Concrete Cracking. ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3

Size: px
Start display at page:

Download "Concrete Cracking. ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3"

Transcription

1 Concrete Cracking Concrete is known as a sensitive material for cracking. The code defines concrete modulus of elasticity (E c ) and concrete cracking-limit tensile stress (f ctr ) as: E c = 4400 (f cu ) 1/2 (in N/mm 2 ) (Code eq. 2-1 page 2-15) f ctr = 0.6 (f cu ) 1/2 (in N/mm 2 ) (Code eq b page 4-49) Hence; the cracking- limit tensile strain (ε ctr ) is; ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3 This means that concrete cracking is expected to take place if concrete tensile strains (ε c ) exceed the cracking- limit value (ε ctr ). Tensile strains develop in concrete because of different reasons, the main ones may be: 1- Shrinkage of constrained concrete at its early stages. 2- Applied loads. 3- Thermal effects. 4- Rusting (corrosion) of steel: Rusting is; simply, the oxidization of steel. The volume of oxidized steel is greater than its original volume (4 to 7 times). The increase in the steel volume creates an internal pressure on concrete cover, which leads to its cracking due to the development of local tensile strains (these cracks develop parallel to the bars). 5- Excessive Deformations of the structural: Such as deformations due to differential settlement of supports, excessive deflections. Prof.Dr.Hany.M.El-Hashimy Crack control - 1 -

2 Philosophy of Control of Concrete Cracking Distribution and width of concrete cracks depend on the level of introduced tensile strains (ε c ) [i.e. more intense cracking takes place with the increase in ε c ]. Therefore control of concrete cracking can be achieved by keeping (ε c ) as low as possible; specially in the exposure zones 3 & 4 defined in Table (4-11) in the code. Minimizing concrete cracking requires fulfilling the following measures: 1- Appropriate concrete dimensions: Code clause (page 4-59) The smaller the section, the greater tensile strains (ε c ) for the same loading configurations. 2- Appropriate thickness of concrete cover: (c c ) a) To insure sufficient bond between steel & concrete. b) To form a good protection for the reinforcing bars against corrosive attacks from the ambient surroundings. Table 4-13 in the code defines the minimum thickness of concrete cover for different structural elements function of the exposure zone, concrete characteristic strength and the type of structural element. Definition: The thickness of concrete cover in table 4-13 is to be measured OUT-SIDE the bar diameter. Prof.Dr.Hany.M.El-Hashimy Crack control - 2 -

3 3- Good quality concrete: a) Concrete characteristic strength (f cu ): f cu should be > 25 N/mm 2. b) Aggregates & mixing water should conform with the standard specifications and the code; specially: Size and strength of aggregates. Content of salts & minerals. Amount of fine particles. c) Cement dosage: in the exposure zones 3 and 4; a minimum dose of 400 kg cement/cubic meter of concrete is highly recommended. d) Cement type: should be appropriate for the amount of salts in the environment (soil, water, atmosphere, etc). e) Minimum Porosity: Lowest possible water/cement ratio ( < 0.42) Good concrete casting & compaction. f) Appropriate additives: (such as plasticizers & superplasticizers) in the concrete mix. These products improve (f cu ) and the workability; i.e. help in minimizing the mixing water. g) Good concrete casting and compaction. h) Good concrete curing: Especially within the first 2 to 3 weeks after casting to avoid cracking at early ages. Prof.Dr.Hany.M.El-Hashimy Crack control - 3 -

4 4- Expansion (movement), construction and shrinkage joints: Refer to Code clause 7-4 (page 7-12). 5- Employing the steel reinforcement in controlling the section tensile strain: The width and distribution of concrete cracks are influenced by the details of steel reinforcement as follows: a) Steel type: Using ribbed bars of High Grade Steel (360/520) or (400/600) is preferable than using smooth bars of Normal Mild Steel (240/350). The mechanical interlock of bars ribs greatly improves its bond with the surrounding concrete. b) Bar diameter: It is always preferable to use bars of small diameters (as much as possible) to increase their surface area and hence improve the bond conditions. The minimum diameter of bars in exposure zones 3 & 4 is 12 mm. c) Minimum bar spacing: Code clause (page 7-9) Respecting the specified min. distance between bars insures efficient concrete surrounding to the bars and hence best bond conditions. Prof.Dr.Hany.M.El-Hashimy Crack control - 4 -

5 d) Maximum bar spacing: Code clause (page7-10) Maximum distance between bars in the structural elements should satisfy the code requirements. If the distance between bars exceeds the specified ranges, cracks can develop and propagate between the bars. e) Splices & anchorage length: Code clause (page 4-37) Providing sufficient length and distribution of bar splices and anchorages insures the presence of good bond conditions along the whole bar. f) Steel tensile strains & stresses: Code clause (page 4-52) Reducing the tensile strains in well bonded steel reinforcement leads to reduce the tensile strains in the surrounding concrete. This can play an important rule in reducing the intensity of cracking. The code provides 2 alternative methods for controlling steel tensile strains: i- Either Satisfying equation (4-66). Code page 4-52 ii- or Satisfying the maximum steel stresses given in code Tables (4-14) & (4-15) Code page 4-59 Refer also to the provisions for concrete durability in clause (page 2-18) in the Code. Prof.Dr.Hany.M.El-Hashimy Crack control - 5 -

