Emerging High Temperature Materials for Potential Application to Fusion.

Size: px
Start display at page:

Download "Emerging High Temperature Materials for Potential Application to Fusion."

Transcription

1 Emerging High Temperature Materials for Potential Application to Fusion Y. Katoh 1,*, C.M. Parish 1, L. Tan 1, P. Edmondson 1, T. Koyanagi 1, L.M. Garrison 1, C. Ang 1, L.L. Snead 2, C.H. Henager 3, Jr., S.J. Zinkle 1,4 1 Oak Ridge National Laboratory 2 Stony Brook University, 3 Pacific Northwest National Laboratory, 4 University of Tennessee *katohy@ornl.gov 1. Technology to be assessed This white paper examines novel high temperature materials that have the potential to enable break-through concepts for plasma-facing, blanket, and/or structural components in fusion reactors. Such materials include 1) emerging materials of high interest in the general materials science and engineering (MSE) community [such as MAX phases, ultra-high temperature ceramics (UHTC), and high entropy alloys (HEA)], 2) novel structural materials that may be specifically developed for fusion based on recent materials science advancements [such as castable nanostructured alloys (CNA) and MAX-phase ceramic matrix composites (CMC)], and 3) tungsten (W)-based refractory multi-functional composites that potentially enable extensive use of W in fusion reactors. The US fusion energy sciences program is uniquely positioned to explore and potentially adopt new materials due to its strong connections to the broader US materials science community and the current timeline flexibility for DEMO development. These emerging materials exhibit several clear and outstanding advantages over the current reference PFC and blanket materials, presenting potential game-changing opportunities for improved fusion energy systems. 2. Application of the technology All classes of high performance, high temperature materials discussed here may be considered for applications in fusion divertor components, first walls, and blanket structures. For these applications, the developed new materials will exhibit improved performance attributes including high temperature resistance, toughness, thermal conductivity, and neutron irradiation tolerance. 3. Emerging novel high temperature materials of interest Category I Emerging materials of the MSE community There are ample examples of new unconventional materials that are of high interest and are actively studied by the MSE community for a broad spectrum of potential applications. UHTC, MAX phases, and HEA are among the widely-studied emerging high temperature materials that may be attractive for fusion thermo-structural components. UHTC includes various borides and carbides, among which transition metal diborides are recently extensively studied. ZrB2, for example, exhibits high strength ( ) up to temperatures exceeding 2,000 C with a thermal conductivity kth >80 W/m-K [1,2]. Comparison of these properties with W in Fig. 1 depicts clear advantages of UHTC in terms of the operating temperature window with the comparable thermal stress figure of merit (~ /kth) as compared to W. The operating temperature window for W is bound by the upper temperature recrystallization limit at ~1,100 C under irradiation and a lower temperature limit of ~800 C due to radiation 1

2 embrittlement. Development challenges include improvement in ductivity and fracture toughness and exploration of radiation effects. Fig. 1 Comparison of strength and thermal conductivity of selected emerging high temperature materials with tungsten in unirradiated condition. Refractory HEA s are another class of emerging materials of potential interest for PFC. There are numerous possible combinations of elements to constitute HEAs and only very limited systems have so far been explored. Among them, for example, the Nb-Mo-Ta-W system and its variants possess good strength up to >1,600 C [3]. The high configurational entropy and reduced atomic self-diffusion are considered to potentially offer exceptional radiation tolerance in HEAs; promising radiation resistance results have been recently obtained on the Fe-Ni-Mn-Cr and Ni- Co-Fe-Cr systems [4,5]. Moreover, HEAs allow access to the face-centered cubic crystal structure that generally offers enhanced ductility compared to the body-centered cubic structure of W and ferritic steels. Low thermal conductivity is considered a primary drawback for HEAs for thermo-structural applications, but it is known to approach the values for traditional low entropy structural alloys as temperature increases. MAX phase materials are another option in this category, exhibiting a combination of metallic and ceramic properties. MAX phases are materials of high potential for nuclear applications at operating temperature exceeding ~500 C, and may exhibit improved radiation resistance compared to traditional ceramics at elevated temperatures due to a high-density nanolayered structure [6]. Similar to HEAs, the atomistically layered ternary MAX phases consist of numerous possible combinations of elements [7]. To date, only a few MAX phase systems have been studied for radiation effects to reveal that each ternary system has characteristic temperature range in which the layered structure achieves dynamic recovery from radiationinduced atomic disorder. Recent unpublished work conducted in an ORNL-PNNL collaboration demonstrated lack of degradation after 20 dpa neutron irradiation at 500 C for Ti3SiC2. Properties of Ti3SiC2 are compared with other materials in Fig. 1 [8,9]. Category II Modified materials where the fusion community can lead development 2

3 Historically the US fusion materials community played leading roles in development of certain materials including reduced activation ferritic/martensitic (FM) steels based on the 9Cr-1Mo heat resistant FM steel and nuclear grade SiC/SiC composites adapted from the refractory composite development for ceramic gas turbines. In these developments, work on new materials in nonnuclear areas presented opportunities for the fusion materials community to modify and improve these materials to satisfy fusion-specific requirements such as reduced long-lived activation and enhanced tolerance against neutron irradiation. This approach is still valid today. The fusion program-developed castable nanostructured alloys (fusion CNAs) are a reducedactivation class of ferritic/martensitic steels designed with nanostructural features generated by thermo-mechanical treatments. These CNAs are manufactured using the traditional industrial steelmaking methods used for RAFM steels, instead of the powder metallurgy route required for other advanced oxide dispersion strengthened (ODS) steels. Successful development of the fusion CNAs would enable access to new, low cost, high performance industrial scale RAFM steels with significantly improved high temperature capability and radiation tolerance over the conventional RAFM steels [10]. Moreover, the US fusion program currently leads the world in this development. Several additional development opportunities are found in this category, including: reducedactivation HEAs, enhanced radiation-tolerance UHTCs, and enhanced radiation-tolerance MAXphase-matrix ceramic composites. Category III W-based refractory composites W is the leading option for plasma-facing material despite a number of outstanding challenges. The lack of a viable method to ductilize the bulk form tungsten likely mandates its use in composite forms. The fusion materials community will have to carry out the W composite development due to the general lack of leveraging opportunities with non-fusion applications. Fortunately, the MSE community has accumulated significant knowledge and experiences with a wide variety of processing techniques for refractory ceramic composites and ceramic-metal composites (cermets), and many of these may be modified and applied to explore W-based composite development. For example, continuous fiber, W-matrix composites can be produced by multiple routes including chemical vapor infiltration and powder sintering. Small diameter W fibers and SiC fibers are two prime candidate reinforcements. Distributed or semi-interconnected W particulate composites with a ductile metal matrix (often referred to as ductile phasetoughened composites) may be produced through recently developed methods like rapid sintering. Related discussions on unconventional processing techniques that may enable improved functional performance are found in other white papers discussing the topic of advanced manufacturing.[11 13] 4. Risks and uncertainties Engaging in development of new materials introduces well-known general risks including those related with uncertain ultimate properties (unirradiated and irradiated) and development timeline associated with material development and industrialization. Fusion-specific performance risk factors include neutron irradiation tolerance, plasma-interactive performances, and tritium transport. Fortunately, the US fusion materials community has accumulated experience of studying these aspects of W and other material systems. Therefore a somewhat streamlined 3

