The effect of thermomechanical processing on the creep behavior of Alloy 690

Size: px
Start display at page:

Download "The effect of thermomechanical processing on the creep behavior of Alloy 690"

Transcription

1 Materials Science and Engineering A 473 (2008) The effect of thermomechanical processing on the creep behavior of Alloy 690 C.J. Boehlert Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Received 22 February 2007; received in revised form 17 March 2007; accepted 20 March 2007 Abstract The effect of thermomechanical processing on the microstructure and elevated-temperature creep behavior of Alloy 690 was investigated. Commercially available sheet was subjected to four cycles of cold rolling to 25% deformation followed by annealing at 1000 C for 1 h. Both the resultant microstructure and the original microstructure were characterized using electron backscattered diffraction. The thermomechanically processed microstructure exhibited a slightly lower fraction of twins and a smaller average grain size than the original microstructure. Tensile creep experiments were performed in an open-air environment at temperatures between 650 and 690 C and stresses between 75 and 172 MPa. The measured creep stress exponents (4 5) activation energies ( kj/mol) suggested that dislocation creep with lattice self-diffusion was dominant. The thermomechanically processed microstructure exhibited significantly worse creep resistance than the original as-processed microstructure. Thus, cyclic strain and annealing processing, which has been shown to improve the ductility-dip cracking susceptibility of Alloy 690, is not recommended for enhancing the creep resistance Elsevier B.V. All rights reserved. Keywords: Nickel-based alloy; Electron backscattered diffraction; Creep; Microstructure 1. Introduction Alloy 690, a commercially available nickel-based alloy with a nominal composition close to Ni 30Cr 10Fe (wt.%), is attractive for pressurized-water nuclear reactor components because of its superior corrosion resistance [1 3]. Due primarily to its intergranular stress corrosion cracking resistance (IGSCC), Alloy 690 is intended to replace Alloy 600 (Ni 16Cr 9Fe (wt.%)) as a steam generator tube material in pressurized-water reactors [4]. One potential means to improve the IGSCC resistance of Alloy 690 is through thermomechanical processing (TMP) treatments which alter the grain boundary character distribution (GBCD). Strain-recrystallization-based TMP treatments have resulted in improved IGSCC resistance of pure Ni and Ni-based alloys [5 7]. However, strain-recrystallizationbased TMP investigations of Alloy 690 have been limited [8,9]. Xia et al. [8] have evaluated the effects of thermomechanical processing on the distributions of twin boundaries in Alloy 690. They found that the strain and annealing processes significantly influenced the distributions of twins [8]. They performed cold address: boehlert@egr.msu.edu. rolling between 5 and 50% followed by annealing at 1100 C for 5 min. With small strains (5% cold rolled material), the twin boundaries were parts of clusters, and the overall fraction of special boundaries was However, with larger amounts of cold rolling deformation almost no twin clusters existed, and the overall special boundary fraction was 0.47 [8]. Dave et al. [9] evaluated the effect of TMP on the microstructure and ductility-dip cracking susceptibility of Alloy 690. In their work, the as-received wrought mill microstructure was subjected to a repeated cycle of 25% cold rolling followed by an anneal at 1000 C for 1 h. This cycle was repeated four times and the total reduction of the initial sheet was approximately 67%. The TMP material exhibited a slightly greater percentage of special boundaries (50 55%) than the as-received material (40% special boundaries), and there were regions in which the random boundary network was effectively disrupted. The strainrecrystallization processed material exhibited a higher ductility recovery temperature and a higher minimum ductility than the material that did not undergo cyclic strain-recrystallization processing. Thus the additional TMP treatment had a beneficial impact on the alloy s resistance to cracking and thereby improved its fracture behavior. A correlation between intact random boundary networks and intergranular brittle fracture modes /$ see front matter 2007 Elsevier B.V. All rights reserved. doi: /j.msea

2 234 C.J. Boehlert / Materials Science and Engineering A 473 (2008) was observed, and in regions where this random boundary network had been disrupted, transgranular ductile fracture occurred. Their work suggested that the GBCD and, more specifically, the topological connectivity of random boundaries, had an effect on material resistance to ductility-dip cracking, although there were other intervening microstructural factors mentioned in their study. A complete understanding of the physical mechanisms responsible for the elevated-temperature creep behavior and associated microstructure property relationships of Alloy 690 is lacking. In particular, it has yet to be established if the GBCD, which has been shown to have a significant influence on the mechanical deformation behavior, including creep resistance, of pure Ni and Ni-based superalloy systems [10 14], has an effect on the creep behavior. This work was intended to evaluate processing microstructure property relationships of Alloy 690. In particular the effect of TMP on the microstructure (GBCD, grain size, etc.) and high-temperature creep behavior was evaluated. The material was chosen because it is a commercially used alloy and, as such, the aim of this study was to show relevance to actual engineering materials in use. 2. Experimental procedure The as-processed (AP) Alloy 690 sheet was mill annealed at 1066 C. To produce the TMP sheet, the AP sheet material was subjected to the following strain annealing sequence: cold rolling to 25% deformation followed by a solution treatment at 1000 C for 1 h followed by air cooling. This sequence was repeated four times. This sequence was chosen based on identical TMP treatments performed by Dave et al. [9]. The original thickness of the AP sheet was approximately 8 mm while the final thickness of the TMP sheet was 2.7 mm. This constituted a total reduction of the AP sheet s thickness of approximately 66%. Bulk chemical analysis was performed using inductively coupled plasma optical emission spectroscopy and inert gas fluorescence. Each AP and TMP sheet material was sectioned and metallographically polished to prepare it for imaging. Spatially resolved electron backscattered diffraction (EBSD) orientation maps were obtained from polished sections using a FEI XL-30 Field Emission Gun scanning electron microscope (SEM). The EBSD hardware and software were manufactured by EDAX-TSL, Inc. (Draper, UT, USA). The specimens were ground mechanically by 15, 6, and 1 m diamond suspension for 10 min, respectively, and then polished by 0.06 m colloidal silica for 60 min. The GBCD was characterized using the orientation maps to determine the orientation relationships between grains. For each map, more than 500 grain boundaries were analyzed using a step size of between 0.5 and 2 m. Low-angle boundaries (LABs) were defined as those boundaries containing misorientations between 2 and 15. Brandon s criteria [15] were used to distinguish between general high-angle boundaries (GHABs) and coincident site lattice boundaries (CSLBs). The reported fractions of GHABs, LABs, CSLBs, and twins ( 3) were the averaged values taken from several orientation maps, performed on the cross-sections, rolling faces, or longitudinal sections of the sheets. Grain size was determined using the mean line intercept method [16,17]. Blanks from the AP and TMP sheet materials were machined, using either electrodischarge machining or a mill, into a flat dogbone geometry used for tensile and tensile creep specimens. Open-air tensile creep experiments were performed on vertical Applied Test System, Incorporated (Butler, PA, USA) load frames with a 20:1 lever-arm ratio. Applied Test System single zone furnaces were used to heat the specimens to within ±3 Cof the target temperature. Specimen temperatures were monitored by three chromel alumel type K thermocouples located within the specimen s reduced section. Creep strain was monitored during the tests using a linear variable differential transformer that was connected to a 25.4 mm gage length Applied Test System high-temperature extensometer. The extensometer was attached directly to the gage section of each sample. The testing temperatures and stresses ranged between 650 and 690 C and MPa, respectively. All creep specimens were loaded parallel to the rolling direction, and the experiments were conducted such that the specimens were soaked at the creep temperature for at least 60 min prior to applying load in order to minimize the thermal stresses. After the creep strain had proceeded well into the secondary regime, either the load or temperature was changed or the creep test was discontinued. The tested specimens were cooled under load to minimize recovery of the deformed structures. Room-temperature (RT) tensile tests were performed at a strain rate of 10 3 s 1 using an Instron 4206 tensile testing machine. Strain was measured during the tensile tests with an extensometer attached directly to the gage section of the sample. 3. Results and discussion 3.1. Microstructure Table 1 lists the measured alloy composition. Fig. 1 illustrates backscattered electron SEM images of the AP microstructures. Fig. 2 illustrates backscattered electron SEM images of the TMP microstructures. The TMP material exhibited an average equiaxed grain size of 8.9 m and the AP material exhibited an average grain size of 16.1 m. It is noted that the grain boundaries were intact and uncracked in both the AP and TMP microstructures. The AP microstructure was somewhat banded which has also been observed in previous studies of this alloy [9]. Banding was also exhibited in the TMP microstructures. Fine M 23 C 6 carbides were observed to decorate the grain boundaries in both microstructures, see Figs. 1b and 2a, while larger carbides were distributed throughout the microstructures. Table 1 Measured Composition of the IN 690 alloy in wt.% Ni Cr Fe Mn Si C Si Al Mo Co O N