6 Tensile concrete stresses (Code clause ) EXAMPLE 1: (Simple Bending) M = 45 KN.m = 45 x 10 6 N.mm b = 1000 mm t = 400 mm fcu=25 N/mm 2 Tensile stresses due to applied forces: f ct (N) = 0.0 f ct (M) = (M / I).Y = 6 M /b t 2 = 6 * 45 x 10 6 /(1000 x ) = 1.65 N/mm 2 Allowable tensile stress: f ctr = 0.6 (25) 1/2 = 3 N/mm 2. tv = 400 [ 1 + (0/1.5)] = 400 mm. [i.e. t v = t for N=0.0] η = 1.6 (from Table 4-16) f ctr / η = 3 / 1.6 = N/mm 2 > f ct O.K. EXAMPLE 2: (Ecc. Tension) N= + 60 KN M = 30 KN.m b = 1000 mm t = 350 mm fcu=25 N/mm 2 Tensile stresses due to applied forces: f ct (N) = N / A = / (1000 * 350) = 0.17 N/mm 2. f ct (M) = M.I/ Y = 6 M /b t 2 = 6 * 30 x 10 6 / (1000*350 2 ) = 1.47 N/mm 2. f ct = f ct (N) + f ct (M) = = 1.64 N/mm 2. Allowable tensile stress: f ctr = 0.6 (25) 1/2 = 3 N/mm 2. tv = 350 [ 1 + (0.17 / 1.47)] = 390 mm. η = 1.6 (from Table 4-16) f ctr / η = 3 / 1.6 = N/mm 2 > f ct O.K. Prof.Dr.Hany.M.El-Hashimy Crack control - 6 -

7 EXAMPLE 3: (T-section subjected to ecc. tension) N= + 60 KN M = - 40 KN.m fcu=25 N/mm 2 b = 300 mm t = 600 mm t f = 100 mm Properties of gross-section: (i.e. pre-cracking) Since we are dealing with uncracked sections, Always take into account the flange(s); even if the flange is at the tension side. B = b + 6 t f = (6 x 100) = 900 mm. A sec = (300 x 500) + (900 x 100) = = mm 2 Y = ( x 350) + ( x 50) = mm I = (900 x ) + [ x ( ) 2 ] 12 + (300 x ) + [ x ( ) 2 ] = 8195 x 10 6 mm 4 12 Z top = I = 8195 x 10 6 = mm 3 Y Prof.Dr.Hany.M.El-Hashimy Crack control - 7 -

8 Cont. EXAMPLE 3: Tensile stresses due to applied forces: f ct (N) = N A sec = = 0.25 N/mm 2. f ct (M) = M Z top = (40x10 6 ) = 1.16 N/mm 2. f ct = f ct (N) + f ct (M) = = 1.41 N/mm 2. Allowable tensile stress: f ctr = 0.6 (25) 1/2 = 3 N/mm 2. tv = 600 [ ] = 729 mm η = 1.7 (from Table 4-16) f ctr = 3 = 1.76 N/mm 2 > f ct O.K. η 1.7 Prof.Dr.Hany.M.El-Hashimy Crack control - 8 -

Flexure and Serviceability Limit State

Flexure and Serviceability Limit State UNIT 3 Flexure and Serviceability Limit State Beam A structural member that support transverse (Perpendicular to the axis of the member) load is called a beam. Beams are subjected to bending moment and

More information

Questions with Solution

Questions with Solution Questions with Solution Q 1: For making fresh concrete, the quantity of water is expressed in the ratio of (a) Coarse aggregates (b) Fine aggregates (c) Cement (d) None of these Explanation: In a mix proportion,

More information

Early Thermal Cracking of Concrete

Early Thermal Cracking of Concrete THE HIGHWAYS AGENCY THE SCOTTISH OFFICE DEVELOPMENT DEPARTMENT Incorporating Amendment No.1, 1989 THE WELSH OFFICE Y SWYDDFA GYMREIG THE DEPARTMENT OF THE ENVIRONMENT FOR NORTHERN IRELAND Early Thermal

More information

CHAPTER 3 BEHAVIOUR OF FERROCEMENT HOLLOW SLABS

CHAPTER 3 BEHAVIOUR OF FERROCEMENT HOLLOW SLABS 30 CHAPTER 3 BEHAVIOUR OF FERROCEMENT HOLLOW SLABS 3.1 INTRODUCTION There are numerous similarities between ferrocement and reinforced concrete. Both use similar matrix and reinforcement materials. They

More information

Topic 1 - Properties of Concrete. 1. Quick Revision

Topic 1 - Properties of Concrete. 1. Quick Revision Topic 1 - Properties of Concrete 1. Quick Revision 1.1 Constituent Materials of concrete Concrete is composed mainly of three materials, namely, cement, water and aggregate, and sometimes additional material,

More information

IN THE APPLICATION INVENTOR(S) ABUL KALAM AZAD AND IBRAHIM YAHYA AHMED HAKEEM FOR ULTRA-HIGH PERFORMANCE CONCRETE REINFORCEMENT BARS

