed to the formation of significant under cooling ahead of the primary dendrite tip, which enriched the liquid surrounding the dendrite side arms. The sheet thickness was 1.6 mm and simple butt geometry of AA 24 was used for each experiment. The experiments were designed such that, as the welding speed was increased, the welding current was also increased to just maintain full peroration of the weld. M. Awang studied on The effects of process parameters on steel welding response in curved plates. The arc welding process was simulated using finite Element Method (FEEM) Program ANSYS. The simulations were carried out using a two step process; nolinear heat transfer that produces the dynamic temperature distribution throughout the weld seam and the plates, and the elasto-plastic analysis, which yields residual stresses, strains, and displacement. The birth and death element feature was used in the finite element model to simulate the welding process. The responses along several longitudinal cross sections were obtained after the plate cooled down to room temperature. The result shows that all parameters, except for the gap between the plates have a significant effect on the responses. Relationships between the parameters and the responses have been drawn based on the simulation result. III. MATERIALS USED Chemical composition of the base metals, filer metal and shielding gas used in the experiments is given below. These materials were selected because of their availability. And wide usage in the industry 3.1Base Metals Probably the most important factor relating to the weldability of aluminium alloys is their chemical composition. The term weldability has no universally accepted meaning and the interpretation place upon term varies widely according to individual viewpoint. The American welding society defines weldability as the capacity of a metal to be welded under the fabrication conditions imposed, into a specific, suitably designed structure, and to perform satisfactorily in the intended service. During the experiments AA 61-T6 plates used. AA 61-T6 aluminium ally with the dimensions of 76 mm (1) x 4 mm (w) x 6 mm (t) was selected to represent the aluminium alloy. It contains silicon, magnesium and manganese as main alloying element. The chemical composition of AA 61- T6 aluminium alloy is given at table Table:3.1 Chemical composition of base metal. Copper.34 Magnesium.896 Silicon.4 Iron.479 Manganese.6 Nickel.6 Zinc. Lead. Tin.22 titanium Copyright 16. Vandana Publications. All Rights Reserved.

3 ISSN (ONLINE): 2-78, ISSN (PRINT): chromium. Aluminium The weldability of alulminium alloy, discounting such factors as thickness and joint geometry, is a function of the silicon, magnesium and manganese contents. All carbon steels can be welded by metal-arc welding. Where the silicon content does not exceed.% and magnesium does not exceed.896 depending on the thickness of the material, this material can be welded by TIG welding which will assure proper penetration and fusion. Filler Metal The majority of arc welding is done with the addition of a filler metal that plays a major role in determining the compostion and microstructure of the weld. The consumable electrode wire was selected based on properties and characteristics of the base material, weld dimensions. AA 414 wire electrode having 2.8 mm diameter was usem as filer metal. The following table entails the chemical compostion of the filer material according to AWS used in TIG: Weld,metal Chemistry (%) Table:3.2 Chemical composition of filler material Si Fe Cu Mn Mg Zn Ti Al max.3max.max.max.1max.max 9max Shielding gas The main function of the shielding gas is to displace the air in the weld zone and thus prevent contamination of the weld metal by nitrogen, oxygen and water vapour the selection of the best shielding gas is based on consideration of the materials to be welded and type of metal transfer that will be used. For the experiments, argon is used because it is only available in India and also produces deeper penetration. Welding condtions and process paramenters Gas tungsten Arc welding is governed by a set of factors and condtions such as amount of current, welding speed, polarity, etc which are called as process parameters. The optimum process parameters generally maintained during the welding processes for aluminium alloy are given in table. Table: 3.3 Welding conditions and process parameters Parameters TIG Joints Butt Joint (double V-groove) Polarity DCRP Arc Voltage Constant Welding speed Constant Welding current(amp) 8,1,1 Electrode Diameter()mm 2.8 Shielding Gas Argon Gas flow rate (it/min) 1,3, IV. EXPERIMENTAL PROCEDURE Aluminium alloy plates (aa 61-T6 )with the dimesnsions 76 mm (1)x 4 mm (w)x 6 mm(t)were prepared with double V butt joint 4 deg groove angle as welding current and gas flow rate are taken as process variables. The welding current values were taken as 8, 1 and 1 ampere and the gas flow rate values were 1,3 and lt/min. Then plates were welded through TIG welding by using 2.8 mm AA443 wire electrode and Ar gas. Nine experiments were performed. Table:4.1 Different conditions for welding Specimen No. Welding Current (amp) Gas flow rate(lt/min) 8 Copyright 16. Vandana Publications. All Rights Reserved.

4 ISSN (ONLINE): 2-78, ISSN (PRINT): V. RESULT AND DISCUSSION The hardness of base metal (unwelded parent metal) in its initial condition was 26 HRB. Table represents the comparison between the hardness of all the specimens at all measuring locations. Rockwell hardness with respect to welding parameters Specimen N Table:.1 (HRB) at different Location points 1 2 3(HAZ) 4(WB) HAZ From the table, I found that hardness of Heat affected Zone (location-3&) is greater than weld bead (location-4) of Location 1,2,6 and 7 it is less than weld bead. increase from weld centre to Heat Affected Zone and further it decrease when move to base metal side. It is clean for the Table.1 that the specimen n.4 has the greater hardness at weld bead among all the specimen and the specimen no 9 has the lowest hardness at weld bead. This shows that at 8 amp current and 1lt/mn gas flow rate, the highest hardness at weld bead were obtained and at 1 amp current and lt/min gas flow rate, the lowest hardness at weld bead were obtained. Different graphs show variation in hardness when move to base metal from weld centre in a TIG welded butt joint of AA61 T6 aluminium alloy. 821 Copyright 16. Vandana Publications. All Rights Reserved.