4 evaluation scheme may be formulated without difficulty, excluding materials with large amount of radiologically prohibitive elements like Ta and Co. 5. Maturity In general, the materials discussed in this document have been extensively studied for less than 10 to 20 years and therefore have relatively immature engineering property databases and limited industrial fabrication experience. However, some of these novel materials, such as UHTCs and MAX phases, are already finding niche applications and steady industrialization is expected. Transition from a science-driven curiosity matter to an engineering material requires both the industrial/technology pull (business case) and a strong materials science foundation. 6. Technology development for fusion applications Since the topic of the present discussion is emerging materials, the TRL levels for the examples mentioned are generally low at 1 to 3 regarding application in fusion reactors. The technology development required for fusion applications includes interactive material design/development/ modification/evaluation to meet fusion-specific needs. The experimental evaluations in a fission reactor to examine basic irradiation performance and using both toroidal and linear devices for plasma-interactive performances are the key stepping stones for assessing their suitability. Our recent experience with evaluation of W and novel RAFM steels sets a useful precedent toward establishing efficient procedures. For W, it is taking roughly a decade to collect a set of useful data and achieve understanding of basic nuclear performance. Time and cost required for the myriad nuclear performances evaluations depend largely on the activation properties of the material (W is relatively challenging due to high short-term radioactivity that typically requires cooling time of a few years following neutron irradiation). Acknowledgment This document was developed based partly on the ongoing collaborative research with Michel Barsoum (Drexel Univeristy), Greg Hilmas and William Fahrenholtz (Missouri University of Science and Technology). 4

5 References [1] E.W. Neuman, G.E. Hilmas, W.G. Fahrenholtz, M. Cinibulk, Ultra-high temperature mechanical properties of a zirconium diboride-zirconium carbide ceramic, J. Am. Ceram. Soc. 99 (2016) doi: /jace [2] J.M. Lonergan, W.G. Fahrenholtz, G.E. Hilmas, Zirconium diboride with high thermal conductivity, J. Am. Ceram. Soc. 97 (2014) doi: /jace [3] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM. 65 (2013) doi: /s [4] N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, S.J. Zinkle, Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation, Acta Mater. 113 (2016) doi: /j.actamat [5] Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Béland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, W.J. Weber, Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys, Nat. Commun. 6 (2015) doi: /ncomms9736. [6] C. Ang, C. Silva, C. Shih, T. Koyanagi, Y. Katoh, S.J. Zinkle, Anisotropic swelling and microcracking of neutron irradiated, Scr. Mater. 114 (2016) doi: /j.scriptamat [7] M.W. Barsoum, T. El-Raghy, The MAX Phases: Unique New Carbide and Nitride Materials, Am. Sci. 89 (2001) doi: / [8] M.W. Barsoum, T. El-raghy, C.J. Rawn, W.D. Porter, H. Wang, E. a Payzant, C.R. Hubbard, Thermal properties of Ti 3 SiC 2, 60 (1999) doi: /j x. [9] M. Radovic, M.W. Barsoum, J. Seidensticker, S. Wiederhorn, TENSILE PROPERTIES OF Ti 3 SiC 2 IN THE 25 ± 13008C TEMPERATURE RANGE, Scan. Electron Microsc. 48 (2000) [10] L. Tan, L.L. Snead, Y. Katoh, Development of new generation reduced activation ferriticmartensitic steels for advanced fusion reactors, J. Nucl. Mater. 478 (2016) doi: /j.jnucmat [11] Y. Katoh, R.R. Dehoff, A.S. Sabau, L.M. Garrison, S.J. Zinkle, L.L. Snead, C.H. Henager, Jr, Advanced Manufacturing for Fusion PFC and Blanket Materials, in: FESAC Work. Transform. Enabling Capab., Chicago, IL, [12] R.E. Nygren, P.R. Schunk, D.A. Buchenauer, Development of Fusion Sub-components with Additive Manufacturing, in: FESAC Work. Transform. Enabling Capab., Chicago, IL, [13] C.H. Henager, Jr, R.J. Kurtz, G.R. Odette, Plasma-Facing Materials by Design and Rapid Prototyping via Additive Manufacturing, in: FESAC Work. Transform. Enabling Capab., Chicago, IL,

Structural materials for Fusion and Generation IV Fission Reactors

Structural materials for Fusion and Generation IV Fission Reactors Hungarian Academy of Sciences KFKI Atomic Energy Research Institute Structural materials for Fusion and Generation IV Fission Reactors Ákos Horváth Materials Department akos.horvath@aeki.kfki.hu EFNUDAT

More information

Advanced Manufacturing for Fusion PFC and Blanket Materials

Advanced Manufacturing for Fusion PFC and Blanket Materials Advanced Manufacturing for Fusion PFC and Blanket Materials Y. Katoh 1,*, R.R. Dehoff 1, A. Sabau 1, L.M. Garrison 1, S.J. Zinkle 1,2 L.L. Snead 3, C.H. Henager 4, Jr., 1 Oak Ridge National Laboratory

More information

Radiation Embrittlement Database for High Temperature Refractory Alloys

Radiation Embrittlement Database for High Temperature Refractory Alloys Radiation Embrittlement Database for High Temperature Refractory Alloys S.J. Zinkle Metals & Ceramics Division, Oak Ridge National Lab presented at the APEX Study Meeting PPPL, May 12-14, 1999 Possible

More information

Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program

Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program 1 MPT/1-1 Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program R. E. Stoller 1, D. W. Clark 2, N. M. Ghoniem 3, Y. Katoh 1, R. J. Kurtz 4, J. Marian 3, G. R. Odette

