Supplementary Information

Size: px
Start display at page:

Download "Supplementary Information"

Transcription

1 Supplementary Information General procedures. All manipulations were performed under a nitrogen atmosphere by standard Schlenk techniques or in an M. Braun glove box maintained at or below 1 ppm of O 2 and H 2 O. Glassware was dried at 150 C overnight. NMR data were recorded on a Bruker Avance 400 spectrometer (400 MHz) at 22 C. All peaks in the NMR spectra are referenced to residual C 6 D 5 H at δ 7.16 ppm. In parentheses are listed: T 2 values in ms calculated as (π ν 1/2 ) -1, 1 integrations and assignments. In some cases, it was not possible to determine integrations and T 2 values because of peak overlap. UV-vis spectra were measured on a Cary 50 spectrophotometer, using screw-cap cuvettes. Solution magnetic susceptibilities were determined by the Evans method. 2 Elemental analyses were determined by Desert Analytics, Tucson, AZ. Pentane, diethyl ether and toluene were purified by passage through activated alumina and "deoxygenizer" columns from Glass Contour Co. (Laguna Beach, CA). Deuterated benzene was first dried over CaH 2, then over Na/benzophenone, and then vacuum transferred into a storage container. Before use, an aliquot of each solvent was tested with a drop of sodium benzophenone ketyl in THF solution. Celite was dried overnight at 200 C under vacuum. The compounds LFeCl, 3 KBEt 3 H, 4 and Cp* 2 Zr(H) 5 2 were prepared by published procedures. 3-Hexyne and 2-butyne were obtained from Aldrich, degassed, vacuum transferred to a new container, and stored in the glovebox at -35 C. Naphthalene was purified by vacuum sublimation, and 4-tert-butylpyridine dried over molecular sieves. Azobenzene was dissolved in pentane, dried over molecular sieves, filtered through Celite then dried in vacuo. LiNHPh was prepared by reaction of distilled aniline with n BuLi in pentane. Temperatures in the NMR probe were calibrated using standard MeOD (<20 C) or DOCH 2 CH 2 OD (>20 C) samples. 6 Preparation of [LFeH] 2 1. From KBEt 3 H: LFeCl (1.00 g, 1.69 mmol) was dissolved in toluene (30 ml) in a Schlenk flask to give a red solution. A clear solution of KBEt 3 H (233 mg, 1.69 mmol) in toluene (10 ml) was added, resulting in the immediate formation of a very dark red solution. The reaction mixture was stirred at room temperature for 45 min, and the volatile materials removed in vacuo. The residue was washed with pentane until clear, removing a small amount of a bright red impurity. The residue was stirred with toluene (20 ml) S-1

2 overnight, and then filtered through Celite to give a dark red solution. This solution was then reduced in volume to ca. 8 ml, warmed to dissolve the product, and then cooled to 35 C. Very dark red crystals (682 mg) were isolated. A second crop (56 mg) was obtained after reducing the solvent to ca. 3 ml and cooling to -35 C. Total yield is 738 mg, 78%. It is critical that the reaction is not stirred for too long because [LFeH] 2 reacts with the BEt 3 byproduct. 2. From Cp* 2 Zr(H) 2 : This procedure has not been optimized. To a red slurry of LFeCl (350 mg, 590 µmol) in Et 2 O (8 ml) was added a yellow solution of Cp* 2 Zr(H) 2 (215 mg, 590 µmol). The reaction was stirred overnight to give a dark red solution. The solvent was reduced to ca. 4 ml, and the solution cooled to -35 C. A dark red solid (115 mg, 35%) was isolated. The complex [LFeH] 2 dissolves slowly in toluene, benzene, THF and Et 2 O. It is very slightly soluble in pentane. The 1 H NMR spectrum as a function of temperature is shown in Figure S1a, and the equilibrium populations and magnetic moment as a function of temperature are shown in Figure S1b. 1 H NMR ([LFeH] 2, 22 C, C 6 D 6 ) δ 70, 22, 14, 12, 10, 6, 3, 1, -8, -11, -23, -27, -28, -33, -39, -52, H NMR (LFeH, 22 C, C 6 D 6 ) δ 43 (2, 18H, C(CH 3 ) 3 ); -2 (4, 4H, m-h); -13 (3, 12H, CH(CH 3 ) 2 ); -112 (2, 2H, p-h); -117 (0.2, 4H, CH(CH 3 ) 2 ); -126 (0.4, 12H, CH(CH 3 ) 2 ). Anal. Cald. for C 70 H 108 N 4 Fe 2 C 75.25, H 9.74, N Found C, 75.11, H 9.62, N IR and resonance Raman spectra did not give any characteristic peaks for the iron-hydride functionality. S-2