3 C.J. Boehlert / Materials Science and Engineering A 473 (2008) Fig. 1. Backscattered electron SEM images (a) and (b) of the as-processed (AP) microstructure. Fig. 2. Backscattered electron SEM images (a) and (b) of the thermomechanically-processed (TMP) microstructure. Fig. 3 illustrates an EBSD orientation map for the AP microstructure, which exhibited an equiaxed microstructure where the grain orientations were distributed fairly evenly. Pole figure analysis indicated that the microstructure was not strongly textured. Fig. 4 illustrates an EBSD orientation map for the TMP microstructure. The GHAB fractions were the majority in both microstructures. The volume fraction of twins observed was 0.10 and 0.05 for the AP and TMP microstructures, respectively. The volume fraction of LABs observed was 0.25 and 0.30 for the AP and TMP microstructures, respectively. Thus, the TMP material exhibited a slightly lower fraction of twins and a slightly higher fraction of LABs compared to the AP material. If we consider that the combination of the LAB and CSLB fractions (< 29) constitute the overall fraction of special boundaries, then the maximum special boundary fraction was approximately 0.35 for both the AP and TMP microstructures. This value is significantly less than the maximum special boundary fraction value, , measured by Dave et al. [9] Tensile and creep behavior Representative RT tensile curves are illustrated in Fig. 5. The AP microstructure exhibited a slightly greater yield strength (364 MPa) than the TMP microstructure (344 MPa). The ultimate tensile strengths for both microstructures were close to 725 MPa and significant work hardening was exhibited. The creep strain-life history resembled that for most metals exhibiting three stages of creep: primary, secondary, and tertiary [18,19]. Fig. 6 illustrates strain versus time plots for each of the materials at T = 650 C and σ = 172 MPa. Once the creep stress was reached there appeared to be a short incubation period before a positive creep strain was achieved. This was common for both the AP and TMP conditions. The AP material exhibited significantly greater creep resistance than the TMP material. No grain boundary cracking was observed even for samples deformed to over 15% strain. Fig. 7a illustrates the minimum creep strain rate versus applied stress behavior at T = 650 C, while Fig. 7b illustrates the minimum creep strain versus inverse temperature response at σ = 125 MPa.

4 236 C.J. Boehlert / Materials Science and Engineering A 473 (2008) Fig. 5. RT stress vs. strain behavior for as-processed (AP) and thermomechanically processed (TMP) specimens. Fig. 3. EBSD orientation map for the as-processed (AP) microstructure. The TMP condition exhibited lower creep resistance than the AP material at all the applied stress and temperatures evaluated. In particular, the minimum creep rate was approximately 0.5 orders of magnitude faster for the TMP microstructure compared with the AP condition. The measured creep stress exponents were between 4 and 5 at T = 650 C, and the Q app values were between 320 kj/mol (TMP) and 368 kj/mol (AP) at σ = 125 MPa. Such creep parameters are similar to those measured for other similar nickel-based superalloys [14] and suggest a dislocation climb mechanism [20,21] is active. Based on the measured exponents and activation energies, dislocation creep with lattice self-diffusion was the suggested dominant creep mechanism over the entire applied stress range examined (75 MPa < σ < 172 MPa). It is felt that the smaller grain size and the lower twin fractions could have contributed to the worse creep resistance exhibited by the TMP material. The presence of the grain boundary carbides may have also contributed to the creep behavior discrepancy as Fig. 4. EBSD orientation map for the thermomechanically processed (TMP) microstructure. Fig. 6. Creep strain vs. time plots for as-processed (AP) and thermomechanically processed (TMP) specimens at T = 650 C and σ = 172 MPa.

