Eutectic High Entropy Alloys (EHEAs)

Size: px
Start display at page:

Download "Eutectic High Entropy Alloys (EHEAs)"

Transcription

1 Eutectic High Entropy Alloys (EHEAs) Sheng Guo Materials and Manufacturing Technology Department Chalmers University of Technology, Gothenburg, Sweden E mail: sheng.guo@chalmers.se C MAC Days 2014, Zagreb

2 Outline A brief introduction to HEAs Phase selection in cast HEAs Some issues with cast HEAs Eutectic HEAs: An example Conclusions

3 Introduction: High Entropy Alloys (Yeh, et al., Mater Chem Phys, 2007) N=7 N=6 N=5 N=4 (Adv.Eng.Mater, 2004) N=3 N=2 N=1 Highly concentrated solid solutions

4 Potential of HEAs as structural materials AlCoCrFeNiTi 0.5 y =2.26GPa f =3.14GPa p =23.3% (Yeh, et al., Adv Eng Mater, 2004) (after 1000 o c/12h) 460 MPa@1600 o C better than superalloys (Zhou et al., APL, 2007) Very high hardness can be achieved (Senkov, et al., Intermetallics, 2011) Disordered bcc solid solution was reserved after annealing at 1400 o cfor 19h

5 High entropy effect enhances the formation of solution phases Possible competing states (elemental phases, compounds, solid solutions) G mix = H mix T S mix Solid solution phases having the highest mixing entropy thus become highly competitive and more stable especially at high T

6 Q1:Solid solution or amorphous phase? (Nature, 1993) S R c ln c N mix i i i 1 when N elements are mixing in equiatomic ratio (c 1 =c 2 = =c N ), the mixing entropy reaches the maximum: S Rln N mix Based on the confusion principle and high entropy points of view, we can easily understand that random solid solutions tend to be stable in HEAs. But why not form a glassy (amorphous) phase then?

7 High entropy bulk metallic glasses (Ma et al., Mater Trans, 2002) (1.5mm) (Takeuchi et al., Intermetallics, 2011) (Gao et al., J Non-Crys. Solids, 2011)

8 Intermetallic compounds can certainly form in equiatomic multi component alloys For example: XRD patterns of the CoCrCuFeNiTi x samples (x = 0, 0.5, 0.8, and 1) (Wang et al., Intermetallics, 2007) (Yang et al., Mater Chem Phys, 2007) So, can we predict the phase selection (solid solution, amorphous phase and intermetallic compound) in equiatomic multi component alloys?

9 A1: Statistical analyses of phase selection in HEAs 2-parameter map Solid solution phases form when is small, and H mix is either slightly positive or insignificantly negative; Amorphous phases form when is large, and H mix is noticeably negative; In the intermediate conditions (in terms of and H mix ), intermetallic compounds compete with tboth amorphous phases & solid solution phases. (Guo et al., Prog Nat Sci: Mater Int, 2011; Guo et al., Intermetallics, 2013)

10 Q2: fcc or bcc solid solution? (Yeh, et al., Mater Chem Phys, 2007) N=7 N=6 N=5 N=4 N=3 N=2 N=1 bcc bcc fcc+bcc fcc+bcc fcc+bcc fcc+bcc fcc+bcc fcc+bcc fcc+bcc fcc+bcc fcc fcc fcc Al x CoCrCuFeNi x=3 x=0 (Tong et al., Metall Mater A, 2005)

11 Q2: fcc or bcc solid solution? Why is that?!

12 A2: Valence Electron Concentration is the key AlCo 0.5 CrCuFeNi; AlCoCr 0.5 CuFeNi AlCoCrCu 0.5 FeNi; AlCoCrCuFe 0.5 Ni AlCoCrCuFeNi 0.5 ; AlCo x CrCu 0.5 FeNi AlCo x CrCu 0.5 FeNi; AlCo x CrCu 0.5 FeNi AlCoCr x Cu 0.5 FeNi; AlCoCrCu 0.5 Fe x Ni bcc bcc+fcc fcc Valence electron concentration AlCoCrCu 0.5 FeNi x ; AlCoCrCu 0.5 FeNi x CrCuFeMnNi; CoCrFeMnNi Al x CrCuFeMnNi; Al x CrCuFeMnNi Al 0.8 CrCu 1.5 FeMnNi; Al 0.8 CrCuFe 1.5 MnNi Al 0.8 CrCuFeMn 1.5 Ni; MoNbTaW MoNbTaVW; AlB x MnNiTi Al x C 0.2 CuFeMnNi (Guo et al., JAP, 2011) A higher VEC favors the formation of fcc solid solutions, while a smaller VEC tends to stabilize the bcc solid solutions A mixture of fcc and bcc solid solutions forms at intermediate VEC

13 Some issue with cast HEAs Porosity, particular for large ingots Inhomogeneity/Segregation Conflict between strength/ductility (Tong et al., Metall Mater Trans A, 2005)

14 Why Eutectic Alloys? highly stable microstructures that do not revert, or coarsen, easily at elevated temperatures; high thermodynamic stability and kinetic resistance to thermal degradation; development of low energy lamellar and rod form boundary structures; high strengths and creep resistance because their microstructures act as natural in situ composite materials; better castability (less porosity) better compositional homogeneity (less segregation) (Glicksman, Principle of Solidification, 2011) Inspirations: Eutectics with high melting points have formed the basis for a number of interesting candidate high temperature alloys for application to the high temperature components of gas turbine engines.