5 ISSN (ONLINE): 2-78, ISSN (PRINT): Fig.1 variation of specimen no Fig.2 variation of specimen no Copyright 16. Vandana Publications. All Rights Reserved.

6 ISSN (ONLINE): 2-78, ISSN (PRINT): Fig.3 variation of specimen no Fig.4 variation of specimen no Copyright 16. Vandana Publications. All Rights Reserved.

7 ISSN (ONLINE): 2-78, ISSN (PRINT): Fig. variation of specimen no Fig.6 variation of specimen no Copyright 16. Vandana Publications. All Rights Reserved.

8 ISSN (ONLINE): 2-78, ISSN (PRINT): Fig.7 variation of specimen no Fig.8 variation of specimen no.8 8 Copyright 16. Vandana Publications. All Rights Reserved.

9 ISSN (ONLINE): 2-78, ISSN (PRINT): Fig.9 variation of specimen no.9 VI. CONCLUSION In the present study, hardness, impact energy and microstructure of AA61 t6aluminium alloy plates welded by TIG were determined and observed. From this investigation, the following important conclusions have been derived: 1. is lower in the base metal (WM) region compared to the HAZ and weld bead regions. The hardness increase after welding and the highest hardness obtained at 1 amp and lt/min parameters. Among the entire nine specimen, the specimen no has highest hardness and specimen no 9 has lowest hardness. 2. The specimen no 6 with 1 ampere current and it/min gas flow rate showed the highest fracture energy in the impact test. The specimen no 9 with 1 ampere and lt/min shows the lowest fracture energy in the impact test. 3. As the specimen no shows the highest hardness among all the other specimen and that was only related to the microstructure. The microstructure shows the small and fine grains which means it increase the hardness. Decreasing size of the grains improve the strength and ductility of aluminium alloy. REFERENCES [1] Norman, A.F., V. Drazhner and P.B. Prangnell, Effect of welding parameters on the solidification microstructure of autogenous TIG welds in an Al-Cu-Mg-Mn alloy, Materials science and Engineering: A9.1 (1999): 3-64 [2] Chen, Bai-Qiao. Prediction of Heating Induced Temperature Fields and Distortions in steel plates. (11) [3] Manti Rajesh, and D.K. Dwivedi. Microstructure of Al-Mg-Si weld joints produced by pulse TIG welding. Material and manufacturing process 22.1 (7): [4] Preston, R.V., et al. physically based constitutive modeling of residual strees development in welding of aluminium alloy 24. Acta Materialia 2.17 (4): [] Miyasaka, F.,Y.Yamane, and Y. Ohji. Development of Circumferential TIG Welding & joining 1. (): [6] Senthil Kumar, T.,V. Balasubramanian, and M.Y. Sanavullah. Influence of Pused current tungsten intert gas welding parameters on the tensile properties of AA 661 aluminium alloy, Materials & design 28.7 (7): [7] Manti Rajesh, D.K. Dwivedi, and A. Agarwal. Microstructure and hardness of Al-Mg-Si weldments produced by pulse GTA welding. The International Journal of advanced Manufacturing Technology 36.3 (8): [8] Dutta, Parikshit, and Dilip Kumar Prathihar. Modeling of TIG welding process Using conventional regression analysis and neural network-based approaches. Journal of material processing technology (7) Copyright 16. Vandana Publications. All Rights Reserved.

WELDING TECHNOLOGY AND WELDING INSPECTION

WELDING TECHNOLOGY AND WELDING INSPECTION WELDING TECHNOLOGY AND WELDING INSPECTION PRESENTED BY: GOPAL KUMAR CHOUDHARY SVL ENGINEERING SERVICES CHENNAI CONTENTS: DEFINATION TYPES OF WELDING ELECTRODE GEOMETRY EQUIPMENT QUALITY PROCESS SAFETY

More information

Effect of Pulse Parameters on Bead Geometry of Aluminium Alloy AA6063 using Pulse TIG Welding

Effect of Pulse Parameters on Bead Geometry of Aluminium Alloy AA6063 using Pulse TIG Welding Effect of Pulse Parameters on Bead Geometry of Aluminium Alloy AA6063 using Pulse TIG Welding Digraj 1, Kulwant Singh 2, Sumit Kumar 3 1, 2, 3 Department of Mechanical Engineering, SLIET Longowal, Punjab,

More information

Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 03 Lecture - 02 Welding Process Classification Welcome

More information

EFFECTS OF FILLER WIRE AND CURRENT ON THE JOINING CHARACTERISTICS OF Al Li Cu ALLOY USING TIG WELDING

EFFECTS OF FILLER WIRE AND CURRENT ON THE JOINING CHARACTERISTICS OF Al Li Cu ALLOY USING TIG WELDING EFFECTS OF FILLER WIRE AND CURRENT ON THE JOINING CHARACTERISTICS OF Al Li Cu ALLOY USING TIG WELDING A. Chennakesava Reddy Professor & Head Department of Mechanical Engineering, JNTU College of Engineering

More information

VARIOUS EFFECTS OF WELDING PARAMETERS ON TIG WELDING OF 2024-T3 CLAD ALUMINUM ALLOY PLATE

VARIOUS EFFECTS OF WELDING PARAMETERS ON TIG WELDING OF 2024-T3 CLAD ALUMINUM ALLOY PLATE VARIOUS EFFECTS OF WELDING PARAMETERS ON TIG WELDING OF 2024-T3 CLAD ALUMINUM ALLOY PLATE M. RAJKIRAN M.Tech, Production Technology, Sree Vaanmayi Istitute of Engineering, E-mail:rajkiran.dme@gmail.com