IN THE APPLICATION INVENTOR(S) ABUL KALAM AZAD AND IBRAHIM YAHYA AHMED HAKEEM FOR ULTRA-HIGH PERFORMANCE CONCRETE REINFORCEMENT BARS Attorney Docket No. 4000.4 IN THE APPLICATION OF INVENTOR(S) ABUL KALAM AZAD AND IBRAHIM YAHYA AHMED HAKEEM FOR ULTRA-HIGH PERFORMANCE CONCRETE REINFORCEMENT BARS APPLICANT: King Fahd University of Petroleum

More information

GATE SOLVED PAPER - CE

GATE SOLVED PAPER - CE YEAR 2013 Q. 1 Maximum possible value of compaction factor for fresh (green) concrete is (A) 0.5 (B) 1.0 (C) 1.5 (D) 2.0 Q. 2 As per IS 456 : 2000, bond strength of concrete t bd = 12. for M20. It is increased

More information

CHAPTER 11: PRESTRESSED CONCRETE

CHAPTER 11: PRESTRESSED CONCRETE CHAPTER 11: PRESTRESSED CONCRETE 11.1 GENERAL (1) This chapter gives general guidelines required for the design of prestressed concrete structures or members with CFRM tendons or CFRM tendons in conjunction

More information

SHEAR BEHAVIOR OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK WITH SHEAR KEYS OR BOLTS

SHEAR BEHAVIOR OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK WITH SHEAR KEYS OR BOLTS - Technical Paper - SHEAR BEHAVIOR OF BEAMS USING U-SHAPED PERMANENT FORMWORK WITH SHEAR KEYS OR BOLTS Puvanai WIROJJANAPIROM *1, Koji MATSUMOTO *2, Katsuya KONO *3 and Junichiro NIWA *4 ABSTRACT Shear

More information

Fiber Reinforced Concrete (FRC)

Fiber Reinforced Concrete (FRC) Progress in Fiber Reinforced Concrete (FRC) Concrete is relatively brittle, and its tensile strength is typically only about one tenths of its compressive strength. Regular concrete is therefore normally

More information

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE SECTION 1. mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 1.1 Overview of IS 456:2000 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE IS 456:2000 is the current Indian

More information

Flexural Behaviour of Reinforced Concrete Beams Replacing GGBS as Cement and Slag Sand as Fine Aggregate

Flexural Behaviour of Reinforced Concrete Beams Replacing GGBS as Cement and Slag Sand as Fine Aggregate Flexural Behaviour of Reinforced Concrete Beams Replacing GGBS as Cement and Slag Sand as Fine Aggregate Sagar Patel 1, Dr. H. B. Balakrishna 2 1 PG Student, Bangalore Institute of Technology, Bangalore-04,

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 01: Introduction, Prestressing Systems and Material Properties Lecture

More information

3. Bond, Anchorage and Shear This chapter will discuss the following topics:

3. Bond, Anchorage and Shear This chapter will discuss the following topics: 3. Bond, Anchorage and Shear This chapter will discuss the following topics: Outline the theory of calculating the anchorage bond length. Determination of anchorage bond length, tension lap length and

More information

Serviceability considerations

Serviceability considerations Serviceability considerations Presented by: Jan Wium / John Robberts Stellenbosch University NUCSE Table of contents Stress limitation (Chapter 7) Crack control (Chapter 7) Deflection control (Chapter

More information

Questions with Solution

Questions with Solution Questions with Solution Q 1. Vus/d depends on a) Asv b) spacing of shear reinforcement c) grade of steel d) all of these. Refer Cl. 40.4 (a), pg. 73 IS 456:2000 V us = 0.87 f y A sv d s v 1. (d) all of

More information

DURABILITY AND SERVICEABILITY

DURABILITY AND SERVICEABILITY DURABILITY AND SERVICEABILITY Introduction of Durability Durability requirements are to ensure that a structure has satisfactory durability and serviceability performance under normal circumstances throughout

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

PROPERTIES OF LATEX FERROCEMENT IN FLEXURE

PROPERTIES OF LATEX FERROCEMENT IN FLEXURE PROPERTIES OF LATEX FERROCEMENT IN FLEXURE Fahrizal Zulkarnain 1, Mohd. Zailan Suleiman 2 1 PhD Candidate, School of Housing, Building and Planning, Universiti Sains Malaysia 2 Lecturer, School of Housing,

More information

Design Guidance for TAB-Deck Composite Slabs using SMD Metal Decking reinforced with ArcelorMittal Steel Fibres

Design Guidance for TAB-Deck Composite Slabs using SMD Metal Decking reinforced with ArcelorMittal Steel Fibres Design Guidance for TAB-Deck Composite Slabs using SMD Metal Decking reinforced with ArcelorMittal Steel Fibres Version 2 Revised October 2008 Design Guidance for TAB-Deck Composite Slabs using SMD Metal

More information

CHAPTER 2. Design Formulae for Bending

CHAPTER 2. Design Formulae for Bending CHAPTER 2 Design Formulae for Bending Learning Objectives Appreciate the stress-strain properties of concrete and steel for R.C. design Appreciate the derivation of the design formulae for bending Apply

More information

2.3 Losses in Prestress (Part III)

2.3 Losses in Prestress (Part III) 2.3 Losses in Prestress (Part III) This section covers the following topics. Creep of Concrete Shrinkage of Concrete Relaxation of Steel Total Time Dependent Losses 2.3.1 Creep of Concrete Creep of concrete

