DEFORMATIONS AND CRACKING OF R.C. STRUCTURES

Size: px
Start display at page:

Download "DEFORMATIONS AND CRACKING OF R.C. STRUCTURES"

Transcription

1 Budapest University of Technology and Economics Department of Mechanics and Structures English courses Reinforced Concrete Structures Code: BMETKEPB603 Lecture no. 5: DEFORMATIONS AND CRACKING OF R.C. STRUCTURES Reinforced Concrete 2011 lecture 5/1

2 Content: I. Deformations 1. Why deformations should be limited? 2. Deflection limits 3. Loads to be considered when checking deformations 4. Deflection and flaxural rigidity 5. Limitation of the slenderness ratio l/d 6. Favourable effect of uncracked concrete between cracks 7. Effect of creep and shrinkage 8. Simplified check of deflections II. Cracking 1. Reasons of cracking 2. Crack direction, characteristic crack patterns 3. Limits of the crack width 4. Restoration of cracked rc structures 5. Determination of the crack width 6. Effect of some parameters on the crack width 7. Simplified check of the crack width Reinforced Concrete 2011 lecture 5/2

3 1. Why deformations should be limited? -aesthetical reasons -psychological reasons -safety of joining constructions (partition walls, windows, tiles of the pavement) -functionality (canalization of rainwater) -modification of force distribution in arches, danger of loss of stability Reinforced Concrete 2011 lecture 5/3

4 2. Deflection limits w max < l /250 simple sup. beams: continuous beams: cantilevers: l K tabulated in DA here l is the span, l/k is the distance between M=0 points Reinforced Concrete 2011 lecture 5/4

5 3. Loads to be considered when checking deformations Quasi-permanent load intensity: characteristic value of permanent load + long term part of variable loads: p qp = g k + ψ 2 q k values of ψ 2 see DA table in section 4 Reinforced Concrete 2011 lecture 5/5

6 4. Deflection and flexural rigidity beam made of elastic material: r.c. beam: pl 1 pl 1 pl Ml 1 l wmax = = = = 384 EI 76,8 EI 80 EI 10EI R 10 Effect of creep and cracking should be considered in flexural rigidity EI: 3 Ecm bd E= Ec,eff = I= IiII = η 1+ϕcr 12 η tabulated in DA for diff. compression and tension steel %-s Reinforced Concrete 2011 lecture 5/6 2 2

7 5. Limitation of the slenderness ratio l/d The rate L/d characterises the rigidity of r.c. members Example: '' 1 M ε Curvature: y tg c+ ε = = α= s R EI d 2 2 Ml 1 l 1 10w Deflection: wmax = = max 10EI R 10 R 2 l Approximate curvature of an rc beam under service conditions: ε +ε 0,85 (2,0% + 2,17% ) = 3,54 1 R c s o o % o 2 10w = max l l 2 0,00354 = w max = d l 2825d l 11,3 250 d Reinforced Concrete 2011 lecture 5/7

8 Consequently: if l/d=12 then by considering deformations characteristic for the service state the deflection will approximately be equal to l/250 For slightly reinforced members (for example slabs): ξ c = d 0, 08 ε c,max 0,08x1,85=0,15 % o ε c +εs = 2,00% o 0,002 10w = max d 2 l ε s 0,85x2,17% o =1,85% o 2 l l l w max = d 250 d l Deflection problems of slabs amerge above slenderness ratios f 20 d (l d ) allowable ratios on basis of more exact calculations see in DA tables! Reinforced Concrete 2011 lecture 5/8 x c

9 6. The favourable effect of uncracked concrete between cracks cont. line: real behaviour dashed. line: approximate behaviour difference:help ofncracked concrete between cracks Eurocode 2: w= ( 1 ζ ) w + ζw 1 2 M cr approximation ζ = 1 0,5( ) 0 M here indices 1 and 2 stand for stress states 1 (uncracked) and 2(cracked). 2 Reinforced Concrete 2011 lecture 5/9

10 7. Effect of creep and shrinkage Approximate character of the moment-curvature relationship of rc setions: plastic behavior cracked uncracked Curvature: 1 M = Effect of creep: E I R im c, eff The total curvature: i E c, eff 1 Effect of shrinkage: R, 1 = R i Ri, M Ri, sh E cm = 1+ϕ cr i sh ε ϕ cr = ε c, pl c, el Reinforced Concrete 2011 lecture 5/10

11 Reinforced Concrete 2011 lecture 5/11

12 The most effective tool to reduce creep deformation is to inrease the quantity of compression steel (φ cr decreases and I i increases) Reinforced Concrete 2011 lecture 5/12

13 8. Simplified check of the deflection l / K d α ( l / d) allowable Values of K for checking of deflections Simple supported beam or slab without cantilever K = 1 Exterior span of continuous beam or slab K = 1.3 Interior span of continuous beam or slab K = 1.5 Flat slab K = 1.2 Cantilever K = 0.4 Reinforced Concrete 2011 lecture 5/13