More information

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Welding Engineering Dr. D. K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 1 Introduction Lecture - 2 Classification of Welding Processes -

More information

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding

Welding Processes. Consumable Electrode. Non-Consumable Electrode. High Energy Beam. Fusion Welding Processes. SMAW Shielded Metal Arc Welding Fusion Consumable Electrode SMAW Shielded Metal Arc Welding GMAW Gas Metal Arc Welding SAW Submerged Arc Welding Non-Consumable Electrode GTAW Gas Tungsten Arc Welding PAW Plasma Arc Welding High Energy

More information

Experimental Investigation of Various Welding Parameters on TIG Welding of Aluminium Alloy-2014

Experimental Investigation of Various Welding Parameters on TIG Welding of Aluminium Alloy-2014 IJIRST International Journal for Innovative Research in Science & Technology Volume 4 Issue 2 July 2017 ISSN (online): 2349-6010 Experimental Investigation of Various Welding Parameters on TIG Welding

More information

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA

Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology. Pantnagar (GBPUAT) Uttarakhand,INDIA Microstructure and Mechanical Property Changes during TIG elding of 31-2 (IS-737) Aluminium Alloy Rajiv Suman 1, Dr. P.C.Gope 2 1 Research Scholar, Department of mechanical Engineering, College of Technology.

More information

Comparison of CO 2 and Arc Welding using Butt Joint

Comparison of CO 2 and Arc Welding using Butt Joint Comparison of CO 2 and Arc Welding using Butt Joint Suyog Gadewar 1 and Om Dhamnikar 2 1,2 (Department of Mechanical Engineering, Babasaheb Naik College of Engineering, Pusad, Maharashtra, India) Abstract:

More information

WELDING Topic and Contents Hours Marks

WELDING Topic and Contents Hours Marks Topic and Contents Hours Marks 3.1 Introduction 04 Marks Classification and selection of welding process. Working principle of Gas welding and types of flames. 3.2 Arc welding process 08 Marks Metal arc,

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK VII SEMESTER ME 6008-WELDING TECHNOLOGY Regulation 2013 Academic Year 2017 18 Prepared

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

Lecture 29 DESIGN OF WELDED JOINTS VII

Lecture 29 DESIGN OF WELDED JOINTS VII Lecture 29 DESIGN OF WELDED JOINTS VII This chapter presents the influence of various welding related parameters on fatigue behavior of weld joints. Attempts have been made to explain how (residual stress,

More information

TO ANALYSIS THE EFFECT OF PARAMETERS ON ALUMINIUM ALLOY 6063-T6 IN TIG WELDING

TO ANALYSIS THE EFFECT OF PARAMETERS ON ALUMINIUM ALLOY 6063-T6 IN TIG WELDING TO ANALYSIS THE EFFECT OF PARAMETERS ON ALUMINIUM ALLOY 6063-T6 IN TIG WELDING GAURAV PURI 1 AND BALJINDER SINGH 2 1,2 Department of Mechanical Engg, G.G.S.C.M.T Kharar Abstract Aluminium and its alloys

More information

Structure of Metals 1

Structure of Metals 1 1 Structure of Metals Metals Basic Structure (Review) Property High stiffness, better toughness, good electrical conductivity, good thermal conductivity Why metals have these nice properties - structures

More information

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com The effect of ER4043 and

More information

Introduction to Welding Technology

Introduction to Welding Technology Introduction to Welding Technology Welding is a fabrication process used to join materials, usually metals or thermoplastics, together. During welding, the pieces to be joined (the workpieces) are melted

More information

The Effect of Arc Voltage and Welding Current on Mechanical and Microstructure Properties of 5083-Aluminium Alloy Joints used in Marine Applications

The Effect of Arc Voltage and Welding Current on Mechanical and Microstructure Properties of 5083-Aluminium Alloy Joints used in Marine Applications EP11 The Effect of Arc Voltage and Welding Current on Mechanical and Microstructure Properties of 5083-Aluminium Alloy Joints used in Marine Applications C.W. Mohd Noor 1, Khalid Samo 2, Nurazilla 3, M.

More information

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat Lecture 23 Chapter 30 Fusion Welding Processes Introduction Fusion welding Two pieces are joined together by the application of heat Melting and fusing the interface Filler metal Extra metal added (melted)

More information

Welding Job Knowledge

Welding Job Knowledge Titanium and titanium alloys Weldability of materials Job Titanium and its alloys are chosen because of the following properties: high strength to weight ratio; corrosion resistance; mechanical properties

More information

Unit 154: Welding Technologies

Unit 154: Welding Technologies Unit 154: Welding Technologies Unit code: F/615/3345 QCF level: 4 Credit value: 15 Aim This unit has been designed to develop the learner s awareness of the principles and applications of a broad range

More information

Optimization of Titanium Welding used in Aircrafts

Optimization of Titanium Welding used in Aircrafts Optimization of Titanium used in Aircrafts Prof. Anand Lahane 1, Shubham Devanpalli 2, Ritesh Patil 3, Suraj Thube 4 1 Assistant Professor, Dept. of Mechanical Engineering, Shatabdi Institute of Engineering

More information

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304

A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 A COMPARATIVE STUDY OF LASER, CMT, LASER-PULSE MIG HYBRID AND LASER-CMT HYBRID WELDED ALUMINIUM ALLOY Paper 1304 Chen Zhang, Ming Gao, Geng Li, Xiaoyan Zeng Wuhan National Laboratory for Optoelectronics,