15 Eutectic High Entropy Alloys An example: AlCoCrFeNi 2.1 ~ 2.5 kg of homogenous and almost casting defects free large ingots

16 Eutectic High Entropy Alloys soft fcc/ hard NiAl like B2 eutetic microstructure melting temperature ~ 1350 o C (NiAl: 1674 o C) density of ~ 7.4 g/cm 3 (NiAl: 6 g/cm 3 )

17 Eutectic High Entropy Alloys a Engineering stress-strain True stress-strain b o C 700 o C Stress/MPa True stess/mpa Strain/% True strain/% balanced tensile fracture strength and ductility, for large ingots the decent mechanical properties can be maintained to 700 o C strong work hardening behavior

18 Eutectic High Entropy Alloys a NiAl <001> b True stress/mpa , non-eheas UTS, non-eheas 0.2, EHEA True stress/mpa UTS, EHEA Elogation to failure/% Temperature/ o C overall fracture strength/tensile ductility better than NiAl/Cr(Co) eutectic alloys a large space to improve at higher temperatures though, with a compromise with density

19 Eutectic High Entropy Alloys after 8% cold rolling mechanical properties can be further tuned by thermomechanical treatments

20 Conclusions Entropy alone can not stabilize the solid solutions in multi principal element alloys; By using empirical physical metallurgy principles, formation and even type of solid solutions can be reasonably controlled; Eutectic high entropy alloys might be a promising alloying strategy to develop new class of high temperature alloys.

Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach

Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Predicting Solid Solubility Limit in High-Entropy Alloys using the Molecular Orbital Approach Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden

More information

The Alloyed Pleasure: Bulk Metallic Glasses (BMGs) & High Entropy Alloys (HEAs) Sheng GUO

The Alloyed Pleasure: Bulk Metallic Glasses (BMGs) & High Entropy Alloys (HEAs) Sheng GUO The Alloyed Pleasure: Bulk Metallic Glasses (BMGs) & High Entropy Alloys (HEAs) Sheng GUO Materials and Manufacturing Technology Department Chalmers University of Technology November, 2013 Alloyed Pleasures:

More information

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys

Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys Solid Solutioning in CoCrFeNiMx (M= 4d transition metals) High-Entropy Alloys Sheng Guo Department of Industrial and Materials Science Chalmers University of Technology, Gothenburg, Sweden 21 September

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains Supplementary information to the manuscript titled Accelerated Exploration of Multi-Principal Element Alloys with Solid Solution Phases, by O.N. Senkov, J.

More information

Early stage development of precipitation strengthened CCAs in the AlCrFeNiTi system for high temperature structural applications

Early stage development of precipitation strengthened CCAs in the AlCrFeNiTi system for high temperature structural applications Early stage development of precipitation strengthened CCAs in the AlCrFeNiTi system for high temperature structural applications 15.02.2018 and Christian Liebscher In Collaboration With: Dr. Konda G. Pradeep

More information

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015 High-Entropy Alloys Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015 Presentation Outline 1. 2. 3. 4. 5. 6. Introduction High-Entropy Alloys Aero Engine Materials

More information

High-Entropy Alloys: A Critical Review

High-Entropy Alloys: A Critical Review This article was downloaded by: [85.74.134.131] On: 20 January 2015, At: 09:00 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

Physical Metallurgy of High-Entropy Alloys

Physical Metallurgy of High-Entropy Alloys JOM, Vol. 67, No. 10, 2015 DOI: 10.1007/s11837-015-1583-5 2015 The Minerals, Metals & Materials Society Physical Metallurgy of High-Entropy Alloys JIEN-WEI YEH 1,2 1. Department of Materials Science and

More information

metallic glasses (amorphous alloys)

metallic glasses (amorphous alloys) A brief introduction to metallic glasses (amorphous alloys) Sheng Guo Assistant Professor Materials and Manufacturing Technology Department E-mail: sheng.guo@chalmers.se Outline What are metallic glasses

More information

Mechanical Performance of the Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements

Mechanical Performance of the Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements Mechanical Performance of the Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements CHUNG-JIN TONG, MIN-RUI CHEN, SWE-KAI CHEN, JIEN-WEI YEH, TAO-TSUNG SHUN, SU-JIEN LIN, and SHOU-YI CHANG

More information

ICME Design of High Performance Turbine Alloys

ICME Design of High Performance Turbine Alloys ICME Design of High Performance Turbine Alloys James Saal Materials Design Engineer p. 1 Background - QuesTek Innovations LLC A global leader in integrated computational materials design: Our Materials