14 Basic values of the allowable slenderness ratio (l/d) allowable for rectangular sections Concrete strength grade p β Ed [kn/m 2 ] (by beams b is the width of the beam in m, by slabs b=1,0 m) b C40/ C35/ C30/ C25/ C20/ C16/ beam slab Modification factors: α = 1 β 2 p p Ed qp M β= M Rd Ed 500 f yk s,prov s,requ 500 f For T-sections and flanged beams another table must be used A A yk Reinforced Concrete 2011 lecture 5/14

15 II. Cracking 1. Reasons of cracking f ct,d 0,1 f cd σ c,max f ct,d -impeded deformation (for example: shrinkage) -temperature effects (examples: external corridor cantilever slab, fence plinth) -tension provoced by internal forces (axial or eccentric tension, flexure, shear, torsion) R.c. structures in service conditions are generally cracked, even water containers can be cracked. Dilatation joints and correct support conditions (neopren pad) inhibit unwanted cracking. Reinforced Concrete 2011 lecture 5/15

16 2. Crack direction, characteristic crack patterns Crack direction shows the direction of principal stresses. Diagonal cracks are called shear cracks. The most dangerous crack is is that of the column. Reinforced Concrete 2011 lecture 5/16

17 3. Limits of the crack width Problems caused by cracking under quasi-permanent loads and the corresponding limits of the crack width Aesthetical problems 0,4 mm Corrosion in ambient variably dry and wet (XC2.XC4) or by exposure to chlorides (XD1.XD3) 0,3 mm -When prestressing steel is used due to its high sensitivity to corrosion more strict requirements apply -Requirement of watertightness is fulfilled if in serviceability state the height of the compression zone reaches 50 mm in wet ambient 0,2 mm in agressive ambient, in soil 0,1 mm Reinforced Concrete 2011 lecture 5/17

18 4.Restoration of cracked rc structures Possible ways of protection against cracking: -exclusion of factors impeding shortening caused by cinematic effects -application of watertight flooring, over-spanning cracks Ways of restoration: w cr >1 mm: injection of cement milk w cr <1 mm: injection of epoxy resin sealing with fibrous foil, cladding Reinforced Concrete 2011 lecture 5/18

19 distance between cracks: 5. Determination of the crack width w k = s r,max ( ε ε ), cm sm s r,max = 3,4c + 0,425 k 1 k 2 φ s A c,eff / A s ε sm s = σ 0,4 f ctm E s A c,eff / A s ε cm = 0,4f ctm / E cm c concrete cover k 1 = 0,8 for deformed barsl, 1,6 for smooth bar surfice k 2 = 0,5 for flexure, 1,0 for axial tension Reinforced Concrete 2011 lecture 5/19

20 Φ s = diameter of tension reinforcement A c,eff for flexure see figures below A s =A s,prov A = level of the center of A s B = A c,eff, x = x II, h c,ef = 2,5( h d) min ( h x) / 3 h/2 Reinforced Concrete 2011 lecture 5/20

21 6.Effect of some parameters on the crack width Variation of the crack width with -diameter of tension steel: -steel stress: -steel ratio Reduce ba diameter and increase steel ratio to control crack width! Reinforced Concrete 2011 lecture 5/21

22 7. Simplified check of the crack width Determine: σ s f A s yd p p qp Ed A A s, requ s, prov ρ = (%) bd and find find the greatest allowable tension steel diameter for the given limit of the crack width in the table below When using different bar diameters: φ 2 Σφ = Σφ equ. Reinforced Concrete 2011 lecture 5/22

23 Reinforced Concrete 2011 lecture 5/23

24 Steel stress σs (N/mm 2 ) Maximum steel bar diameter φ max (mm) in function of the steel ratio and the steel stress To satisfy the crack with limitation condition w k w k,allow, if c 20 mm min, dur. w k,allow = 0,4 mm w k,allow = 0,3 mm w k,allow = 0,2 mm Steel ratio (ρ=a s /bd, %) Steel ratio (ρ=a s /bd, %) Steel ratio (ρ=a s /bd, %) 0,15 0,2 0,5 1,0 1,5 2,0 0,15 0,2 0,5 1,0 1,5 2,0 0,15 0,2 0,5 1,0 1,5 2, Reinforced Concrete 2011 lecture 5/24

Serviceability considerations

Serviceability considerations Serviceability considerations Presented by: Jan Wium / John Robberts Stellenbosch University NUCSE Table of contents Stress limitation (Chapter 7) Crack control (Chapter 7) Deflection control (Chapter

More information

DESIGN OF RC BEAMS AND FLOORS, BRACING

DESIGN OF RC BEAMS AND FLOORS, BRACING BME Department of Mechanics, Materials and Structures Dr András Draskóczy Lecture 5: DESIGN OF RC BEAMS AND FLOORS, BRACING Design of Reinforced Concrete Structures 1 BEAMS, FLOORS, BRACING CONTENT: BEAMS

More information

DURABILITY AND SERVICEABILITY

DURABILITY AND SERVICEABILITY DURABILITY AND SERVICEABILITY Introduction of Durability Durability requirements are to ensure that a structure has satisfactory durability and serviceability performance under normal circumstances throughout