5 C.J. Boehlert / Materials Science and Engineering A 473 (2008) microstructure exhibited significantly greater creep resistance than the TMP microstructure. For the applied stresses and temperature evaluated, the measured creep parameters suggested that dislocation creep was the dominant creep deformation mechanism. Overall, the TMP sequence degraded the creep resistance, refined the equiaxed grain size and promoted a lower fraction of twins in the microstructure. Thus TMP involving cyclic cold rolling and annealing is not suggested for improving the creep resistance of Alloy 690. Acknowledgements This work was supported by the National Science Foundation through grant DMR The author is grateful to Mr. Nathan Eisinger (Special Metals Corporation, Huntington, WV, USA) for directing the alloy processing effort. References Fig. 7. Creep plots used to determine the creep parameters n and Q app : (a) minimum creep rate vs. applied stress at T = 650 C and (b) ln minimum creep rate vs. 1/T at σ = 125 MPa. the TMP material exhibited more grain boundary area, due to its fine grain size, than the AP material. 4. Summary This work evaluated the effect of TMP on the microstructure and creep behavior of Alloy 690. The AP microstructure exhibited a slightly larger volume fraction of twins than the TMP microstructure, yet the overall fraction of special boundaries was similar for both microstructures. The AP material exhibited a grain size almost twice that of the TMP material. The AP [1] R.S. Dutta, R. Tewari, Br. Corros. J. 3 (34) (1999) [2] A.J. Sedricks, J.W. Schultz, M.A. Cordovi, Boshoku Gijutsu 28 (1979) [3] C. Cheung, U. Erb, G. Palumbo, Mater. Sci. Eng. 185A (1994) [4] M. Thuvander, K. Stiller, Mater. Sci. Eng. 281A (2000) [5] G. Palumbo, K.T. Aust, Acta. Metall. Mater. 11 (38) (1990) [6] G. Palumbo, U.S. Patent 5,817,193 (1998). [7] B. Alexandreanu, B.M. Capell, G. Was, Mater. Sci. Eng. 300A (2001) [8] S. Xia, B.X. Zhou, W.J. Chen, W.G. Wang, Scripta Mater. 54 (2006) [9] V.R. Dave, M.J. Cola, M. Kumar, A.J. Schwartz, G.N.A. Hussen, Welding J. (January 2004) 1-S 5-S (American Welding Society and Welding Research Council). [10] E.M. Lehockey, G. Palumbo, Mater. Sci. Eng. 237A (1997) [11] G.S. Was, V. Thaveeprungsriporn, D.C. Crawford, J. Met. (1998) [12] V. Thaveeprungsriporn, G. Was, Metall. Mater. Trans. A 28A (1997) [13] G. Palumbo, K.T. Aust, in: D. Wolf, S. Yip (Eds.), Special Properties of Grain Boundaries, Materials Interfaces: Atomic Level Structure and Properties, Chapman and Hall, NY, 1989, pp [14] C.J. Boehlert, D.S. Dickmann, N.C. Eisinger, Metall. Mater. Trans. A 37A (1) (2006) [15] D.G. Brandon, Acta Metall. 14 (1966) [16] J.E. Hilliard, Met. Prog. 78 (1964) [17] Standard Test Methods for Determining Average Grain Size, ASTM Designation E112-96e3, American Society for Testing and Materials, West Conshohocken, PA. [18] R.W. Evans, B. Wilshire, Creep of Metals and Alloys, The Institute of Metals, New York, NY, [19] R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, fourth ed., John Wiley and Sons, New York, NY, [20] T.G. Langdon, P. Yavari, Acta Metall. 30 (1982) [21] J. Weertman, Trans. Am. Soc. Met. 61 (1968)

THE EFFECT OF THERMOMECHANICAL PROCESSING ON THE MICROSTRUCTURE AND CREEP BEHAVIOR OF UDIMET ALLOY 188

THE EFFECT OF THERMOMECHANICAL PROCESSING ON THE MICROSTRUCTURE AND CREEP BEHAVIOR OF UDIMET ALLOY 188 Superalloys 2008 Roger C. Reed, Kenneth A. Green, Pierre Caron, Timothy P. Gabb, Michael G. Fahrmann, Eric S. Huron and Shiela A. Woodard TMS (The Minerals, Metals & Materials Society), 2008 THE EFFECT

More information

The Effect of Cold Rolling on the Grain Boundary Character and Creep Rupture Properties of INCONEL alloy 718

The Effect of Cold Rolling on the Grain Boundary Character and Creep Rupture Properties of INCONEL alloy 718 Journal Citation (to be inserted by the publisher) Copyright by Trans Tech Publications The Effect of Cold Rolling on the Grain Boundary Character and Creep Rupture Properties of INCONEL alloy 718 C.J.

More information

Microscopy AND Microanalysis MICROSCOPY SOCIETY OF AMERICA 2011

Microscopy AND Microanalysis MICROSCOPY SOCIETY OF AMERICA 2011 Microsc. Microanal. 17, 350 361, 2011 doi:10.1017/s1431927610094225 Microscopy AND Microanalysis MICROSCOPY SOCIETY OF AMERICA 2011 The Microstructure and Creep Behavior of Cold Rolled Udimet 188 Sheet

More information

CORROSION AND GRAIN BOUNDARY CHARACTER DISTRIBUTION (GBCD) IN 316L AUSTENITIC STAINLESS STEEL

CORROSION AND GRAIN BOUNDARY CHARACTER DISTRIBUTION (GBCD) IN 316L AUSTENITIC STAINLESS STEEL CORROSION AND GRAIN BOUNDARY CHARACTER DISTRIBUTION (GBCD) IN 316L AUSTENITIC STAINLESS STEEL D. N. Wasnik, I. Samajdar, V. Kain', P. K. Del and B. Verlinden2 Department of Metallurgical Engineering and

More information

Recovery and recrystallization in the superplastic deformation of AA5182

Recovery and recrystallization in the superplastic deformation of AA5182 Mat.-wiss. u. Werkstofftech. 2008, 39, No. 4-5 DOI: 10.1002/mawe.200800289 Recovery and recrystallization in the superplastic deformation of AA5182 Z. Chen, A.V. Kazantzis, J.Th.M. De Hosson The coarse-grained

More information

Influence of Grain Boundary Character on Creep Void Formation in Alloy 617

Influence of Grain Boundary Character on Creep Void Formation in Alloy 617 Boise State University ScholarWorks Materials Science and Engineering Faculty Publications and Presentations Department of Materials Science and Engineering 12-1-2009 Influence of Grain Boundary Character

More information

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Materials Transactions, Vol. 50, No. 7 (2009) pp. 1832 to 1837 #2009 The Japan Institute of Metals Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Kuk Hyun

More information

Effect of thermomechanical processing on the creep behaviour of Udimet alloy 188

Effect of thermomechanical processing on the creep behaviour of Udimet alloy 188 Philosophical Magazine Vol. 88, No. 5, 11 February 2008, 641 664 Effect of thermomechanical processing on the creep behaviour of Udimet alloy 188 C.J. Boehlert*, S.C. Longanbach and T.R. Bieler Department

More information

Available online at ScienceDirect. Procedia Engineering 86 (2014 ) 58 65

Available online at   ScienceDirect. Procedia Engineering 86 (2014 ) 58 65 Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 86 (2014 ) 58 65 1st International Conference on Structural Integrity, ICONS-2014 Influence of Nitrogen Content on the Evolution

More information

Effects of Electric Field Treatment on Corrosion Behavior of a Ni-Cr-W-Mo Superalloy

Effects of Electric Field Treatment on Corrosion Behavior of a Ni-Cr-W-Mo Superalloy Materials Transactions, Vol. 50, No. 7 (2009) pp. 1644 to 1648 Special Issue on New Functions and Properties of Engineering Materials Created by Designing and Processing #2009 The Japan Institute of Metals

More information

Tensile Flow Behavior in Inconel 600 Alloy Sheet at Elevated Temperatures

Tensile Flow Behavior in Inconel 600 Alloy Sheet at Elevated Temperatures Available online at www.sciencedirect.com Procedia Engineering 36 (212 ) 114 12 IUMRS-ICA 211 Tensile Flow Behavior in Inconel 6 Alloy Sheet at Elevated Temperatures Horng-Yu Wu a, Pin-Hou Sun b, Feng-Jun

More information

The Role of Oxygen-Grain-Boundary Diffusion During Intercrystalline Oxidation and Intergranular Fatigue Crack Propagation in Alloy 718