More information

Fatigue Behavior of High-Entropy Alloys

Fatigue Behavior of High-Entropy Alloys University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2012 Fatigue Behavior of High-Entropy Alloys Michael Alexander Hemphill mhemphil@utk.edu

More information

Exploration of High-Entropy Alloys for Turbine Applications

Exploration of High-Entropy Alloys for Turbine Applications Exploration of High-Entropy Alloys for Turbine Applications Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number(s) DE-SC0013220. SBIR Program PHASE

More information

Designing and understanding novel highentropy alloys towards superior properties

Designing and understanding novel highentropy alloys towards superior properties Designing and understanding novel highentropy alloys towards superior properties Zhiming Li zhiming.li@mpie.de 2018-01-19 Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf Aalto MPIE 2 Max-Planck-Institut

More information

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness.

Keywords. Aluminium-based amorphous alloys; melt spinning; crystallization behaviour; microhardness. PRAMANA c Indian Academy of Sciences Vol. 65, No. 4 journal of October 2005 physics pp. 745 751 Effect of rare-earth elements on nanophase evolution, crystallization behaviour and mechanical properties

More information

Jordan Journal of Physics

Jordan Journal of Physics Volume 8, Number 3, 2015. pp. 177-186 ARTICLE Jordan Journal of Physics On the Optimization of the Microstructure and Mechanical Properties of Al-Co-Cr-Cu-Fe-Ni-Ti Based High Entropy Alloys A.M. Manzoni

More information

Evaluation of a New High Temperature Cast Aluminum for Cylinder Head Applications

Evaluation of a New High Temperature Cast Aluminum for Cylinder Head Applications 2018 AFS Proceedings of the 122nd Metalcasting Congress, Fort Worth, Texas Paper 18-034 (7 pages) Page 1 Evaluation of a New High Temperature Cast Aluminum for Cylinder Head Applications Qigui Wang, Devin

More information

Adaption of metal injection molding to quinary high entropy alloys

Adaption of metal injection molding to quinary high entropy alloys Adaption of metal injection molding to quinary high entropy alloys A. Grimonprez 1, Y. Chen 1, A. Kauffmann 1, V. Piotter 1, J. Wagner 2, M. Heilmaier 1 1 Karlsruhe Institute of Technology, 2 University

More information

A critical review of high entropy alloys (HEAs) and related concepts

A critical review of high entropy alloys (HEAs) and related concepts Engineering Conferences International ECI Digital Archives Beyond Nickel-Based Superalloys II Proceedings 7-20-2016 A critical review of high entropy alloys (HEAs) and related concepts D.B. Miracle AF

More information

High Entropy Shape Memory Alloys- Mechanical Properties and Functional Degradation Mechanisms

High Entropy Shape Memory Alloys- Mechanical Properties and Functional Degradation Mechanisms High Entropy Shape Memory Alloys- Mechanical Properties and Functional Degradation Mechanisms M.Sc. Maike Hermann 01.03.2018 Project Finished study of mechanical engineering at Leibniz University Hannover

More information

Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses

Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses Indian Journal of Engineering & Materials Sciences Vol. 21, February 2014, pp. 111-115 Effects of silicon and chromium additions on glass forming ability and microhardness of Co-based bulk metallic glasses

More information

Additive Manufacturing of High-Entropy Alloys A Review. Wenyuan Cui*, Xinchang Zhang*, Frank Liou*

Additive Manufacturing of High-Entropy Alloys A Review. Wenyuan Cui*, Xinchang Zhang*, Frank Liou* Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference Reviewed Paper Additive Manufacturing of High-Entropy

More information

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil

Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy. Brazil Effect of Ti Addition and Mechanical Alloying on Mechanical Properties of an AA7050 Extruded Aluminium Alloy K. R. Cardoso 1, V. Sinka 1, A. García Escorial 2, M. Lieblich 2 1 IP&D UNIVAP, Av. Shishima

More information

Research Article Effect of Heat Treatment on the Microstructure, Phase Distribution, and Mechanical Properties of AlCoCuFeMnNi High Entropy Alloy

Research Article Effect of Heat Treatment on the Microstructure, Phase Distribution, and Mechanical Properties of AlCoCuFeMnNi High Entropy Alloy Hindawi Advances in Materials Science and Engineering Volume 2017, Article ID 1950196, 6 pages https://doi.org/10.1155/2017/1950196 Research Article Effect of Heat Treatment on the Microstructure, Phase

More information

Improvement in the Microstructure and Tensile Properties of Inconel 718 Superalloy by HIP Treatment

Improvement in the Microstructure and Tensile Properties of Inconel 718 Superalloy by HIP Treatment Materials Transactions, Vol., No. () pp. to # The Japan Institute of Metals EXPRESS REGULAR ARTICLE Improvement in the Microstructure and Tensile Properties of Inconel Superalloy by HIP Treatment Shih-Chin

More information

Chapter 2. Ans: e (<100nm size materials are called nanomaterials)