More information

Strength classes for concrete

Strength classes for concrete 12 15 20 1.6 1.1 2.0 27 1.8 16 20 24 1.9 1.3 2.5 29 1.9 20 25 28 2.2 1.5 2.9 30 2.0 Strength classes for concrete 25 30 33 2.6 1.8 3.3 31 2.1 30 37 38 2.9 2.0 3.8 33 2.2 3.5 2.0 3.5 2.0 1.75 3.5 35 45

More information

Eurocode Training EN : Composite Structures

Eurocode Training EN : Composite Structures Eurocode Training EN 1994-1-1: Composite Structures All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval

More information

Flexure and Serviceability Limit State

Flexure and Serviceability Limit State UNIT 3 Flexure and Serviceability Limit State Beam A structural member that support transverse (Perpendicular to the axis of the member) load is called a beam. Beams are subjected to bending moment and

More information

ONE-WAY SLABS, STAIR SLABS

ONE-WAY SLABS, STAIR SLABS Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 8: ONE-WAY SLABS, STAIR SLABS

More information

DETAILING OF BEAMS. Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no.

DETAILING OF BEAMS. Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601. Lecture no. Budapest University of Technology and Economics Department of Mechanics, Materials and Structures English courses Reinforced Concrete Structures Code: BMEEPSTK601 Lecture no. 7: DETAILING OF BEAMS Reinforced

More information

Advanced Eurocode Training. EN : Composite Structures

Advanced Eurocode Training. EN : Composite Structures Advanced Eurocode Training EN 1994-1-1: Composite Structures Eurocode Training EN 1994-1-1 All information in this document is subject to modification without prior notice. No part of this manual may be

More information

DEFLECTION OF REINFORCED CONCRETE SLABS. PhD Thesis Summary

DEFLECTION OF REINFORCED CONCRETE SLABS. PhD Thesis Summary DEFLECTION OF REINFORCED CONCRETE SLABS PhD Thesis Summary Evgeni Ivanov Georgiev Chief Assist. M.Sc. Eng., dpt Reinforced Concrete Structures, UACEG, 1 H. Smirnenski Blvd., Sofia 1046, Bulgaria, e-mail:

More information

2016 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES

2016 DESIGN AND DRAWING OF REINFORCED CONCRETE STRUCTURES R13 SET - 1 DESIGN AND DRAWING OF REINFCED CONCRETE STRUCTURES 1 Design a simply supported rectangular beam to carry 30kN/m superimposed load over a span of 6m on 460mm wide supports. Use M20 grade concrete

More information

REINFORCED CONCRETE DESIGN TO EC2 FORMULAE AND DESIGN RULES

REINFORCED CONCRETE DESIGN TO EC2 FORMULAE AND DESIGN RULES REINFORCED CONCRETE DESIGN TO EC2 FORMULAE AND DESIGN RULES FOR TEST AND FINAL EXAMINATION 4 th. Edition January 2014 CONTENTS Page 1.0 STRENGTH AND CHARACTERISTIC OF CONCRETE 1 - Table 3.1: Strength

More information

VARIOUS TYPES OF SLABS

VARIOUS TYPES OF SLABS VARIOUS TYPES OF SLABS 1 CHOICE OF TYPE OF SLAB FLOOR The choice of type of slab for a particular floor depends on many factors. Economy of construction is obviously an important consideration, but this

More information

COLUMNS. Classification of columns:

COLUMNS. Classification of columns: COLUMNS are vertical compression members in structures, the effective length of which exceeds three times its lateral dimension. Which are provided for bear the load of Beam, Slab, etc. since columns support

More information

Flexural Analysis and Design of Beams. Chapter 3

Flexural Analysis and Design of Beams. Chapter 3 Flexural Analysis and Design of Beams Chapter 3 Introduction Fundamental Assumptions Simple case of axial loading Same assumptions and ideal concept apply This chapter includes analysis and design for

More information

Contents. Foreword 1 Introduction 1

Contents. Foreword 1 Introduction 1 Contents Notation x Foreword xiii 1 Introduction 1 1.1 Aims of the Manual 1 1.2 Eurocode system 1 1.3 Scope of the Manual 3 1.4 Contents of the Manual 4 1.5 Notation and terminology 4 2 General principles

More information

Section A A: Slab & Beam Elevation

Section A A: Slab & Beam Elevation CE 331, Spring 2011 Flexure Strength of Reinforced Concrete s 1 / 5 A typical reinforced concrete floor system is shown in the sketches below. The floor is supported by the beams, which in turn are supported

More information

CHAPTER 7: SERVICEABILITY LIMIT STATES

CHAPTER 7: SERVICEABILITY LIMIT STATES CHAPTER 7: SERVICEABILITY LIMIT STATES 7.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 7.1. 7.2 CALCULATION OF STRESS AND STRAIN It shall be in accordance with JSCE Standard

More information

BS EN :2004 EN :2004 (E)

BS EN :2004 EN :2004 (E) Contents List 1. General 1.1 Scope 1.1.1 Scope of Eurocode 2 1.1.2 Scope of Part 1-1 of Eurocode 2 1.2 Normative references 1.2.1 General reference standards 1.2.2 Other reference standards 1.3 Assumptions