The Role of Oxygen-Grain-Boundary Diffusion During Intercrystalline Oxidation and Intergranular Fatigue Crack Propagation in Alloy 718 Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 The Role of Oxygen-Grain-Boundary Diffusion During Intercrystalline Oxidation and

More information

Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel

Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 112 117 ICM11 Grain boundary engineering for control of fatigue crack propagation in austenitic stainless steel Shigeaki Kobayashi

More information

THE EFFECT OF COLD ROLLING ON THE CREEP BEHAVIOR OF INCONEL ALLOY 718

THE EFFECT OF COLD ROLLING ON THE CREEP BEHAVIOR OF INCONEL ALLOY 718 Superalloys 718, 625, 706 and Derivatives 2005 Edited by EA Loria TMS (The Minerals, Metals & Materials Society), 2005 THE EFFECT OF COLD ROLLING ON THE CREEP BEHAVIOR OF INCONEL ALLOY 718 CJ Boehlert

More information

Cryorolling of Al 5083 Alloy: Microstructure and Mechanical Properties at Various Post Annealing Temperatures

Cryorolling of Al 5083 Alloy: Microstructure and Mechanical Properties at Various Post Annealing Temperatures International Journal of Current Science, Engineering & Technology Original Research Article Open Access AMCT 2017 Malaysia Special Issue ISSN : 2581-4311 Cryorolling of Al 5083 Alloy: Microstructure and

More information

Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steels

Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steels Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steels J MARROW, D ENGELBERG, A JIVKOV, P WOOD, L. BABOUT, N STEVENS Materials Performance

More information

Properties of UFG HSLA Steel Profiles Produced by Linear Flow Splitting Enrico Bruder a, Tilman Bohn b and Clemens Müller c

Properties of UFG HSLA Steel Profiles Produced by Linear Flow Splitting Enrico Bruder a, Tilman Bohn b and Clemens Müller c Materials Science Forum Online: 28-6-17 ISSN: 1662-9752, Vols. 584-586, pp 661-666 doi:1.428/www.scientific.net/msf.584-586.661 28 Trans Tech Publications, Switzerland Properties of UFG HSLA Steel Profiles

More information

The Effect of Crystallographic Texture on the Wrap Bendability in AA5754-O Temper Sheet Alloy

The Effect of Crystallographic Texture on the Wrap Bendability in AA5754-O Temper Sheet Alloy Proceedings of the 12th International Conference on Aluminium Alloys, September 5-9, 2010, Yokohama, Japan 2010 The Japan Institute of Light Metals pp. 607-612 607 The Effect of Crystallographic Texture

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL

EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL EFFECT OF MEAN STRESS ON SHORT CRACK GROWTH IN FATIGUED 316L STAINLESS STEEL Karel OBRTLÍK Jiří MAN Jaroslav POLÁK Institute of Physics of Materials, Academy of Sciences of the Czech Republic Žižkova 22,

More information

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 34L STAINLESS STEEL H.-J. Christ, C. K. Wamukwamba and H. Mughrabi The fatigue behaviour of the austenitic stainless steel AISI34L

More information

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy B. Gopi, N. Naga Krishna, K. Venkateswarlu, K. Sivaprasad Abstract An effect of rolling temperature

More information

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy

Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy Influence of Rolling Temperature on Microstructure and Mechanical Properties of Cryorolled Al-Mg-Si alloy B. Gopi, N. Naga Krishna, K. Venkateswarlu, K. Sivaprasad Abstract An effect of rolling temperature

More information

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY L. M. Pike Haynes International 12 West Park Ave.; Kokomo, IN, 4694-913 USA Keywords: 282, thermal stability, R-41, Waspaloy, 263 Abstract HAYNES 282 was

More information

Arch. Metall. Mater. 62 (2017), 2B,

Arch. Metall. Mater. 62 (2017), 2B, Arch. Metall. Mater. 62 (2017), 2B, 1243-1248 DOI: 10.1515/amm-2017-0185 S.-W. KIM* #, T.-Y. AHN*, Y.-S. LIM*, S.-S. HWANG* EFFECT OF LOCAL STRAIN DISTRIBUTION OF COLD-ROLLED ALLOY 690 ON PRIMARY WATER

More information

STABILIZATION OF THE SHAPE MEMORY EFFECT IN NiTi: AN EXPERIMENTAL INVESTIGATION

STABILIZATION OF THE SHAPE MEMORY EFFECT IN NiTi: AN EXPERIMENTAL INVESTIGATION Scripta mater. 42 (2000) 1145 1150 www.elsevier.com/locate/scriptamat STABILIZATION OF THE SHAPE MEMORY EFFECT IN NiTi: AN EXPERIMENTAL INVESTIGATION B. Erbstoeszer, B. Armstrong, M. Taya, and K. Inoue

More information

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER ALUMINIUM PREPARED BY SEVERE PLASTIC DEFORMATION

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER ALUMINIUM PREPARED BY SEVERE PLASTIC DEFORMATION MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWR ALUMINIUM PREPARED BY SEVERE PLASTIC FORMATION Jiří DVOŘÁK 1a, Petr KRÁL 2a, Martin BALOG 3b, František SIMANČÍK 4b, Václav SKLENIČKA 5a a Institute of

More information

EFFECTS OF AL AND TI ON HAYNES 282 WITH FIXED GAMMA PRIME CONTENT. Introduction

EFFECTS OF AL AND TI ON HAYNES 282 WITH FIXED GAMMA PRIME CONTENT. Introduction EFFECTS OF AL AND TI ON HAYNES 282 WITH FIXED GAMMA PRIME CONTENT Paul D. Jablonski 1, Christopher J. Cowen 1, and Jeffery A. Hawk 1 1 National Energy Technology Laboratory 1450 Queen Avenue SW, Albany,

More information

Thermomechanical fatigue crack growth in a cast polycrystalline superalloy

Thermomechanical fatigue crack growth in a cast polycrystalline superalloy MATEC Web of Conferences 4, 94 (24) DOI:.5/matecconf/24494 c Owned by the authors, published by EDP Sciences, 24 Thermomechanical fatigue crack growth in a cast polycrystalline superalloy Johan J. Moverare,2,a,

More information

Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature

Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature Indian Journal of Engineering & Materials Sciences Vol. 23, October 2016, pp. 336-340 Strain-rate sensitivity of tensile behaviors for nickel-based superalloys GH3044 and GH4033 at room temperature Changying

More information

Chapter 7: Dislocations and strengthening mechanisms. Strengthening by grain size reduction

Chapter 7: Dislocations and strengthening mechanisms. Strengthening by grain size reduction Chapter 7: Dislocations and strengthening mechanisms Mechanisms of strengthening in metals Strengthening by grain size reduction Solid-solution strengthening Strain hardening Recovery, recrystallization,

More information

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling

Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling Materials Transactions, Vol. 45, No. 1 (24) pp. 69 to 74 #24 The Japan Institute of Light Metals Improvement of Mechanical Properties of 7475 Based Aluminum Alloy Sheets by Controlled Warm Rolling Hiroki

More information

Cracking Behavior In Inconel Alloy 690: Role Of The Environment In High Temperature H 2 -Supersaturated Steam H. F. López and J. B.