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS Year/ Sem. : IV / VII Staff Name : S.LUMINA JUDITH Subject Code : CE 6702 Sub. Name : PRE STRESSED

More information

DURABILITY of CONCRETE STRUCTURES. Part- 3 Concrete Cracks

DURABILITY of CONCRETE STRUCTURES. Part- 3 Concrete Cracks DURABILITY of CONCRETE STRUCTURES Assist. Prof. Dr. Mert Yücel YARDIMCI Part- 3 Concrete Cracks This presentation covers the subjects in CEB Durable Concrete Structures Guideline and has been prepared

More information

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition REINFORCED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil UNIVERSITY QUESTIONS PART A UNIT 1: INTRODUCTION THEORY AND BEHAVIOUR 1. List the loss of prestress. 2. Define axial prestressing. 3. What is the need for the use of high strength concrete and tensile

More information

Effect of Mixing Fibers on Flexural Strength of Concrete Mix

Effect of Mixing Fibers on Flexural Strength of Concrete Mix IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 15, Issue 2 Ver. III (Mar. - Apr. 2018), PP 68-73 www.iosrjournals.org Nikunj Patel 1, C. B. Mishra

More information

CHAPTER 10: GENERAL STRUCTURAL DETAILS

CHAPTER 10: GENERAL STRUCTURAL DETAILS CHAPTER 10: GENERAL STRUCTURAL DETAILS 10.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 9.1, "steel" shall be taken to signify "steel or CFRM". 10.2 CONCRETE COVER (1)

More information

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete CIVL 1112 Contrete Introduction from CIVL 1101 1/10 Concrete is an artificial conglomerate stone made essentially of Portland cement, water, and aggregates. While cement in one form or another has been

More information

CHAPTER 7: SERVICEABILITY LIMIT STATES

CHAPTER 7: SERVICEABILITY LIMIT STATES CHAPTER 7: SERVICEABILITY LIMIT STATES 7.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 7.1. 7.2 CALCULATION OF STRESS AND STRAIN It shall be in accordance with JSCE Standard

More information

BONDING CHARACTERISTICS OF CPC AND RC UNDER UNIAXIAL TENSION

BONDING CHARACTERISTICS OF CPC AND RC UNDER UNIAXIAL TENSION BONDING CHARACTERISTICS OF CPC AND RC UNDER UNIAXIAL TENSION - Technical Paper - Raktipong SAHAMITMONGKOL *1 and Toshiharu KISHI *2 ABSTRACT Bond of RC and CPC under tension were tested. Effects of cross

More information

Module Title: Advanced Structural Design

Module Title: Advanced Structural Design CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Semester 1 Examinations 2008/09 Module Title: Advanced Structural Design Module Code: CIVL 8001 School: Building & Civil Engineering Programme

More information

1.6 Concrete (Part II)

1.6 Concrete (Part II) 1.6 Concrete (Part II) This section covers the following topics. Properties of Hardened Concrete (Part II) Properties of Grout Codal Provisions of Concrete 1.6.1 Properties of Hardened Concrete (Part II)

More information

Fiber Reinforced Concrete

Fiber Reinforced Concrete Fiber Reinforced Concrete Old Concept Exodus 5:6, And Pharaoh commanded the same day the taskmasters of the people, and their officers, saying, Ye shall no more give the people straw to make brick, as

More information

ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303

ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303 Instruction : Answer all question ASSIGNMENT 1 ANALYSIS OF PRESTRESS AND BENDING STRESS BFS 40303 1. A rectangular concrete beam, 100 mm wide by 250 mm deep, spanning over 8 m is prestressed by a straight

More information

Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC)

Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC) Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC) H. Murata 1), J. Niwa 2), and C. Sivaleepunth 3) 1) Master course 2nd year

More information

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK

EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED UFC PERMANENT FORMWORK - Technical Paper - EVALUATION ON SHEAR CAPACITY OF RC BEAMS USING U-SHAPED PERMANENT FORMWORK Puvanai WIROJJANAPIROM *1, Koji MATSUMOTO *2, Katsuya KONO *3 and Junichiro NIWA *4 ABSTRACT Shear resistance

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R059210303 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 MECHANICS OF SOLIDS ( Common to Mechanical Engineering, Mechatronics, Metallurgy & Material Technology, Production

More information

Workability Analysis of Glass Fiber Reinforced Self-Compacting Concrete Using J-Ring Test

Workability Analysis of Glass Fiber Reinforced Self-Compacting Concrete Using J-Ring Test Workability Analysis of Glass Fiber Reinforced Self-Compacting Concrete Using J-Ring Test Praveen.N.R 1 PG Student, Department of civil engineering, Kongu engineering college, Perundurai, Tamil nadu, Dr.