More information

Seismic Behaviour of RC Shear Walls

Seismic Behaviour of RC Shear Walls Ductile Detailing of RC Structures :: IS:13920-1993 1993 Short Course on Seismic Design of RC Structures Durgesh C. Rai Department of Civil Engineering, IIT Kanpur The material contained in this lecture

More information

Page 53 pren (Final draft)

Page 53 pren (Final draft) Page 53 SECTION 5 STRUCTURAL ANALYSIS 5.1 General provisions The purpose of analysis is to establish the distribution of either internal forces and moments, or stresses, strains and displacements, over

More information

7. SPECIFIC RULES FOR STEEL CONCRETE COMPOSITE BUILDINGS

7. SPECIFIC RULES FOR STEEL CONCRETE COMPOSITE BUILDINGS Page 130 7. SPECIFIC RULES FOR STEEL CONCRETE COMPOSITE BUILDINGS 7.1 General 7.1.1 Scope (1) P For the design of composite steel concrete buildings, Eurocode 4 applies. The following rules are additional

More information

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi 1 Department of Civil Engineering Lecture 8 Deflection and Camber Introduction Prestressed concrete beams are more slender than R.C. beams, high span/depth ratios; thus, more deflection. Camber may be important.

More information

Concrete Cracking. ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3

Concrete Cracking. ε ctr = f ctr / E c = 0.6 / 4400 = x 10-3 Concrete Cracking Concrete is known as a sensitive material for cracking. The code defines concrete modulus of elasticity (E c ) and concrete cracking-limit tensile stress (f ctr ) as: E c = 4400 (f cu

More information

Slabs and Flat Slabs

Slabs and Flat Slabs Slabs and Flat Slabs Lecture 5 19 th October 2017 Contents Lecture 5 Designing for shear in slabs - including punching shear Detailing Solid slabs Flat Slab Design includes flexure worked example Exercise

More information

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty two economical & common resist lateral loads concrete construction: flat spanning systems, columns & frames

More information

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures

A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical Note: 008-2010 A Guide for the Interpretation of Structural Design Options for Residential Concrete Structures CFA Technical This CFA Technical Note is intended to serve as a guide to assist

More information

CHAPTER 2. Design Formulae for Bending

CHAPTER 2. Design Formulae for Bending CHAPTER 2 Design Formulae for Bending Learning Objectives Appreciate the stress-strain properties of concrete and steel for R.C. design Appreciate the derivation of the design formulae for bending Apply

More information

Practical Methods for the Analysis of Differential Strain Effects

Practical Methods for the Analysis of Differential Strain Effects Practical Methods for the Analysis of Differential Strain Effects Doug Jenkins, Principal, Interactive Design Services, Sydney, Australia Abstract: In the assessment of time and temperature related strain

More information

5.4 Analysis for Torsion

5.4 Analysis for Torsion 5.4 Analysis for Torsion This section covers the following topics. Stresses in an Uncracked Beam Crack Pattern Under Pure Torsion Components of Resistance for Pure Torsion Modes of Failure Effect of Prestressing

More information

Time-dependent deflection of composite concrete slabs - a simplified design approach

Time-dependent deflection of composite concrete slabs - a simplified design approach Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Time-dependent deflection of composite concrete slabs - a simplified design approach

More information

Preliminary design of concrete structures 124SDP1

Preliminary design of concrete structures 124SDP1 124SDP1 1 Content 1 Content...- 1-2 Preliminary design...- 2-2.1 Reinforced concrete slab...- 2-2.2 Reinforced concrete beam...- 3-2.3 Reinforced concrete column...- 4 - Department of Concrete and Masonry

More information

RC Detailing to EC2 Webinar August RC Detailing to Eurocode 2. RC Detailing to Eurocode 2

RC Detailing to EC2 Webinar August RC Detailing to Eurocode 2. RC Detailing to Eurocode 2 Webinar from The Concrete Centre www.concretecentre.com The presentation is based on Chapter 10 Detailing in The Concrete Centre s publication How to Design Concrete Structures using Eurocode 2. Paul Gregory

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC One Way Spanning Slab XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC One Way Spanning Slab XX CONSULTING Engineering Calculation Sheet jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC ) 35 N/mm 2 OK Yield strength of longitudinal steel, f y 460 N/mm 2 Yield

More information

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE

mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE SECTION 1. mortarless masonry Design Manual Part 1 (IS 456:2000) Section 1 Page 1 1.1 Overview of IS 456:2000 IS 456:2000 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE IS 456:2000 is the current Indian

More information

DESIGN OF RETAINING WALLS

DESIGN OF RETAINING WALLS DESIGN OF RETAINING WALLS Dr. Izni Syahrizal bin Ibrahim Faculty of Civil Engineering Universiti Teknologi Malaysia Email: iznisyahrizal@utm.my Introduction Retaining wall is used to retain earth or other