More information

Study of Filler Wires Effect on Weld Characteristics of Aluminium Alloy (6351) during Gas Tungsten Arc Welding (GTAW)

Study of Filler Wires Effect on Weld Characteristics of Aluminium Alloy (6351) during Gas Tungsten Arc Welding (GTAW) Study of Filler Wires Effect on Weld Characteristics of Aluminium Alloy (6351) during Gas Tungsten Arc Welding () 1 N. Ankitha, M. R. S. Rupa Sri, 3 13 Assistant Professor 13 CVRCE Abstract: Gas tungsten

More information

A Review on Parametric Optimization of GMAW Process

A Review on Parametric Optimization of GMAW Process A Review on Parametric Optimization of GMAW Process Effect of Welding speed, Welding current, Arc voltage and Wire feed rate on Bead geometry & Bead hardness 1 Ketan C. Parmar, 2 Jayesh V. Desai, 3 Tushar

More information

Afrox Product Reference Manual. Section 12 - Welding Consumables 1. Welding of Aluminium 2. Aluminium Electrodes 7. Aluminium MIG & TIG Wires 8

Afrox Product Reference Manual. Section 12 - Welding Consumables 1. Welding of Aluminium 2. Aluminium Electrodes 7. Aluminium MIG & TIG Wires 8 Afrox Product Reference Manual Aluminium 1 Aluminium Section - 1 Aluminium 1 Welding of Aluminium 2 Aluminium Electrodes 7 Aluminium MIG & TIG Wires 8 Aluminium Welding Flux 13 Aluminium Brazing Flux 13

More information

Experimental Analysis of TIG Welding of Stainless Steel 304 using Grey Taguchi Method

Experimental Analysis of TIG Welding of Stainless Steel 304 using Grey Taguchi Method Experimental Analysis of TIG Welding of Stainless Steel 304 using Grey Taguchi Method Surender Singh 1, Mandeep Singh 2, Vinod Kumar 3 1 M. Tech Scholar, 2 Assistant Prof. Dept. of M E OITM Juglan (Hisar),

More information

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets

Study on Effect of Welding Speed on Micro Structure and Mechanical Properties of Pulsed Current Micro Plasma Arc Welded Inconel 625 Sheets Journal of Minerals and Materials Characterization and Engineering, 2012, 11, 1027-1033 Published Online October 2012 (http://www.scirp.org/journal/jmmce) Study on Effect of Welding Speed on Micro Structure

More information

6340(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013) IAEME AND TECHNOLOGY (IJMET)

6340(Print), ISSN (Online) Volume 4, Issue 3, May - June (2013) IAEME AND TECHNOLOGY (IJMET) INTERNATIONAL International Journal of JOURNAL Mechanical Engineering OF MECHANICAL and Technology (IJMET), ENGINEERING ISSN 0976 AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

TO STUDY THE EFFECT OF PROCESS PARAMETER ON GAS INTERRUPTION ON EN LOW ALLOY STEEL IN SMAW PROCESS

TO STUDY THE EFFECT OF PROCESS PARAMETER ON GAS INTERRUPTION ON EN LOW ALLOY STEEL IN SMAW PROCESS TO STUDY THE EFFECT OF PROCESS PARAMETER ON GAS INTERRUPTION ON EN-10213-2 LOW ALLOY STEEL IN SMAW PROCESS Sandeep Kumar Om Institute of Technology and Management,Hisar M Tech Scholars, Hisar, Haryana,

More information

Laser Beam Welding (LBW) of Aluminum Alloys

Laser Beam Welding (LBW) of Aluminum Alloys PE 225 Material Technology -2 Course Mini Project Laser Beam Welding (LBW) of Aluminum Alloys Under Supervision of Dr.Ing Islam El-Galy Contents LBW Principle Advantages of Laser Welding Limitation of

More information

THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG)

THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG) THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG) M. Ishak 1,2, A.S.K Razali 1, N.F.M Noordin 1, L.H.A Shah 1,2 and F.R.M Romlay 1,2 1 Manufacturing Focus

More information

EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER

EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER Mahdi Karami Pour and *Mohamad Reza Salmani Department of Material Engineering,

More information

INVESTIGATION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMILAR, DISSIMILAR METAL WELD JOINTS BY GAS TUNGSTEN ARC WELDING

INVESTIGATION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMILAR, DISSIMILAR METAL WELD JOINTS BY GAS TUNGSTEN ARC WELDING INVESTIGATION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF SIMILAR, DISSIMILAR METAL WELD JOINTS BY GAS TUNGSTEN ARC WELDING 1 D.DEVAKUMAR, 2 D. B JABARAJ, 3 V.K.BUPESH RAJA ¹Department of Mechanical

More information

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 14 Reaction in Weld Region & Welding Defects

More information

EXPERIMENTAL ANALYSIS OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MIG WELDED AA 7075-T6 OF 10MM THICKNESS

EXPERIMENTAL ANALYSIS OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MIG WELDED AA 7075-T6 OF 10MM THICKNESS EXPERIMENTAL ANALYSIS OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MIG WELDED AA 7075-T6 OF 10MM THICKNESS G. Arun kumar 1, M.Harsha 2, A. Balaram Naik 3 1,2,3Jawaharlal Nehru Technological University,

More information

Welding Engineering Prof. Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Welding Engineering Prof. Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Welding Engineering Prof. Dr. D. K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee Module - 4 Arc Welding Processes Lecture - 1 SMAW- 1 So, dear students,

More information

The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints

The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints Surface Effects and Contact Mechanics IX 183 The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints A. Els-Botes,