More information

Prospects of new ODS steels

Prospects of new ODS steels Prospects of new ODS steels Annual Fusion Seminar VTT Tampere, June 2-3, 2010 Seppo Tähtinen VTT Technical Research Centre of Finland 6/3/2010 2 Fusion advantages Unlimited fuel No CO 2 or air pollution

More information

Neutron Tolerance of Advanced SiC-Fiber / CVI-SiC Composites

Neutron Tolerance of Advanced SiC-Fiber / CVI-SiC Composites 1 FT/P1-03 Neutron Tolerance of Advanced SiC-Fiber / CVI-SiC Composites Y. Katoh 1), A. Kohyama 1), L.L. Snead 2), T. Hinoki 2), A. Hasegawa 3) 1) Kyoto University, Kyoto, Japan 2) Oak Ridge National Laboratory,

More information

1 FT/1. Recent Progress in Reduced Activation Ferritic Steels R&D in Japan

1 FT/1. Recent Progress in Reduced Activation Ferritic Steels R&D in Japan 1 FT/1 Recent Progress in Reduced Activation Ferritic Steels R&D in Japan A. Kimura 1), T. Sawai 2), K. Shiba 2), A. Hishinuma 2), S. Jitsukawa 2), S. Ukai 3), A. Kohyama 1) 1) Institute of Advanced Energy,

More information

Development of Low Activation Structural Materials

Development of Low Activation Structural Materials Materials Challenge for Clean Nuclear Fusion Energy Development of Low Activation Structural Materials T. Muroga National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292, Japan Symposium on Materials

More information

Materials in Generation-IV Very High Temperature Reactors Challenges and Opportunities

Materials in Generation-IV Very High Temperature Reactors Challenges and Opportunities Materials in Generation-IV Very Temperature Reactors Challenges and Opportunities Kent Shirer Materials Science and Engineering 395-0 Prof. Dunand Review of Reactor Generations 4 Main Goals http://www.ne.anl.gov/images/activ/programs/geniv/picture1.jpg

More information

Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program

Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program Recent Advances in Radiation Materials Science from the US Fusion Reactor Materials Program R. E. Stoller 1, D. W. Clark 2, N. M. Ghoniem 3, Y. Katoh 1, R. J. Kurtz 4, J. Marian 3, G. R. Odette 5, B. D.

More information

Research and Development Status of Reduced Activation Ferritic/Martensitic Steels Corresponding to DEMO Design Requirement

Research and Development Status of Reduced Activation Ferritic/Martensitic Steels Corresponding to DEMO Design Requirement Research and Development Status of Reduced Activation Ferritic/Martensitic Steels Corresponding to DEMO Design Requirement Hiroyasu Tanigawa 1, Hisashi Tanigawa 1, M. Ando 1, S. Nogami 2, T. Hirose 1,

More information

High-Chromium Ferritic and Martensitic Steels for Nuclear Applications

High-Chromium Ferritic and Martensitic Steels for Nuclear Applications High-Chromium Ferritic and Martensitic Steels for Nuclear Applications Ronald L. Klueh and Donald R. Harries ASTM Stock Number: MONO3 ASTM 100 Barr Harbor Drive P.O. Box C700 West Conshohocken, PA 19428-2959

More information

Integration of Modeling, Theory and Experiments for Fusion Reactor Materials

Integration of Modeling, Theory and Experiments for Fusion Reactor Materials Integration of Modeling, Theory and Experiments for Fusion Reactor Materials Roger E. Stoller Oak Ridge National Laboratory ReNew: Harnessing Fusion Power Workshop Los Angeles, CA March 2-4, 2009 Role

More information

Status of R&D Activities on Materials for Fusion Power Reactors

Status of R&D Activities on Materials for Fusion Power Reactors Status of R&D Activities on Materials for Fusion Power Reactors N. Baluc 1, K. Abe 2, J.L. Boutard 3, V.M. Chernov 4, E. Diegele 3, S. Jitsukawa 5, A. Kimura 6, R.L. Klueh 7, A. Kohyama 6, R.J. Kurtz 8,

More information

Materials development for fusion application

Materials development for fusion application Materials development for fusion application Natalia Luzginova Materials Consultant Luzginova@inMaterials.nl 1 Outline Introduction The ITER project Main components and materials Materials selection and

More information

SiC-fibre reinforced copper as heat sink material for fusion applications

SiC-fibre reinforced copper as heat sink material for fusion applications Journal of Nuclear Materials 329 333 (2004) 804 808 www.elsevier.com/locate/jnucmat SiC-fibre reinforced copper as heat sink material for fusion applications A. Brendel a, *, C. Popescu a, C. Leyens b,

More information

Ultra-High Temperature Ceramics at University of Missouri-Rolla

Ultra-High Temperature Ceramics at University of Missouri-Rolla Ultra-High Temperature Ceramics at University of Missouri-Rolla Bill Fahrenholtz and Greg Hilmas Materials Science and Engineering University of Missouri-Rolla The Need for UHTCs Ultra-high temperature

More information

Advanced Materials for Future Nuclear Plants

Advanced Materials for Future Nuclear Plants Advanced Materials for Future Nuclear Plants Steven J. Zinkle Oak Ridge National Laboratory, Oak Ridge, TN Fission Energy Workshop: Opportunities for Fundamental Research and Breakthrough in Fission Global

More information

Comments on Top-level Issues for Proposed ITER Molten Salt Test. Blanket Modules. UCLA, February 23-25, ITER TBM Project Meeting. S.J.