More information

Reinforced Concrete Design. Lecture no. 1

Reinforced Concrete Design. Lecture no. 1 Reinforced Concrete Design Lecture no. 1 Mechanics of RC Concrete is strong in compression but week in tension. Therefore, steel bars in RC members resist the tension forces. RC Members Reinforced concrete

More information

CLT Structural Design Sylvain Gagnon, Eng. February 8, 2011 Vancouver

CLT Structural Design Sylvain Gagnon, Eng. February 8, 2011 Vancouver www.fpinnovations.ca CLT Structural Design Sylvain Gagnon, Eng. February 8, 2011 Vancouver Structural Design Handbook 10/02/2011 2 Critical Characteristics for CLT used as floor/roof Short-term and long-term

More information

EUROCODES ON CONCRETE STRUCTURES

EUROCODES ON CONCRETE STRUCTURES Prof. Giuseppe Mancini - Politecnico di Torino 1 EUROCODES ON CONCRETE STRUCTURES Opportunities for scientific and technical co-operation in structural concrete Giuseppe Mancini Politecnico di Torino fib

More information

Level 6 Graduate Diploma in Engineering Structural analysis

Level 6 Graduate Diploma in Engineering Structural analysis 9210-111 Level 6 Graduate Diploma in Engineering Structural analysis Sample Paper You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler, drawing

More information

UNIT IVCOMPOSITE CONSTRUCTION PART A

UNIT IVCOMPOSITE CONSTRUCTION PART A UNIT IVCOMPOSITE CONSTRUCTION PART A 1. What is composite section of pestressed concrete? [A/M 16] A composite section in context of prestressed concrete members refers to a section with a precast member

More information

EVALUATION OF TIME-DEPENDENT BEHAVIOUR OF COMPOSITE CONCRETE SLABS WITH STEEL DECKING (AN EXPERIMENTAL STUDY)

EVALUATION OF TIME-DEPENDENT BEHAVIOUR OF COMPOSITE CONCRETE SLABS WITH STEEL DECKING (AN EXPERIMENTAL STUDY) VIII International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds) EVALUATION OF TIME-DEPENDENT BEHAVIOUR

More information

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition

Reinforced Concrete Design. A Fundamental Approach - Fifth Edition CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition REINFORCED CONCRETE A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

ASPECTS OF FLEXURAL BEHAVIOR OF HIGH STRENGTH

ASPECTS OF FLEXURAL BEHAVIOR OF HIGH STRENGTH Construcţii Aspects of flexural behaviour of SFRHSC elements G. Bărbos ASPECTS OF FLEXURAL BEHAVIOR OF HIGH STRENGTH CONCRETE ELEMENTS WITH OR WITHOUT STEEL FIBERS Gheorghe-Alexandru BĂRBOS Eng., Research

More information

mortarless Design Manual Part 1 (AS 3600:2009) Section 1 Page 1 AS 3600:2009 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE

mortarless Design Manual Part 1 (AS 3600:2009) Section 1 Page 1 AS 3600:2009 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE SECTION 1. mortarless Design Manual Part 1 (AS 3600:2009) Section 1 Page 1 AS 3600:2009 PLAIN AND REINFORCED CONCRETE - CODE OF PRACTICE 1.1 Overview of AS 3600:2009 AS 3600:2009 is the latest Australian

More information

FRP Strengthening of RC Flexural Members - Ductility Issues

FRP Strengthening of RC Flexural Members - Ductility Issues FRP Strengthening of RC Flexural Members - Ductility Issues A presentation to ACIC 22 15 April 22, Southampton Professor R. Delpak Division of Civil Engineering School of Technology University of Glamorgan

More information

GATE SOLVED PAPER - CE

GATE SOLVED PAPER - CE YEAR 2013 Q. 1 Maximum possible value of compaction factor for fresh (green) concrete is (A) 0.5 (B) 1.0 (C) 1.5 (D) 2.0 Q. 2 As per IS 456 : 2000, bond strength of concrete t bd = 12. for M20. It is increased

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE. BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 OCD59 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL CENTRE FZE BEng (HONS) CIVIL ENGINEERING SEMESTER ONE EXAMINATION 2015/2016 ADVANCED STRUCTURAL ANALYSIS AND DESIGN MODULE NO: CIE6001 Date: Tuesday 12

More information

Modelling of shrinkage induced curvature of cracked concrete beams

Modelling of shrinkage induced curvature of cracked concrete beams Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8 Modelling of shrinkage induced curvature of cracked concrete beams R. Mu, J.P. Forth

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.3 Staircases Staircases provide means of movement from one floor to another in a structure. The effective span of a simply supported slab should normally be taken as the clear distance between the faces

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

Serviceability limit states (SLS)

Serviceability limit states (SLS) Serviceability limit states (SLS) Serviceability limit states (SLS) - generally Motto: structure should be safe, but also service-able (usable). Design for serviceability is largely connected with ensuring

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

COMPARISON OF DEFLECTION CALCULATIONS AND SPAN TO DEPTH. Senior Lecturer, Department of Civil and Environmental Engineering, Imperial