More information

7.1 Transmission of Prestress (Part I)

7.1 Transmission of Prestress (Part I) 7.1 Transmission of Prestress (Part I) This section covers the following topics. Pre-tensioned Members 7.1.1 Pre-tensioned Members The stretched tendons transfer the prestress to the concrete leading to

More information

3.4.2 DESIGN CONSIDERATIONS

3.4.2 DESIGN CONSIDERATIONS 3.4.2 DESIGN CONSIDERATIONS Formwork Where Flatdeck sheet is used as formwork, the profile provides resistance to wet concrete (G) and construction loads (Q). Maximum formwork spans given in Section 3.4.4.1

More information

Design of Composite Bridges Use of BS 5400: Part 5: 1979

Design of Composite Bridges Use of BS 5400: Part 5: 1979 THE HIGHWAYS AGENCY THE SCOTTISH OFFICE DEVELOPMENT DEPARTMENT Amendment No.1, dated 10 December 1987 THE WELSH OFFICE Y SWYDDFA GYMREIG THE DEPARTMENT OF THE ENVIRONMENT FOR NORTHERN IRELAND Design of

More information

EN REINFORCED MASONRY DESIGN EXAMPLE 1 (NOTE: THIS USES THE UK NATIONAL ANNEX NDP VALUES)

EN REINFORCED MASONRY DESIGN EXAMPLE 1 (NOTE: THIS USES THE UK NATIONAL ANNEX NDP VALUES) 42.50 10.00 3.00 20.00 EN 1996-1-1 REINFORCED MASONRY DESIGN EXAMPLE 1 (NOTE: THIS USES THE UK NATIONAL ANNEX NDP VALUES) Reinforced Masonry - Reinforced Brickwork Stem Cantilever Pocket-Type Retaining

More information

BEHAVIOR OF PRETENSIONED CONCRETE BEAMS USING STEEL-FIBER REINFORCED CONCRETE

BEHAVIOR OF PRETENSIONED CONCRETE BEAMS USING STEEL-FIBER REINFORCED CONCRETE BEHAVIOR OF PRETENSIONED CORETE BEAMS USING STEEL-FIBER REINFORCED CORETE Hyeong Jae YOON 1 & Minehiro NISHIYAMA 2 1 Ph.D. Candidate & JSPS Research Fellow Dept. Of Architecture and Architectural Engineering,

More information

Appendix M 2010 AASHTO Bridge Committee Agenda Item

Appendix M 2010 AASHTO Bridge Committee Agenda Item Appendix M 2010 AASHTO Bridge Committee Agenda Item 2010 AASHTO BRIDGE COMMITTEE AGENDA ITEM: SUBJECT: LRFD Bridge Design Specifications: Section 5, High-Strength Steel Reinforcement TECHNICAL COMMITTEE:

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR

PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR BASIC CONCEPTS: PRESTRESSED CONCRETE STRUCTURES UNIT I INTRODUCTION THEORY AND BEHAVIOUR A prestressed concrete structure is different from a conventional reinforced concrete structure due to the application

More information

Flexural Analysis and Design of Beams. Chapter 3

Flexural Analysis and Design of Beams. Chapter 3 Flexural Analysis and Design of Beams Chapter 3 Introduction Fundamental Assumptions Simple case of axial loading Same assumptions and ideal concept apply This chapter includes analysis and design for

More information

Technical Manual Section 17 Self-Compacting Lightweight Aggregate Concrete

Technical Manual Section 17 Self-Compacting Lightweight Aggregate Concrete Uniclass L331:P224 CI/SfB (-A) Eq7 EPIC C311:X223 Technical Manual Section 17 Self-Compacting Lightweight Aggregate Concrete General Design Guidance 2 Workability 2 Water content 2 Placing and compacting

More information

Technical Manual Section 4 Design Guidance for Lytag LWAC (Concrete)

Technical Manual Section 4 Design Guidance for Lytag LWAC (Concrete) Uniclass L331:P224 CI/SfB (-A) Eq7 EPIC C311:X223 Technical Manual Section 4 Design Guidance for Lytag LWAC (Concrete) General Design Guidance 3 Workability 3 Water content 3 Placing and compacting 4 Curing

More information

STRUCTURAL BEHAVIOUR OF SINGLY REINFORCED OPS BEAMS

STRUCTURAL BEHAVIOUR OF SINGLY REINFORCED OPS BEAMS STRUCTURAL BEHAVIOUR OF SINGLY REINFORCED OPS BEAMS D. C. L. Teo 1, M. A. Mannan 2, V. J. Kurian Civil Engineering Program, School of Engineering and Information Technology Universiti Malaysia Sabah, 88999

More information

Development on precast PC slab with a new type of joint for reinforcing bars, combination of lap splice and mechanical anchorage

Development on precast PC slab with a new type of joint for reinforcing bars, combination of lap splice and mechanical anchorage Development on precast PC slab with a new type of joint for reinforcing bars, combination of lap splice and mechanical anchorage Kengo Hara 1*, Hiroyuki Abe 1, Satoshi Otani 1 and Meguru Tsunomoto 1 1

More information

REVIEW PAPER ON USAGE OF FERROCEMENT PANELS IN LIGHTWEIGHT SANDWICH CONCRETE SLABS

REVIEW PAPER ON USAGE OF FERROCEMENT PANELS IN LIGHTWEIGHT SANDWICH CONCRETE SLABS REVIEW PAPER ON USAGE OF FERROCEMENT PANELS IN LIGHTWEIGHT SANDWICH CONCRETE SLABS K. Vetri Aadithiya 1, Dr. P. Chandrasekaran 2 1PG Student, Department of Civil Engineering, Kongu Engineering College,