Comments on Top-level Issues for Proposed ITER Molten Salt Test. Blanket Modules. UCLA, February 23-25, ITER TBM Project Meeting. S.J. Comments on Top-level Issues for Proposed ITER Molten Salt Test Blanket Modules S.J. Zinkle Metals and Ceramics Division Oak Ridge National Laboratory ITER TBM Project Meeting UCLA, February 23-25, 2004

More information

Neutron Irradiation Effects on Grain-refined W and W-alloys

Neutron Irradiation Effects on Grain-refined W and W-alloys 25th IAEA Fusion Energy Conference 13 18 October 2014 Saint Petersburg, Russian Federation MPT/1-4 Neutron Irradiation Effects on Grain-refined W and W-alloys A. Hasegawa a, M. Fukuda a, T. Tanno a,b,

More information

Registration. Break. Kyoto U. Oral #10 R. KASADA Tohoku U. Tohoku U. Oral #15 T. NAGASAKA NIFS

Registration. Break. Kyoto U. Oral #10 R. KASADA Tohoku U. Tohoku U. Oral #15 T. NAGASAKA NIFS Sep. 25 Sep. 26 Tuesday 8:30 8:40 Registration 8:50 9:00 Registration 9:10 Invited #5 Q. HUANG INEST/CAS 9:20 9:30 T. MUROGA K. FUKUMOTO 9:40 Opening NIFS Invited #6 Y. HATANO U. Toyama U. Fukui 9:50 &

More information

POSSIBILITY OF THE HE-COOLED SIC-COMPOSITE DIVERTOR

POSSIBILITY OF THE HE-COOLED SIC-COMPOSITE DIVERTOR POSSIBILITY OF THE HE-COOLED SIC-COMPOSITE DIVERTOR X.R. Wang 1, S. Malang 2, M. S. Tillack 1 1 University of California, San Diego, CA 2 Fusion Nuclear Technology Consulting, Germany ARIES-Pathways Project

More information

2nd IPSUS Progress Meeting. 2nd IPSUS Progress Meeting FSW of ODS Steels. Rainer Lindau,, Michael Klimenkov, Anton Möslang, Michael Rieth.

2nd IPSUS Progress Meeting. 2nd IPSUS Progress Meeting FSW of ODS Steels. Rainer Lindau,, Michael Klimenkov, Anton Möslang, Michael Rieth. 2nd IPSUS Progress Meeting FSW of ODS Steels Rainer Lindau,, Michael Klimenkov, Anton Möslang, Michael Rieth Courtesy TWI,Ltd. 1 9 nm 5 nm FSW was invented and patented by TWI, Ltd. in 1991 4 nm Y 2 O

More information

Overview, Irradiation Test and Mechanical Property Test

Overview, Irradiation Test and Mechanical Property Test IAE R&D Program Progress Report Development Project of Supercritical-water Cooled Power Reactors Overview, Irradiation Test and Mechanical Property Test Shigeki Kasahara Hitachi, Ltd. Toshiba Corp. Hokkaido

More information

Swapan Kumar Karak. Department of Metallurgical and Materials Engineering NIT Rourkela, , India

Swapan Kumar Karak. Department of Metallurgical and Materials Engineering NIT Rourkela, , India NMD-ATM Development of Nano-Y 2 O 3 Dispersed Ferritic Alloys for Nuclear Reactors S. K. Karak, J. Dutta Majumdar, W. Lojkowski and I. Manna by Swapan Kumar Karak Department of Metallurgical and Materials

More information

Development of SiC/SiC Composite for Fusion Application

Development of SiC/SiC Composite for Fusion Application Development of SiC/SiC Composite for Fusion Application A. Kohyama 1), Y. Katoh 1), L.L. Snead 2) and R.H. Jones 3) 1) Institute of Advanced Energy, Kyoto Univ. and CREST-ACE, Uji, Kyoto, Japan 2) Oak

More information

Perspectives 8 THE ROLE OF THEORY AND MODELING IN THE DEVELOPMENT OF MATERIALS FOR FUSION ENERGY

Perspectives 8 THE ROLE OF THEORY AND MODELING IN THE DEVELOPMENT OF MATERIALS FOR FUSION ENERGY Perspectives 8 THE ROLE OF THEORY AND MODELING IN THE DEVELOPMENT OF MATERIALS FOR FUSION ENERGY Nasr M. Ghoniem Mechanical and Aerospace Engineering Department, University of California, Los Angeles,

More information

Reduced activation Ferritic/Martensitic steel F82H for in-vessel components -Improvement of irradiation response of toughness and ductility-

Reduced activation Ferritic/Martensitic steel F82H for in-vessel components -Improvement of irradiation response of toughness and ductility- Reduced activation Ferritic/Martensitic steel F82H for in-vessel components -Improvement of irradiation response of toughness and ductility- N. Okubo, K. Shiba, M. Ando, T. Hirose, H. Tanigawa, E. Wakai,

More information

Thermophysical and Mechanical Properties of SiC/SiC Composites (5/28/98 draft) S.J. Zinkle and L.L. Snead Oak Ridge National Laboratory

Thermophysical and Mechanical Properties of SiC/SiC Composites (5/28/98 draft) S.J. Zinkle and L.L. Snead Oak Ridge National Laboratory Thermophysical and Mechanical Properties of SiC/SiC Composites (5/28/98 draft) S.J. Zinkle and L.L. Snead Oak Ridge National Laboratory The key thermophysical and mechanical properties for SiC/SiC composites

More information

Challenges of structural materials for innovative nuclear systems in Europe

Challenges of structural materials for innovative nuclear systems in Europe Challenges of structural materials for innovative nuclear systems in Europe Marta Serrano, Dolores Gomez-Briceño Structural Material Division CIEMAT Joint EC-IAEA Topical Meeting on Development of New

More information

Extended abstract High entropy alloys for fusion applications

Extended abstract High entropy alloys for fusion applications Abstract Extended abstract High entropy alloys for fusion applications André Ruza andre.ruza@tecnico.ulisboa.pt In a tokamak, nuclear fusion reactor, the divertor is subjected to a high heat flux. Tungsten

More information

2.1. Neutron Irradiation Effects under Fusion Relevant Condition

2.1. Neutron Irradiation Effects under Fusion Relevant Condition Study on Dynamic Behavior of Fusion Reactor Materials and Their Response to Variable and Complex Irradiation Environment K. Abe (1), A. Kohyama (2), C. Namba (3), F. W. Wiffen (4) and R. H. Jones (5) (1)

More information

Operating temperature windows for fusion reactor structural materials

Operating temperature windows for fusion reactor structural materials Fusion Engineering and Design 51 52 (2000) 55 71 www.elsevier.com/locate/fusengdes Operating temperature windows for fusion reactor structural materials S.J. Zinkle a, *, N.M. Ghoniem b a Metals and Ceramics

More information

Fusion structural material development in view of DEMO design requirement

Fusion structural material development in view of DEMO design requirement 3 rd IAEA DEMO programme workshop 11 th 14 th May, 2015, Hefei, China Fusion structural material development in view of DEMO design requirement A case study on a RAFM steel F82H development in view of

More information

COOPERATIVE PATENT CLASSIFICATION

COOPERATIVE PATENT CLASSIFICATION CPC C COOPERATIVE PATENT CLASSIFICATION CHEMISTRY; METALLURGY (S omitted) METALLURGY C22 METALLURGY (of iron C21); FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS (production of