Cracking Behavior In Inconel Alloy 690: Role Of The Environment In High Temperature H 2 -Supersaturated Steam H. F. López and J. B. Cracking Behavior In Inconel Alloy 690: Role Of The Environment In High Temperature H 2 -Supersaturated Steam H. F. López and J. B. Ferguson Materials Department, University of Wisconsin-Milwaukee, P.

More information

Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel

Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Stress Corrosion Cracking Behavior of Hardening-Treated 13Cr Stainless Steel To cite this article: Li-Bin Niu et al 2018 IOP Conf.

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Comparison of grain boundary sliding in fine grained Mg and Al alloys during superplastic deformation

Comparison of grain boundary sliding in fine grained Mg and Al alloys during superplastic deformation Scripta Materialia 48 (2003) 1117 1122 www.actamat-journals.com Comparison of grain boundary sliding in fine grained Mg and Al alloys during superplastic deformation Y.N. Wang, J.C. Huang * Institute of

More information

Oxford Road, Manchester, M13 9PL, UK

Oxford Road, Manchester, M13 9PL, UK CHARACTERISATION OF THE SENSITISATION BEHAVIOUR OF THERMO-MECHANICALLY PROCESSED TYPE 304 STAINLESS STEEL USING DL-EPR TESTING AND IMAGE ANALYSIS METHODS S. Rahimi 1, *D.L. Engelberg 1, T.J. Marrow 1 1

More information

1. Project special reports

1. Project special reports 1. Project special reports 1.1 Deformation localisation and EAC in inhomogeneous microstructures of austenitic stainless steels Ulla Ehrnstén 1, Wade Karlsen 1, Janne Pakarinen 1, Tapio Saukkonen 2 Hänninen

More information

Effects of Post Weld Heat Treatment (PWHT) Temperature on Mechanical Properties of Weld Metals for High-Cr Ferritic Heat-Resistant Steel

Effects of Post Weld Heat Treatment (PWHT) Temperature on Mechanical Properties of Weld Metals for High-Cr Ferritic Heat-Resistant Steel Effects of Post Weld Heat Treatment (PWHT) Temperature on Mechanical Properties of Weld Metals for High-Cr Ferritic Heat-Resistant Steel Genichi TANIGUCHI *1, Ken YAMASHITA *1 * 1 Welding Process Dept.,

More information

Chulalongkorn University, Bangkok, Thailand. Chulalongkorn University, Bangkok, Thailand; Abstract

Chulalongkorn University, Bangkok, Thailand. Chulalongkorn University, Bangkok, Thailand; Abstract Journal of Metals, Materials and Minerals. Vol.16 No.2 pp.25-31, 2006 The Effect of Long-Term Thermal Exposure at Elevated Temperatures on Microstructures and Mechanical Properties in Centrifugally Casted

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

SUPPRESSION OF ABNORMAL GRAIN GROWTH IN FRICTION-STIR WELDED 6061-T6 ALUMINUM ALLOY BY PRE-STRAIN ROLLING

SUPPRESSION OF ABNORMAL GRAIN GROWTH IN FRICTION-STIR WELDED 6061-T6 ALUMINUM ALLOY BY PRE-STRAIN ROLLING Published in the Proceedings of the 16th International Aluminum Alloys Conference (ICAA16) 2018 ISBN: 978-1-926872-41-4 by the Canadian Institute of Mining, Metallurgy & Petroleum SUPPRESSION OF ABNORMAL

More information

Chapter 8 Strain Hardening and Annealing

Chapter 8 Strain Hardening and Annealing Chapter 8 Strain Hardening and Annealing This is a further application of our knowledge of plastic deformation and is an introduction to heat treatment. Part of this lecture is covered by Chapter 4 of

More information

Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by Accumulative Roll Bonding Process

Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by Accumulative Roll Bonding Process Materials Transactions, Vol. 43, No. 9 (22) pp. 232 to 2325 c 22 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Microstructures and Mechanical Properties of Ultra Low Carbon IF Steel Processed by

More information

STUDY ON SOLID-PHASE WELDING OF FINE-GRAINED HYPEREUTECTOID STEEL WITH 40Cr STEEL

STUDY ON SOLID-PHASE WELDING OF FINE-GRAINED HYPEREUTECTOID STEEL WITH 40Cr STEEL Study Rev. Adv. on solid-phase Mater. Sci. 33 welding (2013) of 97-101 fine-grained hypereutectoid steel with 40Cr steel 97 STUDY ON SOLID-PHASE WELDING OF FINE-GRAINED HYPEREUTECTOID STEEL WITH 40Cr STEEL

More information

BWR Core Shroud Boat Sample Metallurgical Testing Summary

BWR Core Shroud Boat Sample Metallurgical Testing Summary BWR Core Shroud Boat Sample Metallurgical Testing Summary Daniel Sommerville, Structural Integrity Associates, Inc. Heather Jackson Structural Integrity Associates, Inc. Nathan Palm Electric Power Research

More information

Tensile behavior of an austenitic stainless steel subjected to multidirectional forging

Tensile behavior of an austenitic stainless steel subjected to multidirectional forging IOP Conference Series: Materials Science and Engineering OPEN ACCESS Tensile behavior of an austenitic stainless steel subjected to multidirectional forging To cite this article: M Tikhonova et al 2014

More information

Evolution of Microstructure and Texture during Hot Deformation of a Commercially Processed Supral100

Evolution of Microstructure and Texture during Hot Deformation of a Commercially Processed Supral100 J. Mater. Sci. Technol., 2012, 28(6), 531 536. Evolution of Microstructure and Texture during Hot Deformation of a Commercially Processed Supral100 Y. Huang BCAST, Brunel University, Kingston Lane, Uxbridge

More information

IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO , Tehran, Iran. Tabriz, Iran

IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO , Tehran, Iran. Tabriz, Iran IMPROVEMENT OF MECHANICAL PROPERTIES IN FE-MN-TI STEEL BY ALLOYING WITH CR AND MO M. Nili-Ahmadabadi a, S. Hossein Nedjad b, M. Sadeghi a and H. Shirazi a a Deptartment of Metallurgy and Materials Engineering,

More information

A TOUGHNESS STUDY OF THE WELD HEAT AFFECTED ZONE OF A MODIFIED 9Cr-1Mo STEEL

A TOUGHNESS STUDY OF THE WELD HEAT AFFECTED ZONE OF A MODIFIED 9Cr-1Mo STEEL ICF100358OR A TOUGHNESS STUDY OF THE WELD HEAT AFFECTED ZONE OF A MODIFIED 9Cr-1Mo STEEL A. Moitra, K. Laha, P.R. Sreenivasan and S. L. Mannan Materials Development Group Indira Gandhi Centre for Atomic

More information

THE INFLUENCE OF ECAP ON MECHANICAL PROPERTIES OF A TWIN-ROLL CAST. Al-Mn-Fe-Si-Zr ALLOY. Přemysl Málek, Michaela Poková and Miroslav Cieslar