More information

Manufacturing Process II. Welding Processes-1

Manufacturing Process II. Welding Processes-1 Manufacturing Process II Welding Processes-1 1. Introduction: The term joining is generally used for welding, brazing, soldering, and adhesive bonding, which form a permanent joint between the parts a

More information

EFFECT OF FILLER ELECTRODES ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DISSIMILAR WELD SS 316L AND SDSS 2507

EFFECT OF FILLER ELECTRODES ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DISSIMILAR WELD SS 316L AND SDSS 2507 International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 3 Issue: 7 July-26 www.irjet.net p-issn: 2395-72 EFFECT OF FILLER ELECTRODES ON MICROSTRUCTURE AND MECHANICAL

More information

Technical Data & Welding Guidelines for Ferralium 255SD50 Super Duplex Stainless Steel

Technical Data & Welding Guidelines for Ferralium 255SD50 Super Duplex Stainless Steel Technical Data & Welding Guidelines for Ferralium 255SD50 Super Duplex Stainless Steel Technical Data & Welding Guidelines FERRALIUM Alloy 255 Ferralium 255SD50 Super Duplex Stainless Steel General FERRALIUM

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee Module - 3 Lecture - 11 Tungsten Inert Gas Welding Part 1 Welcome

More information

WELDING TECHNOLOGY TYPES UNIT I GAS WELDING DEFINITION

WELDING TECHNOLOGY TYPES UNIT I GAS WELDING DEFINITION WELDING TECHNOLOGY UNIT I GAS WELDING 10 hrs. Welding techniques and terminology -Gas welding -Process variations -Equipment - Generation of acetylene -Types of gases -Flame characteristics -Flash back

More information

Experimental Analysis on TIG welding process parameters of dissimilar metals SS304-SS202 using Taguchi Method

Experimental Analysis on TIG welding process parameters of dissimilar metals SS304-SS202 using Taguchi Method International Journal of Engineering and Manufacturing Science. ISSN 2249-3115 Volume 7, Number 2 (2017), pp. 249-258 Research India Publications http://www.ripublication.com Experimental Analysis on TIG

More information

3 TIG welding. 3.1 A description of the method. 3.2 Equipment

3 TIG welding. 3.1 A description of the method. 3.2 Equipment 3 TIG welding 3.1 A description of the method TIG welding (also called Gas Tungsten Arc Welding, GTAW) involves striking an arc between a non-consumable tungsten electrode and the workpiece. The weld pool

More information

MATERIAL CHARACTERISTIC STUDY OF COLD ROLLED GRADED THIN SHEET BY USING TIG WELDING PROCESS FOR RAIL COACHES

MATERIAL CHARACTERISTIC STUDY OF COLD ROLLED GRADED THIN SHEET BY USING TIG WELDING PROCESS FOR RAIL COACHES MATERIAL CHARACTERISTIC STUDY OF COLD ROLLED GRADED THIN SHEET BY USING TIG WELDING PROCESS FOR RAIL COACHES S. Ravikumar 1, J. Vishal 1, K. Vigram and A. N. Ganesh Babu 2 1 Department of Mechanical Engineering,

More information

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 2465 2469 2012 International Workshop on Information and Electronics Engineering (IWIEE) Influence of Shielding Gas on Aluminum

More information

Materials & Processes in Manufacturing

Materials & Processes in Manufacturing 2003 Bill Young Materials & Processes in Manufacturing ME 151 Chapter 37 Arc Processes Chapter 38 Resistance Welding Chapter 39 Brazing and Soldering 1 Introduction Arc welding processes produce fusion

More information

Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing

Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing Lecture: 3 Classification of Welding Processes II Apart from technical factors, welding processes can also be classified on the fundamental approaches used for deposition of materials for developing a

More information

Impact Toughness of Weldments in Al Mg Si Alloys

Impact Toughness of Weldments in Al Mg Si Alloys Materials Transactions, Vol. 43, No. 6 (2002) pp. 1381 to 1389 c 2002 The Japan Institute of Metals Impact Toughness of Weldments in Al Mg Si Alloys Victor Alexandru Mosneaga, Tohru Mizutani, Toshiro Kobayashi

More information

Experimental Investigation and Effect of Flux Core Arc Welding (FCAW) Processes on Different Parameters on En36

Experimental Investigation and Effect of Flux Core Arc Welding (FCAW) Processes on Different Parameters on En36 Experimental Investigation and Effect of Flux Core Arc Welding (FCAW) Processes on Different Parameters on En36 Senthilkumar. V 1 Adaikkappan. P 2 Elangovan.M 3 Elavarasan. R 4 Hariharan. S 5 Assistant

More information

Arc Welding. ROOP LAL Unit-6 (Arc Welding) Mechanical Engineering Department. Soft Copy Available at:

Arc Welding. ROOP LAL Unit-6 (Arc Welding) Mechanical Engineering Department. Soft Copy Available at: Arc Welding 1. Arc Welding: The welding in which the electric arc is produced to give heat for the purpose of joining two surfaces is called electric arc welding. In this the heat of fusion is generated

More information

CHARACTERISTICS STUDIES OF STAINLESS STEEL (AISI TYPE 304L) WELDED BY ER310L FILLER USING TIG WELDING

CHARACTERISTICS STUDIES OF STAINLESS STEEL (AISI TYPE 304L) WELDED BY ER310L FILLER USING TIG WELDING Int. J. Chem. Sci.: 14(4), 2016, 2527-2534 ISSN 0972-768X www.sadgurupublications.com CHARACTERISTICS STUDIES OF STAINLESS STEEL (AISI TYPE 304L) WELDED BY ER310L FILLER USING TIG WELDING G. BRITTO JOSEPH