Chapter 2. Ans: e (<100nm size materials are called nanomaterials) Chapter 2 1. Materials science and engineering include (s) the study of: (a) metals (b) polymers (c) ceramics (d) composites (e) nanomaterials (f) all of the above Ans: f 2. Which one of the following

More information

MANUFACTURING AND EVALUATING CU-BASED SHAPE MEMORY ALLOY BY HOT EXTRUSION OF PM SAMPLES MADE BY MECHANICAL ALLOYING

MANUFACTURING AND EVALUATING CU-BASED SHAPE MEMORY ALLOY BY HOT EXTRUSION OF PM SAMPLES MADE BY MECHANICAL ALLOYING MANUFACTURING AND EVALUATING CU-BASED SHAPE MEMORY ALLOY BY HOT EXTRUSION OF PM SAMPLES MADE BY MECHANICAL ALLOYING Sajjad Pourkhorshidi, Mohammad Naeimi, Nader Parvin, Seyed Mohammad Mahdi Zamani, Hamid

More information

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Faculty of Physical Engineering Departments physics of metals 1 Student

More information

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure

Microstructure and Mechanical Properties of Extruded Mg-Zn-Y Alloys with 14H Long Period Ordered Structure Materials Transactions, Vol. 47, No. 4 (2006) pp. 959 to 965 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, III #2006 The Japan Institute of Light Metals Microstructure

More information

Metals I. Anne Mertens

Metals I. Anne Mertens "MECA0139-1: Techniques "MECA0462-2 additives : et Materials 3D printing", Selection", ULg, 19/09/2017 25/10/2016 Metals I Anne Mertens Introduction Outline Metallic materials Materials Selection: case

More information

Wrought Aluminum I - Metallurgy

Wrought Aluminum I - Metallurgy Wrought Aluminum I - Metallurgy Northbrook, IL www.imetllc.com Copyright 2015 Industrial Metallurgists, LLC Course learning objectives Explain the composition and strength differences between the alloy

More information

Twin-Roll Strip Casting of Iron-Base Amorphous Alloys

Twin-Roll Strip Casting of Iron-Base Amorphous Alloys Materials Transactions, Vol. 48, No. 7 (2007) pp. 1584 to 1588 Special Issue on Bulk Metallic Glasses Selected Papers from the Fifth International Conference on Bulk Metallic Glasses (BMGV) #2007 The Japan

More information

Fabrication of Mg-based bulk metallic glasses by pressure die casting method

Fabrication of Mg-based bulk metallic glasses by pressure die casting method Indian Journal of Engineering & Materials Sciences Vol. 21, June 2014, pp. 259-264 Fabrication of Mg-based bulk metallic glasses by pressure die casting method A Borowski*, A Guwer, A Gawlas-Mucha, R Babilas

More information

Phase Transformation in Materials

Phase Transformation in Materials 2015 Fall Phase Transformation in Materials 09. 02. 2015 Eun Soo Park Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Introduction Web lecture assistance: http://etl.snu.ac.kr

More information

Mechanical Properties of Bulk Metallic Glasses and composites

Mechanical Properties of Bulk Metallic Glasses and composites Mechanical Properties of Bulk Metallic Glasses and composites M.L. Lee 1 *, Y. Li 1, 2, Y. Zhong 1, C.W. Carter 1, 3 1. Advanced Materials for Micro- and Nano- Systems Programmes, Singapore-MIT Alliance,

More information

Q. S. Zhang 1, W. Zhang 1; *, X. M. Wang 1, Y. Yokoyama 1, K. Yubuta 1 and A. Inoue 2

Q. S. Zhang 1, W. Zhang 1; *, X. M. Wang 1, Y. Yokoyama 1, K. Yubuta 1 and A. Inoue 2 Materials Transactions, Vol. 49, No. 9 (2008) pp. 2141 to 2146 #2008 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Structure, Thermal Stability and Mechanical Properties of Zr 65 Al 7:5 Ni 10 Cu

More information

PROPERTIES OF NANOCRYSTALLINE Al-Cr-Fe-Ti ALLOYS PREPARED BY POWDER METALLURGY. Karel DÁM, Dalibor VOJTĚCH, Filip PRŮŠA

PROPERTIES OF NANOCRYSTALLINE Al-Cr-Fe-Ti ALLOYS PREPARED BY POWDER METALLURGY. Karel DÁM, Dalibor VOJTĚCH, Filip PRŮŠA PROPERTIES OF NANOCRYSTALLINE Al-Cr-Fe-Ti ALLOYS PREPARED BY POWDER METALLURGY Karel DÁM, Dalibor VOJTĚCH, Filip PRŮŠA Department of Metals and Corrosion Engineering, Institute of Chemical Thechnology,

More information

Mohammad Anwar Karim Id :

Mohammad Anwar Karim Id : Department of Mechanical and Industrial Engineering ME 8109 Casting and Solidification of Materials EFFECTS OF RAPID SOLIDIFICATION ON MICROSTRUCTURE AND PROPERTIES OF AL, MG & TI ALLOYS Winter 2012 Presented