THE INFLUENCE OF ECAP ON MECHANICAL PROPERTIES OF A TWIN-ROLL CAST. Al-Mn-Fe-Si-Zr ALLOY. Přemysl Málek, Michaela Poková and Miroslav Cieslar THE INFLUENCE OF ECAP ON MECHANICAL PROPERTIES OF A TWIN-ROLL CAST Al-Mn-Fe-Si-Zr ALLOY Přemysl Málek, Michaela Poková and Miroslav Cieslar Department of Physics of Materials, Faculty of Mathematics and

More information

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718

More information

Effect of Heat Treatment on Interfacial Strengthening Mechanisms of Second Phase Particulate Reinforced Aluminium Alloy

Effect of Heat Treatment on Interfacial Strengthening Mechanisms of Second Phase Particulate Reinforced Aluminium Alloy 24-26.5.2005, Hradec nad Moravici Effect of Heat Treatment on Interfacial Strengthening Mechanisms of Second Phase Particulate Reinforced Aluminium Alloy S.T. Hasan Faculty of Arts, Computing, Engineering

More information

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL

CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 54 CHAPTER 3 SELECTION AND PROCESSING OF THE SPECIMEN MATERIAL 3.1 HIGH STRENGTH ALUMINIUM ALLOY In the proposed work, 7075 Al alloy (high strength) has been identified, as a material for the studies on

More information

EFFECT OF THE SECOND PHASE ON HYDROGEN EMBRITTLEMENT OF IRON ALLOYS

EFFECT OF THE SECOND PHASE ON HYDROGEN EMBRITTLEMENT OF IRON ALLOYS EFFECT OF THE SECOND PHASE ON HYDROGEN EMBRITTLEMENT OF IRON ALLOYS E. Lunarska*, A. Gachechiladze**, A. Mikeladze**, M. Moeser*** * Institute of Physical Chemistry, 01-223 Warsaw, Poland ** Institute

More information

Kinetics of low temperature plasma carburizing of austenitic stainless steels

Kinetics of low temperature plasma carburizing of austenitic stainless steels Journal of Materials Processing Technology 168 (2005) 189 194 Kinetics of low temperature plasma carburizing of austenitic stainless steels Y. Sun School of Materials Engineering, Nanyang Technological

More information

Thermomechanical Treatment of Austempered Ductile Iron. Central Metallurgical Research and Development Institute, (CMRDI), Cairo, Egypt

Thermomechanical Treatment of Austempered Ductile Iron. Central Metallurgical Research and Development Institute, (CMRDI), Cairo, Egypt Thermomechanical Treatment of Austempered Ductile Iron A A Nofal, H Nasr El-din and M M Ibrahim Central Metallurgical Research and Development Institute, (CMRDI), Cairo, Egypt Abstract The production of

More information

Duplex Aging of Ti-15V-3Cr-3Sn-3Al Alloy

Duplex Aging of Ti-15V-3Cr-3Sn-3Al Alloy The 2012 World Congress on Advances in Civil, Environmental, and Materials Research (ACEM 12) Seoul, Korea, August 26-30, 2012 Duplex Aging of Ti-15V-3Cr-3Sn-3Al Alloy Ying-Kai Chou 1), *Leu-Wen Tsay 2)

More information

Effect of grain size for the tensile strength and the low cycle fatigue at elevated temperature of alloy 718 cogged by open die forging press

Effect of grain size for the tensile strength and the low cycle fatigue at elevated temperature of alloy 718 cogged by open die forging press Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 Effect of grain size for the tensile strength and the low cycle fatigue at elevated

More information

AN ADVANCED CAST-AND-WROUGHT SUPERALLOY (TMW-4M3) FOR TURBINE DISK APPLICATIONS BEYOND 700 C

AN ADVANCED CAST-AND-WROUGHT SUPERALLOY (TMW-4M3) FOR TURBINE DISK APPLICATIONS BEYOND 700 C AN ADVANCED CAST-AND-WROUGHT SUPERALLOY (TMW-4M3) FOR TURBINE DISK APPLICATIONS BEYOND 700 C Y. GU 1, Z. Zhong 1, Y. Yuan 2, T. Osada 1,a, C. Cui 1,b, T. Yokokawa 1 and H. Harada 2 1 High Temperature Materials

More information

Static creep behaviour of Al-Zn-Mg and Al-Zn-Mg-Cu alloys

Static creep behaviour of Al-Zn-Mg and Al-Zn-Mg-Cu alloys JOURNAL OF MATERIALS SCIENCE 31 (1996) 2719 2723 Static creep behaviour of Al-Zn-Mg and Al-Zn-Mg-Cu alloys JONG GEON PARK, DEUKYONG LEE Department of Materials Engineering, Daelim College of Technology,

More information

The Effect of Microstructure on Mechanical Properties of Forged 6061 Aluminum Alloy

The Effect of Microstructure on Mechanical Properties of Forged 6061 Aluminum Alloy Proceedings of the 9 th International Conference on Aluminium Alloys (2004) Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd 1382 The Effect of Microstructure

More information

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment.

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment. Advanced Materials Research Vol. 585 (2012) pp 435-439 Online available since 2012/Nov/12 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.585.435 Effect

More information

THE ROLE OF Mg ON STRUCTURE ANB MECHANICAL PROPERTIES IN ALLOY 718

THE ROLE OF Mg ON STRUCTURE ANB MECHANICAL PROPERTIES IN ALLOY 718 THE ROLE OF Mg ON STRUCTURE ANB MECHANICAL PROPERTIES IN ALLOY 718 Xishan Xie, Zhichao Xu, Bo Qu and Guoliang Chen University of Science and Technology, Beijing 100083, China John F. Radavich, School of

More information

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit.

(12) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. (1) 1. Just one True and False question and a couple of multiple choice calculations, circle one answer for each problem, no partial credit. The next page is left blank for your use, but no partial will

More information

Grain Boundary Engineering of Medium Mn TWIP Steels: A Novel Method to Enhance the Mechanical Properties

Grain Boundary Engineering of Medium Mn TWIP Steels: A Novel Method to Enhance the Mechanical Properties ISIJ International, Vol. 58 (2018), ISIJ International, No. 7 Vol. 58 (2018), No. 7, pp. 1324 1331 Grain Boundary Engineering of Medium Mn TWIP Steels: A Novel Method to Enhance the Mechanical Properties

More information

Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling

Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single Roller Drive Rolling Materials Transactions, Vol. 43, No. 10 (2002) pp. 2554 to 2560 c 2002 The Japan Institute of Metals Mechanical Properties and Press Formability at Room Temperature of AZ31 Mg Alloy Processed by Single

More information

Mechanical Properties and Microstructures of a Thin Plate of Nickel-Free Stainless Steel with Nitrogen Absorption Treatment

Mechanical Properties and Microstructures of a Thin Plate of Nickel-Free Stainless Steel with Nitrogen Absorption Treatment Materials Transactions, Vol. 44, No. 7 (2003) pp. 1363 to 1369 #2003 The Japan Institute of Metals Mechanical Properties and Microstructures of a Thin Plate of Nickel-Free Stainless Steel with Nitrogen

More information

Temper Embrittlement Sensitivities of 3Cr 1Mo and 2.25Cr 1Mo Low Alloy Steels

Temper Embrittlement Sensitivities of 3Cr 1Mo and 2.25Cr 1Mo Low Alloy Steels , pp. 1363 1367 Temper Embrittlement Sensitivities of 3Cr 1Mo and 2.25Cr 1Mo Low Alloy Steels Hossein ARABI, Shamseddin MIRDAMADI and A. R. ABDOLMALEKI Department of Metallurgy and Materials Engineering,

More information

EFFECT OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 6061 ALUMINUM ALLOY

EFFECT OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 6061 ALUMINUM ALLOY Effect of Heat Treatment on Microstructure and Mechanical Properties of 6061 Aluminum Alloy EFFECT OF HEAT TREATMENT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 6061 ALUMINUM ALLOY J. Ridhwan 1*, J.