COMPARISON OF DEFLECTION CALCULATIONS AND SPAN TO DEPTH. Senior Lecturer, Department of Civil and Environmental Engineering, Imperial COMPARISON OF DEFLECTION CALCULATIONS AND SPAN TO DEPTH RATIOS IN BS 8110 AND EC2 by Dr R L Vollum November 8 Senior Lecturer, Department of Civil and Environmental Engineering, Imperial College Contact

More information

Chapter Five Torsion. Reinforced Concrete Structures 2 (CEng-3122)

Chapter Five Torsion. Reinforced Concrete Structures 2 (CEng-3122) Reinforced Concrete Structures 2 (CEng-3122) Chapter Five Torsion 1 School of Civil and Environmental Engineering Concrete Material and Structures Chair 2 1. Introduction 2. Torsional Resistance 3. Analysis

More information

COMPOSITE STRUCTURES PREPARED BY : SHAMILAH

COMPOSITE STRUCTURES PREPARED BY : SHAMILAH COMPOSITE STRUCTURES PREPARED BY : SHAMILAH ANUDAI@ANUAR INTRODUCTION Steel and Concrete Composite Construction Composite construction aims to make each material perform the function it is best at or to

More information

DESIGN OF RC ELEMENTS UNIT 1 PART-A

DESIGN OF RC ELEMENTS UNIT 1 PART-A DESIGN OF RC ELEMENTS UNIT 1 PART-A 1. Calculate the design strength for M 30 grade concrete and Fe 415 grade steel? 2. What is the important principle of ultimate load method? 3. Write the classification

More information

CADS A3D MAX. How to model shear walls

CADS A3D MAX. How to model shear walls CADS A3D MAX How to model shear walls Modelling shear walls in A3D MAX Introduction and synopsis This paper explains how to model shear walls in A3D MAX using the `wide column rigid arm sub-frame described

More information

Analysis and Design of One-way Slab System (Part-I)

Analysis and Design of One-way Slab System (Part-I) Lecture-02 Analysis and Design of One-way Slab System (Part-I) By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Topics Addressed Concrete Floor Systems Analysis and

More information

Fundamentals of Prestressed Concrete Bridge

Fundamentals of Prestressed Concrete Bridge Fundamentals of Prestressed Concrete Bridge MAB1053 Bridge Engineering Prof. Dr. Azlan Abdul Rahman Universiti Teknologi Malaysia UTM 2006 azlanfka/utm05/mab1053 1 Introduction In prestressed concrete,

More information

twenty two concrete construction: flat spanning systems, columns & frames ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN

twenty two concrete construction: flat spanning systems, columns & frames ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty two concrete construction: http:// nisee.berkeley.edu/godden flat spanning systems, columns & frames Concrete

More information

V Slab Bridge Design Software, Version 4.0 Superstructure Design Check

V Slab Bridge Design Software, Version 4.0 Superstructure Design Check V Slab Bridge Design Software, Version 4.0 This superstructure design check is provided to assist the designer in understanding the key program functions and associated design calculations. This is intended

More information

EN 1996 DESIGN OF MASONRY STRUCTURES

EN 1996 DESIGN OF MASONRY STRUCTURES -- REINFORCED AND PRESTRESSED MASONRY -- Dissemination of information for training Brussels, 2-3 April 2009 1 EN 1996 DESIGN OF MASONRY STRUCTURES - REINFORCED AND PRESTRESSED MASONRY - 2 and 3 April 2009

More information

Flexure Design Sequence

Flexure Design Sequence Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence Determine Effective flange width Determine maximum tensile beam stresses (without prestress)

More information

How to calculate anchorage and lap lengths to Eurocode 2

How to calculate anchorage and lap lengths to Eurocode 2 How to calculate anchorage and lap lengths to Eurocode 2 This is the first in a series of articles, previously printed in The Structural Engineer magazine, which will be collated to form a Concrete Structures

More information

eight plates and grids APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2018 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

eight plates and grids APPLIED ACHITECTURAL STRUCTURES: DR. ANNE NICHOLS SPRING 2018 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631 APPLIED ACHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2018 lecture eight plates and grids Plates & Grids 1 http://nisee.berkeley.edu/godden Term Project Plates & Grids

More information

AAiT, School of Civil and Environmental Engineering

AAiT, School of Civil and Environmental Engineering Example 1 of Example.9: An interior T beam in a floor system has a center to center span of 5.5 m and cross section shown in the figure. The concrete and steel grades are C0/5 and S400 respectively. Compute

More information

Recommendations for additional fire protection of structural elements

Recommendations for additional fire protection of structural elements ANNEX 6 Recommendations for additional fire protection of structural elements 1 Scope This Annex contains a series of recommendations applicable to structural concrete structures which, for general fire

More information

Effect of beam dimensions on structural performance of wide beam-column joints

Effect of beam dimensions on structural performance of wide beam-column joints Effect of beam dimensions on structural performance of wide beam-column joints J.S. Kuang 1) and *Wing Shan Kam 2) 1), 2) Department of Civil and Environmental Engineering, Hong Kong University of Science