More information

Replacing Reinforcing Steel Bars of Continuous Self-Compacting Concrete Slabs with Steel Fibers at Intermediate Support

Replacing Reinforcing Steel Bars of Continuous Self-Compacting Concrete Slabs with Steel Fibers at Intermediate Support Replacing Reinforcing Steel Bars of Continuous Self-Compacting Concrete Slabs with Steel Fibers at Intermediate Support Wissam Kadim Al-Saraj Nibras Nizar Abduhameed Hanadi Fadhil Naji Lecturer, Civil

More information

6.4.1 Concrete mix design. The four concrete mixes were designed using the absolute volume method as shown below:

6.4.1 Concrete mix design. The four concrete mixes were designed using the absolute volume method as shown below: Chapter No. (6) Materials and Test Methods 6.4.1 Concrete mix design The four concrete mixes were designed using the absolute volume method as shown below: 6.4.1.1 Mix No. (1): f cu = 3MPa, w/c =.32 162

More information

USING EXPANDED CLAY AGGREGATE (ECA) IN REINFORCED CEMENT CONCRETE. Copyright 2017 Rivashaa Eco Design Solutions P. LTD. All rights reserved

USING EXPANDED CLAY AGGREGATE (ECA) IN REINFORCED CEMENT CONCRETE. Copyright 2017 Rivashaa Eco Design Solutions P. LTD. All rights reserved USING EXPANDED CLAY AGGREGATE (ECA) IN REINFORCED CEMENT CONCRETE. This presentation is to show the significance of using Expanded Clay Aggregate (ECA) in reinforced cement concrete. Why Expanded Clay

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS

BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS BEAMS: COMPOSITE BEAMS; STRESS CONCENTRATIONS Slide No. 1 Bending of In the previous discussion, we have considered only those beams that are fabricated from a single material such as steel. However, in

More information

Fundamentals of Prestressed Concrete Bridge

Fundamentals of Prestressed Concrete Bridge Fundamentals of Prestressed Concrete Bridge MAB1053 Bridge Engineering Prof. Dr. Azlan Abdul Rahman Universiti Teknologi Malaysia UTM 2006 azlanfka/utm05/mab1053 1 Introduction In prestressed concrete,

More information

UNIT IVCOMPOSITE CONSTRUCTION PART A

UNIT IVCOMPOSITE CONSTRUCTION PART A UNIT IVCOMPOSITE CONSTRUCTION PART A 1. What is composite section of pestressed concrete? [A/M 16] A composite section in context of prestressed concrete members refers to a section with a precast member

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI-621213 QUESTION BANK CE2404 PRESTRESSED CONCRETE STRUCTURES UNIT 4 COMPOSITE CONSTRUCTION PART A (2 marks) 1. Define propped construction. (AUC May/June 2013,

More information

1.7 Prestressing Steel

1.7 Prestressing Steel 1.7 Prestressing Steel This section covers the following topics. Forms of Prestressing Steel Types of Prestressing Steel Properties of Prestressing Steel Codal Provisions of Steel 1.7.1 Forms of Prestressing

More information

Mechanical Properties of Hybrid Fiber Reinforced Concrete

Mechanical Properties of Hybrid Fiber Reinforced Concrete International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Mechanical Properties of Hybrid Fiber Reinforced Concrete Anithu Dev 1, Dr. Sabeena M.V 2 1 P.G. Student, Department

More information

CONCRETE MIX DESIGN. Dr. B.N. KRISHNASWAMI TECHNICAL MEETING ON ORGANISED BY CIVIL ENGINEERS & ARCHITECTS ASSOCIATION, KUMBAKONAM

CONCRETE MIX DESIGN. Dr. B.N. KRISHNASWAMI TECHNICAL MEETING ON ORGANISED BY CIVIL ENGINEERS & ARCHITECTS ASSOCIATION, KUMBAKONAM CONCRETE MIX DESIGN BY Dr. B.N. KRISHNASWAMI Former Faculty, DEPT OF CIVIL ENGG., NIT, TRICHY TECHNICAL MEETING ON 09-05-2009 ORGANISED BY CIVIL ENGINEERS & ARCHITECTS ASSOCIATION, KUMBAKONAM INTRODUCTION

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 5: Analysis and Design for Shear and Torsion Lecture-24: Design for

More information

Fracture behavior of concrete reinforced with basalt fibers

Fracture behavior of concrete reinforced with basalt fibers Fracture behavior of concrete reinforced with basalt fibers Mohammed Ishtiyaque #1, M.G. Shaikh *2 #*Applied Mechanics Department, Govt. College of Engineering, Aurangabad -Maharashtra 1 ishtiyaque2011@rediffmail.com,

More information

COLUMNS. Classification of columns:

COLUMNS. Classification of columns: COLUMNS are vertical compression members in structures, the effective length of which exceeds three times its lateral dimension. Which are provided for bear the load of Beam, Slab, etc. since columns support

More information

A. HIGH-STRENGTH CONCRETE (HSC)

A. HIGH-STRENGTH CONCRETE (HSC) EFFECTS OF SILICA FUME ON PROPERTIES OF HIGH-STRENGTH CONCRETE Nasratullah Amarkhail Graduate School of Science and Technology, Department of Architecture and Building Engineering Kumamoto University Kumamoto