More information

SiC/SiC ceramic matric composites: A turbine engine perspective

SiC/SiC ceramic matric composites: A turbine engine perspective Engineering Conferences International ECI Digital Archives Ultra-High Temperature Ceramics: Materials For Extreme Environmental Applications II Proceedings Spring 5-14-2014 SiC/SiC ceramic matric composites:

More information

Joining of C f /SiC composites with Niobium alloy

Joining of C f /SiC composites with Niobium alloy Joining of C f /SiC composites with Niobium alloy Y. Du, C. Liang, X. Zheng College of Aerospace & Materials Engineering National University of Defense Technology Changsha, 410073, P.R. China Email:yongguod@hotmail.com

More information

Material Development for Spallation Target at JAERI

Material Development for Spallation Target at JAERI ICANS-XIV 13th Meeting of the International Collaboration on Advanced Neutron Sources June 1419, 1998 Starved Rock Lodge, Utica, Illinois, USA Material Development for Spallation Target at JAERI K. Kikuchi,

More information

Available online at Procedia Engineering 55 (2013 ) on Creep Exposure

Available online at   Procedia Engineering 55 (2013 ) on Creep Exposure Available online at www.sciencedirect.com Procedia Engineering 55 (2013 ) 295 299 6 th International Conference on Creep, Fatigue and Creep-Fatigue Interaction [CF-6] Microstructural Modifications due

More information

Physcial Metallurgy and Microstructure of Superalloys

Physcial Metallurgy and Microstructure of Superalloys www.materialstechnology.org Physcial Metallurgy and Microstructure of Superalloys Roger Reed University of Birmingham The definition of superalloys utilized in the classic textbook 'The Superalloys' which

More information

Atomistic Simulation for the Development of Advanced Materials

Atomistic Simulation for the Development of Advanced Materials Atomistic Simulation for the Development of Advanced Materials Brian D. Wirth*, with significant contributions from M.J. Alinger**, A. Arsenlis 1, H.-J. Lee, P.R. Monasterio 2 G.R. Odette 3, B. Sadigh

More information

Fusion Engineering and Design

Fusion Engineering and Design Fusion Engineering and Design 84 (2009) 242 246 Contents lists available at ScienceDirect Fusion Engineering and Design journal homepage: www.elsevier.com/locate/fusengdes Progress in compatibility experiments

More information

Corrosion behaviour of reduced activation ferritic/martensitic steel (RAFMS) and P91 (9Cr- 1Mo) steel in static lead-lithium eutectic

Corrosion behaviour of reduced activation ferritic/martensitic steel (RAFMS) and P91 (9Cr- 1Mo) steel in static lead-lithium eutectic Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2015, 6(9):123-127 ISSN: 0976-8610 CODEN (USA): AASRFC Corrosion behaviour of reduced activation ferritic/martensitic

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea PROGRESS OF DEVELOPING ODS MO ALLOY FOR ACCIDENT TOLERANT FUEL CLADDING AT CGN Xing Gong 1, Sigong Li 1, Rui Li 1, Jun Yan 1, Jiaxiang Xue 1, Qisen Ren 1, Tong Liu*,1, Geng An 2, Yuanjun Sun 2 1 Department

More information

Preparation and characterization of nanostructured oxide dispersion strengthened steels (ODS)

Preparation and characterization of nanostructured oxide dispersion strengthened steels (ODS) 1 Preparation and characterization of nanostructured oxide dispersion strengthened steels (ODS) Ben Zine Haroune Rachid (1. semester presentation) Supervisors: Dr. Csaba Balázsi (Bay Zoltán Ltd.) Dr. Katalin

More information

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015 High-Entropy Alloys Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015 Presentation Outline 1. 2. 3. 4. 5. 6. Introduction High-Entropy Alloys Aero Engine Materials

More information

Activities on ODS steels for Gen IV Cladding tubes

Activities on ODS steels for Gen IV Cladding tubes www.eera-set.eu Activities on ODS steels for Gen IV Cladding tubes Marta Serrano (CIEMAT) marta.serrano@ciemat.es MATISSE Workshop on cross-cutting issues in structural materials R&D for future energy

More information

OPERATING TEMPERATURE WINDOWS FOR FUSION REACTOR STRUCTURAL MATERIALS. at Los Angeles, Los Angeles, CA 90095, USA. Abstract

OPERATING TEMPERATURE WINDOWS FOR FUSION REACTOR STRUCTURAL MATERIALS. at Los Angeles, Los Angeles, CA 90095, USA. Abstract OPERATING TEMPERATURE WINDOWS FOR FUSION REACTOR STRUCTURAL MATERIALS S.J. Zinkle 1 and N.M. Ghoniem 2 1 Metals & Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 2 Mechanical

More information

High heat flux components for a DEMO fusion reactor: material and technology development

High heat flux components for a DEMO fusion reactor: material and technology development High heat flux components for a DEMO fusion reactor: material and technology development Matti Coleman Power Plant Physics and Technology Department EUROfusion G. Federici, J-H. You, T. Barrett, C. Bachmann,

More information

High Temperature Fatigue Life Evaluation Using Small Specimen )

High Temperature Fatigue Life Evaluation Using Small Specimen ) High Temperature Fatigue Life Evaluation Using Small Specimen ) Shuhei NOGAMI, Chiaki HISAKA 1), Masaharu FUJIWARA 1), Eichi WAKAI 2) and Akira HASEGAWA Department of Quantum Science and Energy Engineering,

More information

Operation of DIII-D National Fusion Facility and Related Research Cooperative Agreement DE-FC02-04ER54698 (GA Project 30200)

Operation of DIII-D National Fusion Facility and Related Research Cooperative Agreement DE-FC02-04ER54698 (GA Project 30200) May 10, 2010 Dr. Mark Foster U. S. Department of Energy Office of Science General Atomics Site/Bldg. 7 Rm. 119 3550 General Atomics Ct. San Diego, CA 92121 Reference: Operation of DIII-D National Fusion

More information

Ultimate Tensile Strength (MPa)

Ultimate Tensile Strength (MPa) Thermophysical and Mechanical Properties of Fe-(8-9)%Cr reduced activation steels (4/25/98 draft) S.J. Zinkle, J.P. Robertson and R.L. Klueh Oak Ridge National Laboratory The key thermophysical and mechanical