More information

Effect of Modified AA5356 Filler on Corrosion Behavior of AA6061 Alloy GTA Welds

Effect of Modified AA5356 Filler on Corrosion Behavior of AA6061 Alloy GTA Welds Vol.2, Issue.6, Nov-Dec. 2012 pp-4429-4433 ISSN: 2249-6645 Effect of Modified AA5356 Filler on Corrosion Behavior of AA6061 Alloy GTA Welds 1 N. Ramanaiah 2 B. Balakrishna, 3 K. Prasad Rao 1 Professor

More information

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS CHAPTER-4 EXPERIMENTAL DETAILS 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS Hot rolled plates of 90/10 and 70/30 Cu-Ni alloys of 5 mm thickness were selected as test

More information

EXPERIMENTAL INVESTIGATION OF TIG WELDING ON STAINLESS STEEL AND MILD STEEL PLATES

EXPERIMENTAL INVESTIGATION OF TIG WELDING ON STAINLESS STEEL AND MILD STEEL PLATES EXPERIMENTAL INVESTIGATION OF TIG WELDING ON STAINLESS STEEL AND MILD STEEL PLATES 1 Keyur Panchal 1 Lecturer in Metallurgy Department 1 Dr. S. & S.S. Ghandhy College of Engineering & Technology. Surat,

More information

pdfmachine trial version

pdfmachine trial version EFFECT OF WELDING TECHNIQUES (GTAW & SMAW) ON THE MICROSTRUCTURE & MECHANICAL PROPERTIES OF MILD STEEL SA 516 Gr. 70 By Dr. Muhammad Taqi Zahid Butt, S. Ahmed, S. Rasool, U. Ali and S. U. Rehman* ABSTRACT

More information

Good welding practice Stainless Steels

Good welding practice Stainless Steels Good welding practice Stainless Steels Glenn Allen Welding Engineer TWI North Stainless Steels Four basic types of stainless steels, Austenitic, most common Ferritic Martensitic Duplex, main use oil &

More information

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding

EML 2322L -- MAE Design and Manufacturing Laboratory. Welding EML 2322L -- MAE Design and Manufacturing Laboratory Welding Intro to Welding A weld is made when separate pieces of material to be joined combine and form one piece when heated to a temperature high enough

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME 6302 MANUFACTURING TECHNOLOGY 1 (QUESTION BANK) I-METAL CASTING PROCESSES PART-A (2 MARKS) 1.Name any four types of commonly used

More information

Parameters Optimization for Gas Metal Arc Welding of Austenitic Stainless Steel (AISI 304) & Low Carbon Steel using Taguchi s Technique

Parameters Optimization for Gas Metal Arc Welding of Austenitic Stainless Steel (AISI 304) & Low Carbon Steel using Taguchi s Technique International Journal of Engineering and Management Research, Vol.-3, Issue-4, August 2013 ISSN No.: 2250-0758 Pages: 18-22 www.ijemr.net Parameters Optimization for Gas Metal Arc Welding of Austenitic

More information

NAME 345 Welding Technology Lecture 09 SAW, ESW & Resistance Welding

NAME 345 Welding Technology Lecture 09 SAW, ESW & Resistance Welding NAME 345 Welding Technology Lecture 09 Md. Habibur Rahman Lecturer Department of Naval Architecture & Marine Engineering Bangladesh University of Engineering & Technology Dhaka-1000, Bangladesh Submerged

More information

TO STUDY THE EFFECT OF PROCESS PARAMETER ON FRACTROGRAPHY ON EN LOW ALLOY STEEL IN SMAW PROCESS

TO STUDY THE EFFECT OF PROCESS PARAMETER ON FRACTROGRAPHY ON EN LOW ALLOY STEEL IN SMAW PROCESS TO STUDY THE EFFECT OF PROCESS PARAMETER ON FRACTROGRAPHY ON EN-10213-2 LOW ALLOY STEEL IN SMAW PROCESS Sandeep Kumar Om Institute of Technology and Management, Hisar M Tech Scholars, Hisar, Haryana, India

More information

!!!! WARNING!!!! WELDING FUMES AND GASES CAN BE DANGEROUS TO YOUR HEALTH.

!!!! WARNING!!!! WELDING FUMES AND GASES CAN BE DANGEROUS TO YOUR HEALTH. CAREFULLY!!!! WARNING!!!! CAREFULLY WELDING FUMES AND GASES CAN BE DANGEROUS TO YOUR HEALTH. BEFORE USING THIS PRODUCT THE WELDER (END-USER) MUST READ AND UNDERSTAND THE COMPLETE PRODUCT WARNING LABEL

More information

THE MECHANICAL AND MICROSTRUCTURAL STUDY OF WELDED AA7075 USING DIFFERENT FILLER METALS

THE MECHANICAL AND MICROSTRUCTURAL STUDY OF WELDED AA7075 USING DIFFERENT FILLER METALS M. Ishak, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 5, No. 5 (2017) 696 712 THE MECHANICAL AND MICROSTRUCTURAL STUDY OF WELDED AA7075 USING DIFFERENT FILLER METALS M. ISHAK, M.N.M. SALLEH & S.R.

More information

Kasetsart University. INDT0204: Welding. Types of Welding

Kasetsart University. INDT0204: Welding. Types of Welding Types of Welding Fusion Welding (Chap. 27) Oxyfuel Gas Welding Arc-Welding Processes Consumable-Electrode Nonconsumable-Electrode Others Electron-Beam Welding Laser-Beam Welding Solid State Welding (Chap.