More information

INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS

INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS - Technical Paper - INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS Dinh Hung NGUYEN *1, Ken WATANABE *2, Junichiro NIWA *3 and Tsuyoshi HASEGAWA *4 ABSTRACT

More information

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER Lander Vasseur 1, Stijn Matthys 2, Luc Taerwe 3 Department of Structural Engineering, Ghent University, Magnel

More information

Concrete Mix Design. Introduction

Concrete Mix Design. Introduction Concrete Mix Design Introduction The process of selecting suitable ingredients of concrete and determining their relative amounts with the objective of producing a concrete of the required, strength, durability,

More information

Members Analysis under Flexure (Part II)

Members Analysis under Flexure (Part II) BETON PRATEGANG TKS - 4023 Session 10: Members Analysis under Flexure (Part II) Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Introduction The analysis of flexural

More information

ESTABLISHMENT OF CORRELATION FACTOR FOR THE CARBON STEEL RODS TESTED UNDER TENSILE LOAD AND THREE POINT BEND TEST

ESTABLISHMENT OF CORRELATION FACTOR FOR THE CARBON STEEL RODS TESTED UNDER TENSILE LOAD AND THREE POINT BEND TEST ESTABLISHMENT OF CORRELATION FACTOR FOR THE CARBON STEEL RODS TESTED UNDER TENSILE LOAD AND THREE POINT BEND TEST Sunethra Kumari Muthurathna (10/8308) Degree of Master of Science in Materials Science

More information

Mechanical Properties Of Hybrid Fibre Reinforced Composite Concrete. (HyFRCC)

Mechanical Properties Of Hybrid Fibre Reinforced Composite Concrete. (HyFRCC) Mechanical Properties Of Hybrid Fibre Reinforced Composite Concrete. (HyFRCC) 1, 2, a *Wan Amizah Bt Wan Jusoh 1, b, Izni Syahrizal Bin Ibrahim 1 Faculty of Civil Eng, Universiti Teknologi Malaysia (UTM),

More information

Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin

Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin Civil Engineering Infrastructures Journal, 47(2): 229 238, December 2014 ISSN: 2322 2093 Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin Rashid Dadash, P. 1* and Ramezanianpour, A. A.

More information

Spectrum of Axles Approach

Spectrum of Axles Approach Spectrum of Axles Approach Typical Axle Load Spectrum Axle Load (kn) Single Number of Axles Tandem Tridem Quad 50 60 5,000 400 100 5 61 80 3,000 2,000 500 10 81 100 200 5,000 800 30 101 120 50 4,000 1,000

More information

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II No. of Printed Pages : 6 BCE-041 Diploma in Civil Engineering Term-End Examination June, 2012 00819 BCE-041 : THEORY OF STRUCTURES II Time : 2 hours Maximum Marks : 70 Note : Question number 1 is compulsory.

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering Indian Institute of Technology Madras Module 5: Analysis and Design for Shear and Torsion Lecture-23: Analysis

More information

2.2.3 Concrete mix design

2.2.3 Concrete mix design BS882:1983: Specification for Aggregates from Natural Sources for Concrete Page 11 The grading affects the workability; a lower water-to-cement ratio can be used if the grading of the aggregate is good

More information

REQUIREMENTS FOR CONCRETE MIX DESIGN

REQUIREMENTS FOR CONCRETE MIX DESIGN REQUIREMENTS FOR CONCRETE MIX DESIGN Requirements of concrete mix design should be known before calculations for concrete mix. Mix design is done in the laboratory and samples from each mix designed is

More information

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam

Lap Splices in Tension Between Headed Reinforcing Bars And Hooked Reinforcing Bars of Reinforced Concrete Beam IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 232-334X, Volume 13, Issue 3 Ver. I (May- Jun. 216), PP 71-75 www.iosrjournals.org Lap Splices in Tension Between

More information

FLEXURAL PROPERTIES OF REINFORCED RECYCLED CONCRETE BEAMS

FLEXURAL PROPERTIES OF REINFORCED RECYCLED CONCRETE BEAMS FLEXURAL PROPERTIES OF REINFORCED RECYCLED CONCRETE BEAMS Ippei Maruyama (1), Masaru Sogo (1), Takahisa Sogabe (1), Ryoichi Sato (1), and Kenji Kawai (1) (1) Hiroshima University, Japan Abstract ID Number:

More information

EXPERIMENTAL INVESTIGATION OF HOLLOW CORE SLAB USING DIFFERENT FIBRE

EXPERIMENTAL INVESTIGATION OF HOLLOW CORE SLAB USING DIFFERENT FIBRE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 11, November 2018, pp. 1199 1206, Article ID: IJCIET_09_11_116 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=11

More information

Punching shear behavior of Lightweight foamed RC slabs

Punching shear behavior of Lightweight foamed RC slabs Punching shear behavior of Lightweight foamed RC slabs A.A. Zaher 1, A.A. Abdelrahman 2, A. S. Eldeib 3, A.A. Mohamed 3 1 Faculty of Engineering (Civil), Ain Shams University, Cairo, Egypt 2 Faculty of

More information

Lecture Notes. Elasticity, Shrinkage and Creep. Concrete Technology

Lecture Notes. Elasticity, Shrinkage and Creep. Concrete Technology Lecture Notes Elasticity, Shrinkage and Creep Concrete Technology Here the following three main types of deformations in hardened concrete subjected to external load and environment are discussed. Elastic