More information

Oxford University Materials 2005

Oxford University Materials 2005 Oxford University Materials 2005 Fusion materials Fission materials Materials for Fusion and Fission Power 2013 Fusion materials Fission materials CCFE Materials for Fission & Fusion Power Steve Roberts

More information

S. Sharafat US ITER TBM Meeting. April 23 24, 2007

S. Sharafat US ITER TBM Meeting. April 23 24, 2007 Advanced Copper Alloys for FW S. Sharafat US ITER TBM Meeting UCLA April 23 24, 2007 Irradiation Effects on Advanced Copper Alloys Effects of Neutron Irradiation The literatureon neutron irradiation effects

More information

Neural Networks: A set of four case studies

Neural Networks: A set of four case studies Neural Networks: A set of four case studies Stéphane Forsik 1 Introduction The intention here is to present some practical examples of the application of neural networks. Four cases have been chosen from

More information

SiC/SiC Composite for Fusion by NITE Process and Its Performance

SiC/SiC Composite for Fusion by NITE Process and Its Performance SiC/SiC Composite for Fusion by NITE Process and Its Performance A. Kohyama 1), Y. Katoh 1), S.M. Dong 1), T. Hino 2) and Y. Hirohata 2) 1) Institute of Advanced Energy, Kyoto Univ. and CREST-ACE, Uji,

More information

First tensile tests on SiC fiber under ion beam

First tensile tests on SiC fiber under ion beam First tensile tests on SiC fiber under ion beam CEA/DEN/DANS/DMN/SRMA: A. Jankowiak, C. Colin, K. Shimoda, JM. Costantini, S. Paradowski, T. Vandenberghe, S. Doriot CEA/DEN/DANS/DMN/SRMP: Y. Serruys, E.

More information

Pathways for Fusion Energy: Impact of Materials Options

Pathways for Fusion Energy: Impact of Materials Options Pathways for Fusion Energy: Impact of Materials Options Steven J. Zinkle 1,2, Lance L. Snead 3, Brian D. Wirth 1,2 1 University of Tennessee, Knoxville, TN USA 2 Oak Ridge National Lab, Oak Ridge, TN USA

More information

Progress and Status of Fusion Technology and Materials Research in China

Progress and Status of Fusion Technology and Materials Research in China 1 FT/1-1Rd Progress and Status of Fusion Technology and Materials Research in China Zengyu XU, Xiang LIU, Jiming CHEN, Fu ZHANG Southwestern Institute of Physics, Chengdu, Sichuan, China E-mail: xuzy@swip.ac.cn

More information

Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature

Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature Indian Journal of Engineering & Materials Sciences Vol. 23, October 2016, pp. 336-340 Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature Changying

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea DIMENSIONAL BEHAVIOUR TESTING OF ACCIDENT TOLERANT FUEL (ATF) IN THE HALDEN REACTOR R. Szőke, M. A. McGrath, P. Bennett Institute for Energy Technology OECD Halden Reactor Project ABSTRACT In order to

More information

Materials Science and Engineering: An Introduction

Materials Science and Engineering: An Introduction Materials Science and Engineering: An Introduction Callister, William D. ISBN-13: 9780470419977 Table of Contents List of Symbols. 1 Introduction. 1.1 Historical Perspective. 1.2 Materials Science and

More information

Behaviour of Fe-Cr based alloys under neutron irradiation M. Matijasevic 1, 2, a, A. Almazouzi 1, b

Behaviour of Fe-Cr based alloys under neutron irradiation M. Matijasevic 1, 2, a, A. Almazouzi 1, b Behaviour of Fe-Cr based alloys under neutron irradiation M. Matijasevic 1, 2, a, A. Almazouzi 1, b 1 SCK CEN (Belgian Nuclear Research Center) Boeretang 2, B-24 Mol, Belgium 2 Laboratory for construction

More information

Research and Development of Reduced Activation Ferritic/Martensitic Steel CLF-1 at SWIP

Research and Development of Reduced Activation Ferritic/Martensitic Steel CLF-1 at SWIP 1 Research and Development of Reduced Activation Ferritic/Martensitic Steel CLF-1 at SWIP P. H. Wang 1), J. M. Chen 1), Z. Y. Xu 1), S. Liu 2), X.W. Li 2), H.Y. Fu 1) 1) Southwestern Institute of Physics,

More information

M. R. Gilbert, S. L. Dudarev, S. Zheng, L. W. Packer, and J.-Ch. Sublet. EURATOM/CCFE Fusion Association, UK

M. R. Gilbert, S. L. Dudarev, S. Zheng, L. W. Packer, and J.-Ch. Sublet. EURATOM/CCFE Fusion Association, UK Integrated computational study of material lifetime in a fusion reactor environment M. R. Gilbert, S. L. Dudarev, S. Zheng, L.. Packer, and J.-Ch. Sublet EURATOM/CCFE Fusion Association, UK October 12,

More information

Metal-Matrix Composites and Thermal Spray Coatings for Earth Moving Machines Quarter 5 Report

Metal-Matrix Composites and Thermal Spray Coatings for Earth Moving Machines Quarter 5 Report Metal-Matrix Composites and Thermal Spray Coatings for Earth Moving Machines Quarter 5 Report Reporting Period Start Date: 1/01/02 Reporting Period End Date: 3/31/02 Authors: Li Liu, D(Caterpillar), Trent

More information

Optimisation of the Chemical Composition and Manufacturing Route for ODS RAF Steels for Fusion Reactor Application

Optimisation of the Chemical Composition and Manufacturing Route for ODS RAF Steels for Fusion Reactor Application 1 FT/P2-3 Optimisation of the Chemical Composition and Manufacturing Route for ODS RAF Steels for Fusion Reactor Application Z. Oksiuta, N. Baluc Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre

More information

Electrical conductivity of Wesgo AL995 alumina under fast electron irradiation in a high voltage electron microscope

Electrical conductivity of Wesgo AL995 alumina under fast electron irradiation in a high voltage electron microscope JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 4 15 AUGUST 2002 Electrical conductivity of Wesgo AL995 alumina under fast electron irradiation in a high voltage electron microscope M. M. R. Howlader, a)

More information

A COMPARISON OF LOW-CHROMIUM AND HIGH-CHROMIUM REDUCED-ACTIVATION STEELS FOR FUSION APPLICATIONS*

A COMPARISON OF LOW-CHROMIUM AND HIGH-CHROMIUM REDUCED-ACTIVATION STEELS FOR FUSION APPLICATIONS* A COMPARISON OF LOW-CHROMIUM AND HIGH-CHROMIUM REDUCED-ACTIVATION STEELS FOR FUSION APPLICATIONS* R, L. Klueh +, P. J. Maziasz", and D. J. Alexander* INTRODUCTION O S T I Ferritic steels have been considered