More information

Microstructure and Strength Properties of Austenitic and Ferritic Stainless Steels When Brazed with Ni-Cr-P Amorphous Brazing Foils

Microstructure and Strength Properties of Austenitic and Ferritic Stainless Steels When Brazed with Ni-Cr-P Amorphous Brazing Foils Microstructure and Strength Properties of Austenitic and Ferritic Stainless Steels When Brazed with Ni-Cr-P Amorphous Brazing Foils Eric Theisen and Will Coughlan Metglas, Inc., Conway, SC, USA eric.theisen@metglas.com

More information

INTERFACE-CORRELATED BONDING PROPERTIES OF A ROLL BONDED AL-CU SHEET

INTERFACE-CORRELATED BONDING PROPERTIES OF A ROLL BONDED AL-CU SHEET THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INTERFACE-CORRELATED BONDING PROPERTIES OF A ROLL BONDED AL-CU SHEET K.S. Lee 1*, Y.N. Kwon 1 1 Light Metal Division, Korea Institute of Materials

More information

Microstructural evolution of Al Zn Mg Cu (Sc) alloy during hot extrusion and heat treatments

Microstructural evolution of Al Zn Mg Cu (Sc) alloy during hot extrusion and heat treatments Journal of Materials Processing Technology 155 156 (2004) 1330 1336 Microstructural evolution of Al Zn Mg Cu (Sc) alloy during hot extrusion and heat treatments Dong-Woo Suh a,, Sang-Yong Lee a, Kyong-Hwan

More information

Recrystallization Behavior of Cold Rolled Alloy 718. R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman *

Recrystallization Behavior of Cold Rolled Alloy 718. R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman * Recrystallization Behavior of Cold Rolled Alloy 718 R.P. Singh, J.M. Hyzak, T.E. Howson and R.R. Biederman * Wyman-Gordon Company, North Grafton, MA 01536 * Worcester Polytechnic Institute, Worcester,

More information

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications R.S. Kircher, A.M. Christensen, K.W. Wurth Medical Modeling, Inc., Golden, CO 80401 Abstract The Electron Beam Melting (EBM)

More information

QUANTITATIVE MICROSTRUCTURE ANALYSIS OF DISPERSION STRENGTHENED Al-Al 4 C 3 MATERIAL BY EBSD TECHNIQUE

QUANTITATIVE MICROSTRUCTURE ANALYSIS OF DISPERSION STRENGTHENED Al-Al 4 C 3 MATERIAL BY EBSD TECHNIQUE Acta Metallurgica Slovaca, Vol. 16, 2010, No.2, p. 97-101 97 QUANTITATIVE MICROSTRUCTURE ANALYSIS OF DISPERSION STRENGTHENED Al-Al 4 C 3 MATERIAL BY EBSD TECHNIQUE M. Varchola, M. Besterci, K. Sülleiová

More information

ORIENTATION DETERMINATION BY EBSP IN AN ENVIRONMENTAL SCANNING ELECTRON MICROSCOPE

ORIENTATION DETERMINATION BY EBSP IN AN ENVIRONMENTAL SCANNING ELECTRON MICROSCOPE Pergamon PII S1359-6462(99)00086-X Scripta Materialia, Vol. 41, No. 1, pp. 47 53, 1999 Elsevier Science Ltd Copyright 1999 Acta Metallurgica Inc. Printed in the USA. All rights reserved. 1359-6462/99/$

More information

EFFECTS OF HELIUM ON IASCC SUSCEPTIBILITY

EFFECTS OF HELIUM ON IASCC SUSCEPTIBILITY Training School, 3-7 September 2018 Polytechnic University of Valencia (Spain) EFFECTS OF HELIUM ON IASCC SUSCEPTIBILITY J. Chen Department of nuclear energy and safety Paul Scherrer Institute This project

More information

The microstructural development of type 321 Austenitic Stainless Steel with long term ageing

The microstructural development of type 321 Austenitic Stainless Steel with long term ageing Loughborough University Institutional Repository The microstructural development of type 321 Austenitic Stainless Steel with long term ageing This item was submitted to Loughborough University's Institutional

More information

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression

{001} Texture Map of AA5182 Aluminum Alloy for High Temperature Uniaxial Compression Materials Transactions, Vol., No. (00) pp. 6 to 67 #00 The Japan Institute of Light Metals {00} Texture Map of AA8 Aluminum Alloy for High Temperature Uniaxial Compression Hyeon-Mook Jeong*, Kazuto Okayasu

More information

ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS. Stefano ARGENTERO

ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS. Stefano ARGENTERO Abstract ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS Stefano ARGENTERO Centro Sviluppo Materiali S.p.A., Via di Castel Romano 100, s.argentero@c-s-m.it The Accumulative Roll Bonding (ARB) is

More information

NITRONIC 19D LEAN DUPLEX STAINLESS STEEL. Excellent Stress Corrosion Cracking Resistance. Improved Welding Characteristics

NITRONIC 19D LEAN DUPLEX STAINLESS STEEL. Excellent Stress Corrosion Cracking Resistance. Improved Welding Characteristics NITRONIC 19D LEAN DUPLEX STAINLESS STEEL P R O D U C T D ATA B U L L E T I N Excellent Stress Corrosion Cracking Resistance High Strength Improved Welding Characteristics Resists Sigma Phase Formation

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Stainless steel & duplex

Stainless steel & duplex Stainless steel & duplex Different effects of carbon and nitrogen on precipitation behavior and mechanical properties in austenitic stainless steels Kyung-Shik Kim, Jee-Hyun Kang, Sung-Joon Kim Austenitic

More information

High-Temperature Oxidation Behavior of a New Ni-Cr-Mo-Si Alloy

High-Temperature Oxidation Behavior of a New Ni-Cr-Mo-Si Alloy High-Temperature Oxidation Behavior of a New Ni-Cr-Mo-Si B. A. Baker and G. D. Smith Special Metals Corp. 32 Riverside Drive Huntington, WV 2575 B. A. Pint and L. R. Walker Oak Ridge National Laboratory