More information

Extended abstract High entropy alloys for fusion applications

Extended abstract High entropy alloys for fusion applications Abstract Extended abstract High entropy alloys for fusion applications André Ruza andre.ruza@tecnico.ulisboa.pt In a tokamak, nuclear fusion reactor, the divertor is subjected to a high heat flux. Tungsten

More information

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase Materials Transactions, Vol. 43, No. 9 (2002) pp. 2337 to 2341 c 2002 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained

More information

A new Ti Zr Hf Cu Ni Si Sn bulk amorphous alloy with high glass-forming ability

A new Ti Zr Hf Cu Ni Si Sn bulk amorphous alloy with high glass-forming ability Journal of Alloys and Compounds 427 (2007) 171 175 A new Ti Zr Hf Cu Ni Si Sn bulk amorphous alloy with high glass-forming ability Y.J. Huang a, J. Shen a,, J.F. Sun a, X.B. Yu b, a School of Materials

More information

Chapter 11 Part 2. Metals and Alloys

Chapter 11 Part 2. Metals and Alloys Chapter 11 Part 2 Metals and Alloys Nomenclature of Steels Historically, many methods for identifying alloys by their composition have been developed The commonly used schemes in this country are those

More information

Specification Aluminium Die-Casting Alloy, high silicon content Aluminium Die-Casting Alloy, high silicon content

Specification Aluminium Die-Casting Alloy, high silicon content Aluminium Die-Casting Alloy, high silicon content Specification 2012-10 Class: Aluminium and Al-alloys Class No.:21 Aluminium Die-Casting Alloy, high silicon content JED 853 Previous Edition Part name (for databases) 2011-11 Aluminium Die-Casting Alloy,

More information

SOLIDIFICATION AND SOLID STATE PHASE TRANSFORMATION OF ALLVAC 718PLUS ALLOY

SOLIDIFICATION AND SOLID STATE PHASE TRANSFORMATION OF ALLVAC 718PLUS ALLOY Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 SOLIDIFICATION AND SOLID STATE PHASE TRANSFORMATION OF ALLVAC 718PLUS ALLOY Wei-Di

More information

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718

More information

Phase Transformation in Materials

Phase Transformation in Materials 2016 Fall Phase Transformation in Materials 09. 05. 2016 Eun Soo Park Office: 33-313 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment 1 Introduction Web lecture assistance: http://etl.snu.ac.kr

More information

Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties

Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties JOM DOI: 1.17/s11837-17-254-2 Ó 217 The Author(s). This article is an open access publication Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties

More information

Jouji Oshikiri 1, Norio Nakamura 2 and Osamu Umezawa 1

Jouji Oshikiri 1, Norio Nakamura 2 and Osamu Umezawa 1 Proceedings of the 12th International Conference on Aluminium Alloys, September 5 9, 5-9, 21, Yokohama, Japan 21 21 The Japan Institute of Light Metals pp. 2381-2386 2381 Jouji Oshikiri 1, Norio Nakamura

More information

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel To be presented at Materials Science & Technology 2009 Conference (MS&T 09) October 25-29, 2009, Pittsburgh, PA Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade

More information

MECHANICAL PROPERTIES AND THERMAL STABILITY OF ALSI-X BASED ALLOYS PREPARED BY CENTRIFUGAL ATOMIZATION. Filip PRŮŠA*, Dalibor VOJTĚCH

MECHANICAL PROPERTIES AND THERMAL STABILITY OF ALSI-X BASED ALLOYS PREPARED BY CENTRIFUGAL ATOMIZATION. Filip PRŮŠA*, Dalibor VOJTĚCH MECHANICAL PROPERTIES AND THERMAL STABILITY OF ALSI-X BASED ALLOYS PREPARED BY CENTRIFUGAL ATOMIZATION Filip PRŮŠA*, Dalibor VOJTĚCH Department of Metals and Corrosion Engineering, Institute of Chemical

More information

Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements

Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements Microstructure Characterization of Al x CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements CHUNG-JIN TONG, YU-LIANG CHEN, SWE-KAI CHEN, JIEN-WEI YEH, TAO-TSUNG SHUN, CHUN-HUEI TSAU, SU-JIEN

More information

High Entropy Shape Memory Alloys (HESMA) Alloy Compositions, Processing and Microstructures

High Entropy Shape Memory Alloys (HESMA) Alloy Compositions, Processing and Microstructures High Entropy Shape Memory Alloys (HESMA) Alloy Compositions, Processing and Microstructures David Piorunek, Jan Frenzel, Gunther Eggeler EG 101/32-1 Outline Shape memory alloys & martensitic transformation

More information

Fabrication of Ni-Al Intermetallic Compounds on the Al Casting alloy by SHS Process

Fabrication of Ni-Al Intermetallic Compounds on the Al Casting alloy by SHS Process Fabrication of Ni-Al Intermetallic Compounds on the Al Casting alloy by SHS Process G.S. Cho *, K.R. Lee*, K.H. Choe*, K.W. Lee* and A. Ikenaga** *Advanced Material R/D Center, KITECH, 994-32 Dongchun-dong,