More information

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design

twenty two concrete construction: flat spanning systems, columns & frames Reinforced Concrete Design Reinforced Concrete Design ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2013 lecture twenty two economical & common resist lateral loads concrete construction: flat spanning systems, columns & frames

More information

SeismoBuild Verification Report (Eurocodes) For version 2018

SeismoBuild Verification Report (Eurocodes) For version 2018 SeismoBuild Verification Report (Eurocodes) For version 2018 Copyright Copyright 2002-2018 Seismosoft Ltd. All rights reserved. SeismoBuild is a registered trademark of Seismosoft Ltd. Copyright law protects

More information

eight plates and grids Plates, Slabs & Grids Plates, Slabs & Grids Term Project plates horizontal plane, rigid slabs thin, flat, rigid

eight plates and grids Plates, Slabs & Grids Plates, Slabs & Grids Term Project plates horizontal plane, rigid slabs thin, flat, rigid APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS DR. ANNE NICHOLS SPRING 2018 Term Project lecture eight plates and grids Plates & Grids 1 Lecture 8 Applied Architectural Structures F2009abn

More information

TABLE OF CONTENTS DESIGN EXAMPLES NOTATION 9.0 INTRODUCTION

TABLE OF CONTENTS DESIGN EXAMPLES NOTATION 9.0 INTRODUCTION PCI BRIDGE DESIGN MANUAL CHAPTER 9 NOTATION TABLE OF CONTENTS DESIGN EXAMPLES 9.0 INTRODUCTION 9.1 DESIGN EXAMPLE - AASHTO BOX BEAM, BIII-48, SINGLE SPAN WITH NON-COMPOSITE WEARING SURFACE. DESIGNED IN

More information

In the following calculation a combination of Eurocode 2 and Eurocode 7 has been used. Design yield strength. Young modulus. Poisson coefficient.

In the following calculation a combination of Eurocode 2 and Eurocode 7 has been used. Design yield strength. Young modulus. Poisson coefficient. In the following calculation a combination of Eurocode and Eurocode 7 has been used. Materials Partial safety factors EN 199-1-1.4..4: γ c 1.5 γ s 1.15 Partial safety factor for concrete. Partial safety

More information

ANNEX 10. Special requirements recommended for structures subject to seismic actions. 1 Scope. 2 Basis of design. 2.1 Fundamental requirements

ANNEX 10. Special requirements recommended for structures subject to seismic actions. 1 Scope. 2 Basis of design. 2.1 Fundamental requirements ANNEX 10 Special requirements recommended for structures subject to seismic actions 1 Scope This Annex sets out the special requirements which are recommended for structural concrete structures subject

More information

Austral Deck Design for Construction Loading. Permanent formwork and Span capability

Austral Deck Design for Construction Loading. Permanent formwork and Span capability Austral Deck Design for Construction Loading Permanent formwork and Span capability Introduction The purpose of this document is to demonstrate the process of designing Austral Deck as formwork complying

More information

About the Causes of the Koror Bridge Collapse

About the Causes of the Koror Bridge Collapse Open Journal of Safety Science and Technology, 2014, 4, 119-126 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojsst http://dx.doi.org/10.4236/ojsst.2014.42013 About the Causes of the

More information

CHAPTER 10: GENERAL STRUCTURAL DETAILS

CHAPTER 10: GENERAL STRUCTURAL DETAILS CHAPTER 10: GENERAL STRUCTURAL DETAILS 10.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 9.1, "steel" shall be taken to signify "steel or CFRM". 10.2 CONCRETE COVER (1)

More information

Time-dependent Deflection of Continuous Composite Concrete Slabs

Time-dependent Deflection of Continuous Composite Concrete Slabs Time-dependent Deflection of Continuous Composite Concrete Slabs Alireza Gholamhoseini 1, Ian Gilbert 2 and Mark Bradford 3 1 PhD student, 2 Emeritus Professor, 3 Scientia Professor Centre for Infrastructure

More information

EN REINFORCED MASONRY DESIGN EXAMPLE 1 (NOTE: THIS USES THE UK NATIONAL ANNEX NDP VALUES)

EN REINFORCED MASONRY DESIGN EXAMPLE 1 (NOTE: THIS USES THE UK NATIONAL ANNEX NDP VALUES) 42.50 10.00 3.00 20.00 EN 1996-1-1 REINFORCED MASONRY DESIGN EXAMPLE 1 (NOTE: THIS USES THE UK NATIONAL ANNEX NDP VALUES) Reinforced Masonry - Reinforced Brickwork Stem Cantilever Pocket-Type Retaining

More information

EGCE 406: Bridge Design

EGCE 406: Bridge Design EGCE 406: Bridge Design Design of Slab for Praveen Chompreda Mahidol University First Semester, 2006 Bridge Superstructure Outline Components of bridge Superstructure Types Materials Design of RC Deck

More information

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS

OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS OXFORD ENGINEERING COLLEGE (NAAC Accredited with B Grade) Department of Civil Engineering LIST OF QUESTIONS Year/ Sem. : IV / VII Staff Name : S.LUMINA JUDITH Subject Code : CE 6702 Sub. Name : PRE STRESSED