More information

Effect of TIG and MIG welding on Microstructural and Mechanical Properties: A State of Art

Effect of TIG and MIG welding on Microstructural and Mechanical Properties: A State of Art Effect of TIG and MIG welding on Microstructural and Mechanical Properties: A State of Art 1.ManikGupta Bachelor of Technology, Department of Mechanical Engineering, Meerut Institute of Engineering & Technology,

More information

Casting, Forming & Welding

Casting, Forming & Welding Casting, Forming & Welding (ME31007) Jinu Paul Dept. of Mechanical Engineering CFW- Welding marks distribution CFW Total Marks = 100 Casting =33, Forming = 33, Welding =33 End semester exam 50 % Mid semester

More information

Productivity Enhancements for GMAW of Titanium Carrie Davis and Michael E. Wells Naval Surface Warfare Center, Carderock Division

Productivity Enhancements for GMAW of Titanium Carrie Davis and Michael E. Wells Naval Surface Warfare Center, Carderock Division Productivity Enhancements for GMAW of Titanium Carrie Davis and Michael E. Wells Naval Surface Warfare Center, Carderock Division While titanium has been used extensively in seawater cooling systems on

More information

Pulsed Parameters Optimization of GTAW Process for Mechanical Properties of Ti-6Al-4V Alloy using Taguchi Method

Pulsed Parameters Optimization of GTAW Process for Mechanical Properties of Ti-6Al-4V Alloy using Taguchi Method Pulsed Parameters Optimization of GTAW Process for Mechanical Properties of Ti-6Al-4V Alloy using Taguchi Method Pawan Kumar, C K Datta pks_munesh@yahoo.com, ckdatta2010@gmail.com Abstract The selection

More information

Parametric Study of Dissimilar Material on Gas Tungsten Arc Welding

Parametric Study of Dissimilar Material on Gas Tungsten Arc Welding 60 Parametric Study of Dissimilar Material on Gas Tungsten Arc Piyush Rana 1, Baljinder Singh 2, Jaswant Singh 3 1, 2 A.P. MED, IET Bhaddal, Ropar, 3 Industrial Expert Abstract Gas Tungsten Arc (GTAW)

More information

EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY

EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY EXPERIMENTAL INVESTIGATIONS ON TIG WELDING OF ALUMINIUM 6351 ALLOY * Venkata Ramana M 1, Sriram P S N 2 and Jayanthi A 3 Department of Automobile Engineering, VNR Vignana Jyothi Institute of Engineering

More information

Hail University College of Engineering Department of Mechanical Engineering. Joining Processes and Equipment. Fusion-Welding.

Hail University College of Engineering Department of Mechanical Engineering. Joining Processes and Equipment. Fusion-Welding. Hail University College of Engineering Department of Mechanical Engineering Joining Processes and Equipment Fusion-Welding Ch 30 Joining is an all-inclusive term covering processes such as welding, brazing,

More information

Tack Welder Level 3 Question Bank

Tack Welder Level 3 Question Bank Tack Welder Level 3 Question Bank I Fill in the blanks 1. Principle of GAS cutting is 2. Argon cylinder colour is 3. rays will emit from welding arc. 4. Tongs are used to hold 5. Full form of GMAW 6. Diameter

More information

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras

Introduction. Online course on Analysis and Modelling of Welding. G. Phanikumar Dept. of MME, IIT Madras Introduction Online course on Analysis and Modelling of Welding G. Phanikumar Dept. of MME, IIT Madras Classification of Manufacturing Processes Manufacturing Processes Ingot Casting Shape Casting Power

More information

MICROSTRUCTURE CHARACTERISTICS & MECHANICAL PROPERTIES OF DISSIMILAR TIG WELD BETWEEN STAINLESS STEEL AND MILD STEEL

MICROSTRUCTURE CHARACTERISTICS & MECHANICAL PROPERTIES OF DISSIMILAR TIG WELD BETWEEN STAINLESS STEEL AND MILD STEEL International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 7, July 2017, pp. 1739 1747, Article ID: IJMET_08_07_192 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=7

More information

3/26/2015. Processes of Arc Welding. Kate Gilland

3/26/2015. Processes of Arc Welding. Kate Gilland 3/26/2015 Processes of Arc Welding Kate Gilland Processes of Arc Welding Introduction Welding is a powerful technological advance. It allows for things to be conjoined that may have not been thought to

More information

EFFECT OF LONGITUDINAL WELD POOL OSCILLATION (LWPO) ON MECHANICAL PROPERTIES OF AA 6101 T6 ALUMINIUM ALLOY WELDS

EFFECT OF LONGITUDINAL WELD POOL OSCILLATION (LWPO) ON MECHANICAL PROPERTIES OF AA 6101 T6 ALUMINIUM ALLOY WELDS International INTERNATIONAL Journal JOURNAL of Advanced OF Research ADVANCED in Engineering RESEARCH and Technology IN ENGINEERING (IJARET), ISSN 0976 6480(Print), ISSN AND 0976 TECHNOLOGY 6499(Online)

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume 4, Issue 4, July - August (2013), pp. 53-61 IAEME: www.iaeme.com/ijmet.asp Journal

More information

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO): Copyright 1999 Society of Manufacturing Engineers --- 1 --- FUNDAMENTAL MANUFACTURING PROCESSES Welding SCENE 1. CG: Fusion Welding Processes white text centered on black SCENE 2. tape 528, 14:18:33-14:18:52