More information

AN ADVANCED CAST-AND-WROUGHT SUPERALLOY (TMW-4M3) FOR TURBINE DISK APPLICATIONS BEYOND 700 C

AN ADVANCED CAST-AND-WROUGHT SUPERALLOY (TMW-4M3) FOR TURBINE DISK APPLICATIONS BEYOND 700 C AN ADVANCED CAST-AND-WROUGHT SUPERALLOY (TMW-4M3) FOR TURBINE DISK APPLICATIONS BEYOND 700 C Y. GU 1, Z. Zhong 1, Y. Yuan 2, T. Osada 1,a, C. Cui 1,b, T. Yokokawa 1 and H. Harada 2 1 High Temperature Materials

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites 2017 by Zhe Cheng Expectations on Chapter 11 Chapter 11 Understand metals are generally categorized as ferrous alloys and non-ferrous alloys

More information

Consolidation of [(Fe 0:5 Co 0:5 ) 0:75 Si 0:05 B 0:2 ] 96 Nb 4 Metallic Glassy Powder by SPS Method* 1

Consolidation of [(Fe 0:5 Co 0:5 ) 0:75 Si 0:05 B 0:2 ] 96 Nb 4 Metallic Glassy Powder by SPS Method* 1 Materials Transactions, Vol. 50, No. 9 (2009) pp. 2264 to 2269 #2009 The Japan Institute of Metals Consolidation of [(Fe 0:5 Co 0:5 ) 0:75 Si 0:05 B 0:2 ] 96 Nb 4 Metallic Glassy Powder by SPS Method*

More information

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY L. M. Pike Haynes International 12 West Park Ave.; Kokomo, IN, 4694-913 USA Keywords: 282, thermal stability, R-41, Waspaloy, 263 Abstract HAYNES 282 was

More information

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy.

but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Sn) = 232 C, T m (Pb) = 327 C but T m (Sn0.62Pb0.38) = 183 C, so this is a common soldering alloy. T m (Au) = 1064 C, T m (Si) = 2550 C but T m (Au0.97Si0.03) = 363 C, so thin layer of gold is used

More information

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718) ATI 718 Nickel-Base Superalloy (UNS Designation N07718) INTRODUCTION ATI 718 alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately

More information

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions

Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Abstract Fatigue life estimation of Aluminium Alloy reinforced with SiC particulates in annealed conditions D. P. Myriounis, S.T.Hasan Sheffield Hallam

More information

HIGH ENTROPY ALLOYS PROPERTIES AND ITS APPLICATIONS AN OVERVIEW

HIGH ENTROPY ALLOYS PROPERTIES AND ITS APPLICATIONS AN OVERVIEW HIGH ENTROPY ALLOYS PROPERTIES AND ITS APPLICATIONS AN OVERVIEW S. John Mary, [a] R. Nagalakshmi [b] and R. Epshiba [b,c] Keywords: High entropy alloys, corrosion resistance, micro structure, properties,

More information

OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel-Based Superalloy, GTD-111

OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel-Based Superalloy, GTD-111 Journal of Metals, Materials and Minerals. Vol.17 No.1 pp.87-92, 2007 OM Study of Effect of HIP and Heat Treatments on Microstructural Restoration in Cast Nickel-Based Superalloy, GTD-111 Panyawat WANGYAO

More information

Effect of Nb content on the microstructure and mechanical properties of Zr Cu Ni Al Nb glass forming alloys

Effect of Nb content on the microstructure and mechanical properties of Zr Cu Ni Al Nb glass forming alloys Journal of Alloys and Compounds 403 (2005) 239 244 Effect of Nb content on the microstructure and mechanical properties of Zr Cu Ni Al Nb glass forming alloys Y.F. Sun a, C.H. Shek b,, B.C. Wei c, W.H.

More information

Materials and Design

Materials and Design Materials and Design 30 (2009) 964 969 Contents lists available at ScienceDirect Materials and Design journal homepage: www.elsevier.com/locate/matdes Microstructure and mechanical properties of NiAl Cr(Mo)/Nb

More information

Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation Supplementary Information Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation Jie He 1,2, Ivan Kaban 2,3, Norbert Mattern 2, Kaikai Song 2, Baoan Sun 2, Jiuzhou

More information

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams

Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams Construction of phase diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Concept of alloying Classification of alloys Introduction to the phase diagram Uses and limitations of phase diagrams Classification of phase diagrams

More information

Bulk metallic glasses (BMGs) have shown unique. Spheroidization behavior of dendritic b.c.c. phase in Zr-based β-phase composite

Bulk metallic glasses (BMGs) have shown unique. Spheroidization behavior of dendritic b.c.c. phase in Zr-based β-phase composite Spheroidization behavior of dendritic b.c.c. phase in Zr-based β-phase composite *Sun Guoyuan 1, Li Ping 2, Chen Wei 3 and Song Xuding 4 1. School of Mechanical Engineering, North China University of Water

More information

the Phase Diagrams Today s Topics

the Phase Diagrams Today s Topics MME 291: Lecture 03 Introduction to the Phase Diagrams Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Concept of alloying Classification of alloys Introduction to the phase diagram

More information

Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression

Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression Focussed on Crack Paths Crack initiation and fracture features of Fe Co B Si Nb bulk metallic glass during compression S. Lesz, A. Januszka, S. Griner, R. Nowosielski Silesian University of Technology,

More information

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit.