More information

Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance EPJ Nuclear Sci. Technol. 2, 5 (2016) B. Cheng et al., published by EDP Sciences, 2016 DOI: 10.1051/epjn/e2015-50060-7 Nuclear Sciences & Technologies Available online at: http://www.epj-n.org REGULAR

More information

Mechanical Properties and Microstructural Characterizations of Potassium Doped Tungsten

Mechanical Properties and Microstructural Characterizations of Potassium Doped Tungsten Mechanical Properties and Microstructural Characterizations of Potassium Doped Tungsten Hua Sheng 1.SCK CEN, the Belgian Nuclear Research Centre, 2400 Mol, Belgium 2.Department of Applied Physics, Ghent

More information

Designing and understanding novel highentropy alloys towards superior properties

Designing and understanding novel highentropy alloys towards superior properties Designing and understanding novel highentropy alloys towards superior properties Zhiming Li zhiming.li@mpie.de 2018-01-19 Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf Aalto MPIE 2 Max-Planck-Institut

More information

Corrosion-resistant coating technique for oxide-dispersionstrengthened

Corrosion-resistant coating technique for oxide-dispersionstrengthened 日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository Title Author(s) Citation Text Version URL DOI Right Corrosion-resistant coating technique for oxide-dispersionstrengthened ferritic/martensitic

More information

SPECIMEN SIZE EFFECT ON THE IN-PLANE SHEAR PROPERTIES OF SILICON CARBIDE/SILICON CARBIDE COMPOSITES

SPECIMEN SIZE EFFECT ON THE IN-PLANE SHEAR PROPERTIES OF SILICON CARBIDE/SILICON CARBIDE COMPOSITES 5 SPECIMEN SIZE EFFECT ON THE IN-PLANE SHEAR PROPERTIES OF SILICON CARBIDE/SILICON CARBIDE COMPOSITES T. Nozawa 1, E. Lara-Curzio 2, Y. Katoh 1,, L.L. Snead 2 and A. Kohyama 1, 1 Institute of Advanced

More information

GA A FUSION TECHNOLOGY FACILITY KEY ATTRIBUTES AND INTERFACES TO TECHNOLOGY AND MATERIALS by C.P.C. WONG

GA A FUSION TECHNOLOGY FACILITY KEY ATTRIBUTES AND INTERFACES TO TECHNOLOGY AND MATERIALS by C.P.C. WONG GA A27273 FUSION TECHNOLOGY FACILITY KEY ATTRIBUTES AND INTERFACES TO TECHNOLOGY AND MATERIALS by C.P.C. WONG MARCH 2012 DISCLAIMER This report was prepared as an account of work sponsored by an agency

More information

M. Short (MIT) F. A. Garner (REC) M. B. Toloczko (PNNL) L. Shao, T. Chen, J. Gigax, E. Aydogan, C.-C. Wei (TAMU) V. N.

M. Short (MIT) F. A. Garner (REC) M. B. Toloczko (PNNL) L. Shao, T. Chen, J. Gigax, E. Aydogan, C.-C. Wei (TAMU) V. N. Examination of issues involved when using ion irradiation to simulate void swelling and microstructural stability of ferritic-martensitic alloys in spallation environments M. Short (MIT) F. A. Garner (REC)

More information

Activation Assessments of 316-SS Vacuum Vessel and W-Based Divertor

Activation Assessments of 316-SS Vacuum Vessel and W-Based Divertor Activation Assessments of 316-SS Vacuum Vessel and W-Based Divertor L. El-Guebaly, A. Robinson, D. Henderson Fusion Technology Institute UW - Madison Contributors: R. Kurtz (PNNL), M. Ulrickson (SNL),

More information

Application of Coating Technology on the Zirconium-Based Alloy to Decrease High-Temperature Oxidation

Application of Coating Technology on the Zirconium-Based Alloy to Decrease High-Temperature Oxidation Application of Coating Technology on the Zirconium-Based Alloy to Decrease High-Temperature Oxidation Hyun-Gil Kim*, Il-Hyun Kim, Jeong-Yong Park, Yang-Hyun Koo, KAERI, 989-111 Daedeok-daero, Yuseong-gu,

More information

Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan

Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan Design and Technology Development of Solid Breeder Blanket Cooled by Supercritical Water in Japan M. Enoeda, Y. Kosaku, T. Hatano, T. Kuroda, N. Miki, T. Honma and M. Akiba Japan Atomic Energy Research

More information

Transmutation. Janne Wallenius Professor Reactor Physics, KTH. ACSEPT workshop, Lisbon

Transmutation. Janne Wallenius Professor Reactor Physics, KTH. ACSEPT workshop, Lisbon Transmutation Janne Wallenius Professor Reactor Physics, KTH Why would one want to transmute high level nuclear waste? Partitioning and transmutation of Pu, Am & Cm reduces the radio-toxic inventory of

More information

Chapter 7. Stainless Steels. /MS371/ Structure and Properties of Engineering Alloys

Chapter 7. Stainless Steels. /MS371/ Structure and Properties of Engineering Alloys Chapter 7 Stainless Steels Stainless steels at least % Cr in iron is required (max 30% Cr) Cr: to make iron surface by forming a surface oxide film protecting the underlying metal from corrosion Ni: to

More information

COMPARISON OF STEADY-STATE AND PULSED-PLASMA TOKAMAK POWER PLANTS

COMPARISON OF STEADY-STATE AND PULSED-PLASMA TOKAMAK POWER PLANTS COMPARISON OF STEADY-STATE AND PULSED-PLASMA TOKAMAK POWER PLANTS F. Najmabadi, University of California, San Diego and The ARIES Team IEA Workshop on Technological Aspects of Steady State Devices Max-Planck-Institut

More information

BWR Core Shroud Boat Sample Metallurgical Testing Summary

BWR Core Shroud Boat Sample Metallurgical Testing Summary BWR Core Shroud Boat Sample Metallurgical Testing Summary Daniel Sommerville, Structural Integrity Associates, Inc. Heather Jackson Structural Integrity Associates, Inc. Nathan Palm Electric Power Research

More information

Influence of alloying additions on grain boundary cohesion in tungsten: First-principles predictions. Xuebang Wu and C.S. Liu