More information

Chapter Outline. Joining Processes. Welding Processes. Oxyacetylene Welding. Fusion Welding Processes. Page 1. Welded Joints

Chapter Outline. Joining Processes. Welding Processes. Oxyacetylene Welding. Fusion Welding Processes. Page 1. Welded Joints Joining Processes Chapter Outline R. Jerz 1 4/16/2006 R. Jerz 2 4/16/2006 Welding Processes Welded Joints Gas, electricity, or other heat source? Is electrode consumed? Is a filler material used? Is flux

More information

Joining Processes R. Jerz

Joining Processes R. Jerz Joining Processes R. Jerz 1 4/16/2006 Chapter Outline R. Jerz 2 4/16/2006 Welding Processes Gas, electricity, or other heat source? Is electrode consumed? Is a filler material used? Is flux used? Anything

More information

Comparative Study of FSW in Milling Setup with Tig Welding In Aluminum (He ) Alloy

Comparative Study of FSW in Milling Setup with Tig Welding In Aluminum (He ) Alloy Comparative Study of FSW in Milling Setup with Tig Welding In Aluminum (He9 63400) Alloy S Vignesh 1, S.S Vignesh 2 S Vijayaragavan 3 D Vignesh 4 UG Student, Department of Mechanical Engineering, JNN Institute

More information

Original Research Article

Original Research Article PREDICTION OF TIG AND MIG WELDING PARAMETER BY COMPARISON OF HARDNESS Shashikant Rai, Dr. Lokesh Singh Production Engineering, GD Rungta college of Engineering and Technology Bhilai, India ISSN No. 2455-5800

More information

ME E5 - Welding Metallurgy

ME E5 - Welding Metallurgy ME 328.3 E5 - Welding Metallurgy Purpose: To become more familiar with the welding process and its effects on the material To look at the changes in microstructure and the hardness in the Heat Affected

More information

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding This chapter presents the influence of process parameters of pulse TIG welding process on the development of sound weld joint. Further, the

More information

WELDING. There are different methods of arc welding in practice as listed below:

WELDING. There are different methods of arc welding in practice as listed below: WELDING 1. INTRODUCTION Welding is a process by which metals are joined by heating them to a suitable temperature with or without the application of pressure and addition of filler materials. Welding processes

More information

Welding Processes Classification Based On The Technological Criteria

Welding Processes Classification Based On The Technological Criteria Welding Processes Classification Based On The Technological Criteria Welding is a process of joining metallic components with or without application of heat, with or without pressure and with or without

More information

Experimental Study to Increase the Life of Welding Nozzle

Experimental Study to Increase the Life of Welding Nozzle IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 6 Ver. III (Nov. - Dec. 2016), PP 05-09 www.iosrjournals.org Anuj Mehta, Khushal Diddee,

More information

Welding Guidelines for Sandvik 2RE10. July 2004

Welding Guidelines for Sandvik 2RE10. July 2004 Welding Guidelines for Sandvik 2RE10 July 2004 1. Introduction Sandvik 2RE10 is a fully austenitic stainless steel characterised by excellent resistance to corrosion in nitric acid. Due to high chromium

More information

Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine

Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine Experimental Study on Autogenous TIG Welding of Mild Steel Material Using Lathe Machine Abhimanyu Chauhan M Tech. Scholar Production Engineering, Marudhar Engineering College, Bikaner, Rajasthan, India,

More information

GAS METAL ARC WELDING (GMAW)

GAS METAL ARC WELDING (GMAW) GAS METAL ARC WELDING (GMAW) INTRODUCTION Gas Metal Arc Welding (GMAW) is also called Metal Inert Gas (MIG) arc welding. It uses consumable metallic electrode. There are other gas shielded arc welding

More information

Electric Arc Welding

Electric Arc Welding Electric Arc Welding Electricity is passed through an electrode which jumps between the electrode and the work piece. This causes an arc which produces great heat melting the electrode and the work piece

More information

EFFECT OF TRANSVERSE VIBRATIONS ON THE HARDNESS OF ALUMINUM 5052 H32 ALLOY WELDMENTS

EFFECT OF TRANSVERSE VIBRATIONS ON THE HARDNESS OF ALUMINUM 5052 H32 ALLOY WELDMENTS International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 02, February 2019, pp. 327 333, Article ID: IJMET_10_02_033 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=02

More information

Analysis of Copper and Copper Base Alloys, Using Shimadzu PDA-7000

Analysis of Copper and Copper Base Alloys, Using Shimadzu PDA-7000 C112-0514M Analysis of Copper and Copper Base Alloys, Using Shimadzu PDA-7000 Copper alloys are designated by their chemical composition with characteristic properties such as high corrosion resistance,

More information

Metallurgical Processes

Metallurgical Processes Metallurgical Processes Chapter Thirty One: Welding Processes Dr. Eng. Yazan Al-Zain Department of Industrial Engineering 1 Introduction Welding processes divide into two major categories: Fusion Welding:

More information

A STUDY OF WELD DEFECTS OF GAS METAL ARC WELDING WITH DIFFERENT SHIELDING GASSES

A STUDY OF WELD DEFECTS OF GAS METAL ARC WELDING WITH DIFFERENT SHIELDING GASSES A STUDY OF WELD DEFECTS OF GAS METAL ARC WELDING WITH DIFFERENT SHIELDING GASSES Norfadhlina Khalid, Puteri Zirwatul Nadila M. Zamanhuri and Faisal Ahmad Shaiful Baharin Section of Marine Construction

More information

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at 41 CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES 3.0. INTRODUCTION Welding is the process of coalescing more than one material part at their surface of contact by the suitable

More information