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. (1) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. The next page is left blank for your use, but no partial will

More information

IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO , Tehran, Iran. Tabriz, Iran

IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO , Tehran, Iran. Tabriz, Iran IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO M. Nili-Ahmadabadi a, S. Hossein Nedjad b, M. Sadeghi a and H. Shirazi a a Deptartment of Metallurgy and Materials Engineering,

More information

Molecular Dynamics (MD) Simulation for the study of Creep Deformation Sabila Kader Pinky

Molecular Dynamics (MD) Simulation for the study of Creep Deformation Sabila Kader Pinky Molecular Dynamics (MD) Simulation for the study of Creep Deformation Sabila Kader Pinky 1. Abstract The creep-deformation behavior of Ni-based single crystal superalloys under tensile loading at various

More information

Comparative Study of High Entropy Alloys- AlCoCrFeNi, AlCoFeNi and CoCrFeNi with 304SS

Comparative Study of High Entropy Alloys- AlCoCrFeNi, AlCoFeNi and CoCrFeNi with 304SS Comparative Study of High Entropy s- AlCoCrFeNi, AlCoFeNi and CoCrFeNi with 304SS Hari P.S. 1, Cijo Mathew 2, Jacob Kuriakose 3, Vinod Yeldho Baby 4 1 PG Scholar, M A College of Engineering, Kothamagalam,

More information

Processing, Microstructures, and Mechanical Behavior of High-Entropy Alloys

Processing, Microstructures, and Mechanical Behavior of High-Entropy Alloys University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2012 Processing, Microstructures, and Mechanical Behavior of High-Entropy Alloys Zhi

More information

Role of SFE on deformation texture evolution in non-equiatomic fcc CrFeMnCoNi high-entropy alloys

Role of SFE on deformation texture evolution in non-equiatomic fcc CrFeMnCoNi high-entropy alloys Role of SFE on deformation texture evolution in non-equiatomic fcc CrFeMnCoNi high-entropy alloys 1 Dan Sathiaraj G, 2 Rajib Kalsar, 2 Satyam Suwas, 1 Werner Skrotzki 1 Institute of Solid State and Materials

More information

Magnesium Matrix Composite with Solid-state Synthesized Mg 2 Si Dispersoids

Magnesium Matrix Composite with Solid-state Synthesized Mg 2 Si Dispersoids Materials Transactions, Vol. 44, No. 4 (2003) pp. 611 to 618 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, II #2003 The Japan Institute of Metals Magnesium Matrix Composite

More information

Fe-B-Si-Nb Bulk Metallic Glasses with High Strength above 4000 MPa and Distinct Plastic Elongation

Fe-B-Si-Nb Bulk Metallic Glasses with High Strength above 4000 MPa and Distinct Plastic Elongation Materials Transactions, Vol. 45, No. 4 (2004) pp. 1214 to 1218 Special Issue on Bulk Amorphous, Nano-Crystalline and Nano-Quasicrystalline Alloys-V #2004 The Japan Institute of Metals Fe-B-Si-Nb Bulk Metallic

More information

Lecture 12: High Temperature Alloys

Lecture 12: High Temperature Alloys Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia Course A, Metals and Alloys Lecture 12: High Temperature Alloys Metallic materials capable of operating at ever increasing temperatures are

More information

Vacuum induction melting and vacuum arc remelting of Co-Al-W-X gamma-prime superalloys

Vacuum induction melting and vacuum arc remelting of Co-Al-W-X gamma-prime superalloys MTEC Web of Conferences 14, 02001 (2014) DOI: 10.1051/matecconf/20141402001 c Owned by the authors, published by EDP Sciences, 2014 Vacuum induction melting and vacuum arc remelting of Co-l-W-X gamma-prime

More information

Synthesis of Ti-Based Bulk Metallic Glass Composites Containing WC Particles

Synthesis of Ti-Based Bulk Metallic Glass Composites Containing WC Particles Materials Transactions, Vol. 46, No. 12 (2005) pp. 2963 to 2967 Special Issue on Materials Science of Bulk Metallic Glasses #2005 The Japan Institute of Metals Synthesis of Ti-Based Bulk Metallic Glass

More information

Influence of Remelting AlSi9Cu3 Alloy with Higher Iron Content on Mechanical Properties

Influence of Remelting AlSi9Cu3 Alloy with Higher Iron Content on Mechanical Properties A R C H I V E S of F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 18 Issue 3/2018 25 30 4/3 Influence