More information

Masahiro Nagae 1, Tetsuo Yoshio 1, Jun Takada 2 and Yutaka Hiraoka 3

Masahiro Nagae 1, Tetsuo Yoshio 1, Jun Takada 2 and Yutaka Hiraoka 3 Materials Transactions, Vol. 46, No. 1 (25) pp. 2129 to 2134 #25 The Japan Institute of Metals Improvement in Recrystallization Temperature and Mechanical Properties of a Commercial TZM Alloy through Microstructure

More information

Fractographic Analysis of Tensile Failure in Dual Phase Medium Carbon Low Alloy Steels

Fractographic Analysis of Tensile Failure in Dual Phase Medium Carbon Low Alloy Steels Journal of Physical Science, Vol. 27(1), 103 110, 2016 Fractographic Analysis of Tensile Failure in Dual Phase Medium Carbon Low Alloy Steels Monday Itopa Momoh, 1 Uyime Donatus, 2,3 and Kenneth Kanayo

More information

NITRONIC 19D LEAN DUPLEX STAINLESS STEEL

NITRONIC 19D LEAN DUPLEX STAINLESS STEEL Chemical Processing Desalination/Water Treatment Oil Field Undersea Tubing AK STEEL NITRONIC 19D STAINLESS STEEL is a molybdenum-free, low nickel lean duplex stainless steel. The combination of strength,

More information

MICROSTRUCTURAL STABILITY OF ULTRAFINE GRAINED COPPER AT ELEVATED TEMPERATURE

MICROSTRUCTURAL STABILITY OF ULTRAFINE GRAINED COPPER AT ELEVATED TEMPERATURE Acta Metallurgica Slovaca, Vol. 17, 2011, No. 3, p. 158-162 158 MICROSTRUCTURAL STABILITY OF ULTRAFINE GRAINED COPPER AT ELEVATED TEMPERATURE L. Pantělejev 1, O. Man 1, L. Kunz 2 1 Brno University of Technology,

More information

TENSILE AND CREEP-RUPTURE BEHAVIOR OF TWO ADVANCED OXIDE DISPERSION STRENGTHENED SHEET ALLOYS

TENSILE AND CREEP-RUPTURE BEHAVIOR OF TWO ADVANCED OXIDE DISPERSION STRENGTHENED SHEET ALLOYS TENSILE AND CREEP-RUPTURE BEHAVIOR OF TWO ADVANCED OXIDE DISPERSION STRENGTHENED SHEET ALLOYS W.H. R.J. Wiegert Henricks Pratt and Whitney Aircraft Group, Commercial Products Division, East Hartford CT

More information

Grain Boundary Character in Alloy 690 and Ductility-Dip Cracking Susceptibility

Grain Boundary Character in Alloy 690 and Ductility-Dip Cracking Susceptibility WELDING RESERCH SUPPLEMENT TO THE WELDING JOURNL, JNURY 2004 Sponsored by the merican Welding Society and the Welding Research Council Grain oundary Character in lloy 690 and Ductility-Dip Cracking Susceptibility

More information

Effect of TMCP Parameters on the Microstructure and Properties of an Nb Ti Microalloyed Steel

Effect of TMCP Parameters on the Microstructure and Properties of an Nb Ti Microalloyed Steel , pp. 851 857 Effect of TMCP Parameters on the Microstructure and Properties of an Nb Ti Microalloyed Steel Yanchun LIU, Fuxian ZHU, Yanmei LI and Guodong WANG The State Key Laboratory of Rolling & Automation,

More information

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED AlMgSi ALLOY PROCESSED BY ECAP AND IT S THERMAL STABILITY.

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED AlMgSi ALLOY PROCESSED BY ECAP AND IT S THERMAL STABILITY. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF ULTRAFINE GRAINED AlMgSi ALLOY PROCESSED BY ECAP AND IT S THERMAL STABILITY. Kovářík Tomáš a Zrník Jozef b a ZČU, Univerzitní 22, 306 14 Plzeň, ČR, kt3@seznam.cz

More information

AUSTENITE-MARTENSITE TRANSFORMATION IN NANOSTRUCTURED AISI316L STAINLESS STEEL POWDER INDUCED DURING MECHANICAL MILLING

AUSTENITE-MARTENSITE TRANSFORMATION IN NANOSTRUCTURED AISI316L STAINLESS STEEL POWDER INDUCED DURING MECHANICAL MILLING Journal of Materials Science and Engineering with Advanced Technology Volume 4, Number 2, 2011, Pages 93-105 AUSTENITE-MARTENSITE TRANSFORMATION IN NANOSTRUCTURED AISI316L STAINLESS STEEL POWDER INDUCED

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

INFLUENCE OF PORTEVIN-LE CHATELIER EFFECT ON RUPTURE MODE OF ALLOY 718 SPECIMENS

INFLUENCE OF PORTEVIN-LE CHATELIER EFFECT ON RUPTURE MODE OF ALLOY 718 SPECIMENS Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 INFLUENCE OF PORTEVIN-LE CHATELIER EFFECT ON RUPTURE MODE OF ALLOY 718 SPECIMENS

More information

Microstructural changes during superplastic deformation of Fe 24Cr 7Ni 3Mo 0.14N duplex stainless steel

Microstructural changes during superplastic deformation of Fe 24Cr 7Ni 3Mo 0.14N duplex stainless steel Materials Science and Engineering A266 (1999) 276 284 Microstructural changes during superplastic deformation of Fe 24Cr 7Ni 3Mo 0.14N duplex stainless steel Young S. Han, Soon H. Hong * Department of

More information

Heat treatment and effects of Cr and Ni in low alloy steel

Heat treatment and effects of Cr and Ni in low alloy steel Bull. Mater. Sci., Vol. 34, No. 7, December 2011, pp. 1439 1445. Indian Academy of Sciences. Heat treatment and effects of Cr and Ni in low alloy steel MOHAMMAD ABDUR RAZZAK Materials and Metallurgical

More information

Effects of Wavy Roll-Forming on Textures in AZ31B Magnesium Alloy

Effects of Wavy Roll-Forming on Textures in AZ31B Magnesium Alloy Materials Transactions, Vol. 49, No. 5 (8) pp. 995 to 999 Special Issue on Platform Science and Technology for Advanced Magnesium Alloys, IV #8 The Japan Institute of Metals Effects of Wavy Roll-Forming

More information

ACCELERATED CARBIDE SPHEROIDISATION AND GRAIN REFINEMENT (ASR) IN RST37-2 STEEL

ACCELERATED CARBIDE SPHEROIDISATION AND GRAIN REFINEMENT (ASR) IN RST37-2 STEEL 8. 0. 5. 0, Brno, Czech Republic, EU ACCELERATED CARBIDE SPHEROIDISATION AND GRAIN REFINEMENT (ASR) IN RST7 STEEL Jaromír DLOUHÝ a, Daniela HAUSEROVÁ b, Zbyšek NOVÝ c, Jozef ZRNÍK d a,b,c,d COMTES FHT

More information