More information

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras

PRESTRESSED CONCRETE STRUCTURES. Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras PRESTRESSED CONCRETE STRUCTURES Amlan K. Sengupta, PhD PE Department of Civil Engineering, Indian Institute of Technology Madras Module 2: Losses in Prestress Lecture 10: Creep, Shrinkage and Relaxation

More information

DEFORMATIONS AND CRACKING OF R.C. STRUCTURES

DEFORMATIONS AND CRACKING OF R.C. STRUCTURES Budapest University of Technology and Economics Department of Mechanics and Structures English courses Reinforced Concrete Structures Code: BMETKEPB603 Lecture no. 5: DEFORMATIONS AND CRACKING OF R.C.

More information

INVESTIGATION OF STRUCTURAL MEMBERS WITH BASALT REBAR REINFORCEMENT AS AN EFFECTIVE ALTERNATIVE OF STANDARD STEEL REBAR

INVESTIGATION OF STRUCTURAL MEMBERS WITH BASALT REBAR REINFORCEMENT AS AN EFFECTIVE ALTERNATIVE OF STANDARD STEEL REBAR Jr. of Industrial Pollution Control 33(S3)(217) pp 1422-1429 www.icontrolpollution.com Review Article INVESTIGATION OF STRUCTURAL MEMBERS WITH BASALT REBAR REINFORCEMENT AS AN EFFECTIVE ALTERNATIVE OF

More information

Lecture Retaining Wall Week 12

Lecture Retaining Wall Week 12 Lecture Retaining Wall Week 12 Retaining walls which provide lateral support to earth fill embankment or any other form of material which they retain them in vertical position. These walls are also usually

More information

Experimental study on properties of concrete reinforced with basalt bars

Experimental study on properties of concrete reinforced with basalt bars Experimental study on properties of concrete reinforced with basalt bars Jibin C Sunny 1, Preetha Prabhakaran 2 1(M.tech student, Sree Narayana Gurukulam College of Engineering, Ernakulam, Kerala, India)

More information

CHAPTER 3: DESIGN VALUES FOR MATERIALS

CHAPTER 3: DESIGN VALUES FOR MATERIALS CHAPTER 3: DESIGN VALUES FOR MATERIALS 3.1 GENERAL (1) The quality of concrete and reinforcing materials are expressed, in addition to compressive strength and tensile strength, in terms of material characteristics

More information

Reinforced Concrete Design. Lecture no. 1

Reinforced Concrete Design. Lecture no. 1 Reinforced Concrete Design Lecture no. 1 Mechanics of RC Concrete is strong in compression but week in tension. Therefore, steel bars in RC members resist the tension forces. RC Members Reinforced concrete

More information

Total 30. Chapter 7 HARDENED CONCRETE

Total 30. Chapter 7 HARDENED CONCRETE Total 30 Chapter 7 HARDENED CONCRETE 1 Shrinkage Shrinkage of concrete is caused by the settlement of solids and the loss of free water from the plastic concrete (plastic shrinkage), by the chemical combination

More information

EXPERIMENTAL INVESTIGATION ON THE FRACTURE BEHAVIOUR OF STEEL FIBER REINFORCED CONCRETE Aravind R 1, Athira Das 2

EXPERIMENTAL INVESTIGATION ON THE FRACTURE BEHAVIOUR OF STEEL FIBER REINFORCED CONCRETE Aravind R 1, Athira Das 2 International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 EXPERIMENTAL INVESTIGATION ON THE FRACTURE BEHAVIOUR OF STEEL FIBER REINFORCED CONCRETE Aravind R 1, Athira Das 2 1

More information

Performance of Carbon Steel- Polypropylene Fiber Reinforced Self Compacting Concrete K J Sagar 1 Dr. K. B. Parikh 2

Performance of Carbon Steel- Polypropylene Fiber Reinforced Self Compacting Concrete K J Sagar 1 Dr. K. B. Parikh 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online): 2321-0613 Performance of Carbon Steel- Polypropylene Fiber Reinforced Self Compacting Concrete

More information

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 41 (2016) (2016) - 31-37 Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section by Mohammad Hamid ELMY *1 and Shunichi

More information

1. CORROSION OF REINFORCEMENT

1. CORROSION OF REINFORCEMENT MAB 1033 Structural Assessment and Repair 1. CORROSION OF REINFORCEMENT Professor Dr. Mohammad bin Ismail C09-313 Learning Outcome At the end of the course students should be able to understand Mechanism

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

FAILURE MODE AND STRENGTH CHARACTERISTICS OF NON-GRADED COARSE AGGREGATE CONCRETE BEAMS

FAILURE MODE AND STRENGTH CHARACTERISTICS OF NON-GRADED COARSE AGGREGATE CONCRETE BEAMS International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 5, September-October 2016, pp. 447 456, Article ID: IJCIET_07_05_049 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=5

More information

CHAPTER 11 Bar Cutoff

CHAPTER 11 Bar Cutoff page 188 CHAPTER 11 11.1. Anchorage of Tension Bars by Hooks In the event that the desired tensile stress in a bar cannot be developed by bond alone, it is necessary to provide special anchorage at the

More information