More information

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram Steels: alloys of Iron (Fe) and Carbon (C). Fe-C phase diagram is complex. Will only consider the steel part of the diagram, up to around 7% Carbon. University

More information

STRUCTURAL AND FRACTURE CHARACTERISTICS OF NICKEL-BASED ALLOYS

STRUCTURAL AND FRACTURE CHARACTERISTICS OF NICKEL-BASED ALLOYS STRUCTURAL AND FRACTURE CHARACTERISTICS OF NICKEL-BASED ALLOYS Jitka MALCHARCZIKOVÁ a, Vít MICHENKA b, Martin POHLUDKA a, David KAŇÁK b, René FRIDRICH b a VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33

More information

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10

PHASE DIAGRAMS. IE-114 Materials Science and General Chemistry Lecture-10 PHASE DIAGRAMS IE-114 Materials Science and General Chemistry Lecture-10 Importance of Phase Diagrams There is a strong correlation between microstructure and mechanical properties. Phase diagrams provides

More information

Modification of Alloy 706 for High Temperature Steam Turbine Rotor Application

Modification of Alloy 706 for High Temperature Steam Turbine Rotor Application Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 Modification of Alloy 706 for High Temperature Steam Turbine Rotor Application Shinya

More information

Gamma Prime Phase Stability after Long-Term Thermal Exposure in Cast Nickel Based Superalloy, IN-738

Gamma Prime Phase Stability after Long-Term Thermal Exposure in Cast Nickel Based Superalloy, IN-738 312 Chiang Mai J. Sci. 2009; 36(3) Chiang Mai J. Sci. 2009; 36(3) : 312-319 www.science.cmu.ac.th/journal-science/josci.html Contributed Paper Gamma Prime Phase Stability after Long-Term Thermal Exposure

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 54 CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 3.1 HIGH STRENGTH ALUMINIUM ALLOY In the proposed work, 7075 Al alloy (high strength) has been identified, as a material for the studies on

More information

Physcial Metallurgy and Microstructure of Superalloys

Physcial Metallurgy and Microstructure of Superalloys www.materialstechnology.org Physcial Metallurgy and Microstructure of Superalloys Roger Reed University of Birmingham The definition of superalloys utilized in the classic textbook 'The Superalloys' which

More information

MECHANICAL BEHAVIOUR OF AMORPHOUS Mg-23.5Ni RIBBONS

MECHANICAL BEHAVIOUR OF AMORPHOUS Mg-23.5Ni RIBBONS VIII Congreso Nacional de Propiedades Mecánicas en Sólidos, Gandía 2002 61-70 MECHANICAL BEHAVIOUR OF AMORPHOUS Mg-23.5Ni RIBBONS P. Pérez a, G.Garcés a, P. Adeva a and F. Sommer b a Centro Nacional de

More information

Bulk Metallic Glasses

Bulk Metallic Glasses 2018 Spring Advanced Physical Metallurgy Bulk Metallic Glasses 03.28.2018 Eun Soo Park Office: 33 313 Telephone: 880 7221 Email: espark@snu.ac.kr Office hours: by appointment 1 * Development strategy of

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

What to do for Increase Mechanical Properties of Aluminum alloy in HPDC

What to do for Increase Mechanical Properties of Aluminum alloy in HPDC Our Passion, Your Business! The die casting Partner for Innovation What to do for Increase Mechanical Properties of Aluminum alloy in HPDC Rev: B Modify: 27/10/14 In Casting process, Mechanical Properties

More information

Introduction to Materials Science

Introduction to Materials Science EPMA Powder Metallurgy Summer School 27 June 1 July 2016 Valencia, Spain Introduction to Materials Science Prof. Alberto Molinari University of Trento, Italy Some of the figures used in this presentation

More information

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy B. Gopi, N. Naga Krishna, K. Venkateswarlu, K. Sivaprasad Abstract An effect of rolling temperature

More information

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy B. Gopi, N. Naga Krishna, K. Venkateswarlu, K. Sivaprasad Abstract An effect of rolling temperature

More information

Contents. PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii

Contents. PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii Contents PREFACE TO THE FOURTH EDITION... xiii ACKNOWLEDGEMENTS...xv GENERAL INTRODUCTION... xvii Part A Metals CHAPTER 1 Metals...3 1.1 Introduction... 3 1.2 Metals for a Model Steam Engine... 3 1.3 Metals

More information

Effect of melt treatment on microstructure and impact properties of Al 7Si and Al 7Si 2 5Cu cast alloys

Effect of melt treatment on microstructure and impact properties of Al 7Si and Al 7Si 2 5Cu cast alloys Bull. Mater. Sci., Vol. 30, No. 5, October 2007, pp. 439 445. Indian Academy of Sciences. Effect of melt treatment on microstructure and impact properties of Al 7Si and Al 7Si 2 5Cu cast alloys K G BASAVAKUMAR*,

More information

Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility

Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility Fabrication and investigation of intermetallic compound-glassy phase composites having tensile ductility The purpose The purpose of the proposed study was to produce in-situ ductile crystalline intermetallic

More information