More information

AASHTO LRFD. Reinforced Concrete. Eric Steinberg, Ph.D., P.E. Department of Civil Engineering Ohio University

AASHTO LRFD. Reinforced Concrete. Eric Steinberg, Ph.D., P.E. Department of Civil Engineering Ohio University AASHTO LRFD Reinforced Concrete Eric Steinberg, Ph.D., P.E. Department of Civil Engineering Ohio University steinber@ohio.edu Ohio University (July 2007) 1 AASHTO LRFD This material is copyrighted by Ohio

More information

ADAPT-Floor Pro 2009 Tutorial Export Design Strip to ADAPT-PT or ADAPT-RC

ADAPT-Floor Pro 2009 Tutorial Export Design Strip to ADAPT-PT or ADAPT-RC ADAPT-Floor Pro 2009 Tutorial Export Design Strip to ADAPT-PT or ADAPT-RC Update: May 2010 Copyright ADAPT Corporation all rights reserved 1 EXPORT DESIGN STRIP FROM ADAPT-FLOOR PRO TO ADAPT-PT OR ADAPT-RC

More information

Reinforced Concrete Column Design

Reinforced Concrete Column Design Reinforced Concrete Column Design Compressive Strength of Concrete f cr is the average cylinder strength f c compressive strength for design f c ~2500 psi - 18,000 psi, typically 3000-6000 psi E c estimated

More information

STRENGTH EVALUATION OF A CRACKED SLAB REINFORCED WITH GROUTED TENDONS 1

STRENGTH EVALUATION OF A CRACKED SLAB REINFORCED WITH GROUTED TENDONS 1 Your Partner in Structural Concrete Design TN402_ULS_cracks_grouted_032211 STRENGTH EVALUATION OF A CRACKED SLAB REINFORCED WITH GROUTED TENDONS 1 Bijan O. Aalami 2 First draft: March 22, 2011 This Technical

More information

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II

Diploma in Civil Engineering. Term-End Examination June, BCE-041 : THEORY OF STRUCTURES II No. of Printed Pages : 6 BCE-041 Diploma in Civil Engineering Term-End Examination June, 2012 00819 BCE-041 : THEORY OF STRUCTURES II Time : 2 hours Maximum Marks : 70 Note : Question number 1 is compulsory.

More information

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil

1 Prepared By:Mr.A.Sathiyamoorthy, M.E., AP/Civil UNIVERSITY QUESTIONS PART A UNIT 1: INTRODUCTION THEORY AND BEHAVIOUR 1. List the loss of prestress. 2. Define axial prestressing. 3. What is the need for the use of high strength concrete and tensile

More information

The following terms are defined for general use in this Design Recommendation:

The following terms are defined for general use in this Design Recommendation: CHAPTER 1: GENERAL 1.1 SCOPE (1) This Design Recommendation gives general requirements for design of concrete structures using continuous fiber reinforcing materials. Subjects not covered in this Recommendation

More information

Module Title: Advanced Structural Design

Module Title: Advanced Structural Design CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ Semester 1 Examinations 2008/09 Module Title: Advanced Structural Design Module Code: CIVL 8001 School: Building & Civil Engineering Programme

More information

Stress Limitations and Prestress Losses

Stress Limitations and Prestress Losses Stress Limitations and Prestress Losses Dr Antonis Michael Department of Civil Engineering Frederick University Stresssing Force in Tendon During Tensioning EN1992-1 Sec. 5.10.2.1 Maximum stressing force

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE)

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : DDRCS(13A01502) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 12, July 2015

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 12, July 2015 Analysis of RC Flat Slab System for Thermal Loads Salah E. El-Metwally 1, Hamed S. Askar 2, Ahmed M. Yousef 3, Essam H. El-Tayeb 4 Structural Engineering Department, Mansoura University, El-Mansoura, Egypt

More information

Review of Elastic Bending Theory Fully Plastic Moment

Review of Elastic Bending Theory Fully Plastic Moment Review of Elastic Bending Theory Fully Plastic Moment MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VII Dr. Jason E. Charalambides Beams References: AISC Specification and Commentary:

More information

EUROCODES a tool for building safety and reliability assessment

EUROCODES a tool for building safety and reliability assessment EU-Russia cooperation on standardisation for construction Moscow, 9-10 October 2008 1 EU-Russia cooperation on standardisation for construction EUROCODES a tool for building safety and reliability assessment

More information

Questions with Solution

Questions with Solution Questions with Solution Q 1. Vus/d depends on a) Asv b) spacing of shear reinforcement c) grade of steel d) all of these. Refer Cl. 40.4 (a), pg. 73 IS 456:2000 V us = 0.87 f y A sv d s v 1. (d) all of

More information

Masonry Out-of- Plane Walls: Slender Wall Design and Serviceability

Masonry Out-of- Plane Walls: Slender Wall Design and Serviceability Masonry Out-of- Plane Walls: Slender Wall Design and Serviceability 4:30 PM 5:30 PM Bennett Banting Lecture Outline 1. Slenderness Limited to Low Axial Loads (25) 2. Serviceability Deflections (25) 3.

More information