Influence of alloying additions on grain boundary cohesion in tungsten: First-principles predictions. Xuebang Wu and C.S. Liu 2016 Joint ICTP/CAS/IAEA School and Workshop on PMI in Fusion Device Influence of alloying additions on grain boundary cohesion in tungsten: First-principles predictions Xuebang Wu and C.S. Liu Institute

More information

Development of Radiation Resistant Reactor Core Structural Materials

Development of Radiation Resistant Reactor Core Structural Materials Development of Radiation Resistant Reactor Core Structural Materials A. Introduction 1. The core of a nuclear reactor is where the fuel is located and where nuclear fission reactions take place. The materials

More information

Development of small specimen test techniques for the IFMIF test cell

Development of small specimen test techniques for the IFMIF test cell 1 FTP/P7-15 Development of small specimen test techniques for the IFMIF test cell E. Wakai 1), B. Kim 1), T. Nozawa 1), T. Kikuchi 1), M. Hirano 1), A. Kimura 2), R. Kasada 2), T. Yokomine 2), T. Yoshida

More information

DEMO Concept Development and Assessment of Relevant Technologies

DEMO Concept Development and Assessment of Relevant Technologies 1 FIP/3-4Rb DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, H. Utoh, N. Asakura, Y. Someya, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team Japan

More information

ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT

ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT ACTIVATION, DECAY HEAT, AND WASTE DISPOSAL ANALYSES FOR THE ARIES-AT POWER PLANT D. Henderson, L. El-Guebaly, P. Wilson, A. Abdou, and the ARIES Team University of Wisconsin-Madison, Fusion Technology

More information

"DESIGN ISSUES CONCERNING COMPOSITE MATERIAL FUEL-ELEMENT JACKETS BASED ON SILICIUM CARBIDE WITHIH A MATTER OF SAFETY CONCEPT OF WATER- COOLED

DESIGN ISSUES CONCERNING COMPOSITE MATERIAL FUEL-ELEMENT JACKETS BASED ON SILICIUM CARBIDE WITHIH A MATTER OF SAFETY CONCEPT OF WATER- COOLED "DESIGN ISSUES CONCERNING COMPOSITE MATERIAL FUEL-ELEMENT JACKETS BASED ON SILICIUM CARBIDE WITHIH A MATTER OF SAFETY CONCEPT OF WATER- COOLED REACTOR UNDER ACCIDENTS" *V. N. Bezumov, *V. V. Novikov, *A.

More information

THE KNOWN UNKNOWNS OF MOLTEN SALT REACTORS

THE KNOWN UNKNOWNS OF MOLTEN SALT REACTORS THE KNOWN UNKNOWNS OF MOLTEN SALT REACTORS R. Ortega Pelayo 1, M. Edwards 2 1 Canadian Nuclear Laboratories,Chalk River, Ontario, Canada (286 Plant Road, Stn. 42, (613) 584 3311 ext. 44155, rosaelia.ortegapelayo@cnl.ca)

More information

ONR-RRR-088 Revision 0. Research Project ONR-RRR-088

ONR-RRR-088 Revision 0. Research Project ONR-RRR-088 Title of document RESEARCH REPORT Unique Document ID and Revision No: ONR-RRR-088 Revision 0 Project: Title: Research Project ONR-RRR-088 Review of the iron-based materials applicable for the fuel and

More information

Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants

Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants Hitachi Review Vol. 47 (1998), No. 5 225 Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants Masateru Suwa Hideyo Kodama Takao Iwayanagi Abstract: Finding a best-mix

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-18 Joint ICTP- Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 PHYSICS OF RADIATION EFFECT AND ITS SIMULATION FOR NON- METALLIC CONDENSED

More information

Introduction to Composites

Introduction to Composites Section 1 Introduction to Composites By definition, composite materials are formed from two or more materials that have quite different properties. The resultant material has a heterogeneous microstructure

More information

High heat load properties of actively cooled tungsten/copper mock-ups by explosive joining

High heat load properties of actively cooled tungsten/copper mock-ups by explosive joining Journal of Nuclear Materials 363 365 (2007) 1226 1230 www.elsevier.com/locate/jnucmat High heat load properties of actively cooled tungsten/copper mock-ups by explosive joining H. Li a, *, J.L. Chen a,

More information

EU considerations on Design and Qualification of Plasma Facing Components for ITER

EU considerations on Design and Qualification of Plasma Facing Components for ITER EU considerations on Design and Qualification of Plasma Facing Components for ITER Patrick Lorenzetto, F4E Barcelona with inputs from B. Riccardi (F4E), V. Barabash and M. Merola (ITER IO) on Readiness

More information

1. Introduction. 2. Objective of development and effects of alloying elements

1. Introduction. 2. Objective of development and effects of alloying elements Recent boilers have been designed for higher temperatures and pressures than those in the past and require steels with high temperature strength that is greater than that of conventional 18-8 austenitic

More information

EFFECTS OF IRRADIATION TEMPERATURE ON EMBRITTLEMENT OF NUCLEAR PRESSURE VESSEL STEELS

EFFECTS OF IRRADIATION TEMPERATURE ON EMBRITTLEMENT OF NUCLEAR PRESSURE VESSEL STEELS Fahmy M. Haggag 1 EFFECTS OF IRRADIATION TEMPERATURE ON EMBRITTLEMENT OF NUCLEAR PRESSURE VESSEL STEELS Reference: F.M. Haggag, Effects of Irradiation Temperature on Embrittlement of Nuclear Pressure Vessel

More information

Mechanic properties and microstructure of CLAM steel irradiated in STIP-V

Mechanic properties and microstructure of CLAM steel irradiated in STIP-V Mechanic properties and microstructure of CLAM steel irradiated in STIP-V PENG Lei 1, GE Hongen 1, DAI Yong 2, HUANG Qunying 3 1 University of Science and Technology of China (USTC) 2 Paul Scherrer Instiut,

More information

Status and Key Issues of Reduced Activation Martensitic Steels as the Structural Materials of ITER Test Blanket Module and Beyond

Status and Key Issues of Reduced Activation Martensitic Steels as the Structural Materials of ITER Test Blanket Module and Beyond Status and Key Issues of Reduced Activation Martensitic Steels as the Structural Materials of ITER Test Blanket Module and Beyond H. Tanigawa 1), K. Shiba 1), T. Hirose 1), R. Kasada 2), E. Wakai 1), S.

More information