3 Figure S1. (a) Top: 1H NMR spectrum of [LFeH]2 in C7D8 as a function of temperature. [Fe] = 25.7 mm. Inset shows the 1H NMR spectrum of LFeMe.7 (b) Bottom: Plot of µeff (z) and monomer ( ) and dimer (T) populations for [LFeH]2 as a function of temperature. [Fe] = 49 mm at 303 K. S-3

4 Preparation of LFe(H)(4- t Bupy). A mixture of [LFeH] 2 (50 mg, 45 µmol) and Et 2 O (8 ml) was stirred until the solid had completely dissolved (30 min), and a solution of 4-tert-butylpyridine (13 µl, 90 µmol) in Et 2 O (3 ml) was slowly added over the course of 15 min. The initial dark red color of the solution lightened considerably. After another 10 min stirring at room temperature, the volatile materials were removed in vacuo. The resulting red solid was redissolved in pentane (4 ml), and the product crystallized at 35 C as bright red crystals (30 mg, 50%). It has not been possible to obtain accurate elemental analysis for this compound; 1 H NMR spectra suggest that it contains some [LFeH] 2. This probable equilibrium is under investigation. 1 H NMR (22 C, C 6 D 6 ) δ 24, 22, 10, 5, -2, -5, -7, -12, -17, -54, -93. Preparation of LFeC(Et)=C(H)Et. 3-Hexyne (17 µl, 151 µmol) was added via a syringe to a slurry of [LFeH] 2 (80 mg, 72 µmol) in Et 2 O (6 ml). Over the course of 1 h, the dark red solution became orange in color, and the solid dissolved. The volatile materials were then removed in vacuo. The orange solid was redissolved in warm pentane (2 ml), and crystallized at 35 C, giving orange crystals (69 mg, 75%). 1 H NMR (22 C, C 6 D 6 ) δ 125 (0.3, 1H, backbone CH), 94 (0.4, 2H, CH 2 CH 3 ), 65 (0.6, 3H, CH 2 CH 3 ), 45 (0.6, 18 H, C(CH 3 ) 3 ), 5 (0.9, 3H, CH 2 CH 3 ), 3 (0.9, 4H, m-h), -25 (0.9, 12H, CH(CH 3 ) 2 ), -105 (4H, CH(CH 3 ) 2 ), -107 (0.8, 2H, p-h), -133 (0.3, 12H, CH(CH 3 ) 2 ), -208 (0.1, 1H, =CH(Et)). µ eff (Evans, C 6 D 6 ) 5.4(3) BM. Anal. Calcd. for C 41 H 64 N 2 Fe C 76.85, H 10.07, N Found C, 75.48, H 10.28, N Preparation of LFeN(Ph)NHPh. 1. From [LFeH] 2 : An orange solution of azobenzene (20 mg, 107 µmol) in Et 2 O (2 ml) was added to a dark red slurry of [LFeH] 2 (60 mg, 54 µmol) in Et 2 O (6 ml). A red solution was formed over the course of an hour. The volatile materials were removed in vacuo and the residue extracted with pentane and filtered through Celite. The volume was reduced to 2 ml, and the solution was cooled to 35 C to give red crystals (46 mg, 58%). 2. From LFeCl: A 20 ml scintillation vial was charged with LFeCl (150 mg, 253 µmol), azobenzene (46 mg, 253 µmol) and Et 2 O (10 ml). A solution of KBEt 3 H (35 mg, 253 µmol) in Et 2 O (2 ml) was added S-4

5 to yield a dark red solution. After stirring at room temperature for 2 h, the solution was filtered through Celite to give a red solution. The volume was reduced to 6 ml, and the solution was cooled to 35 C to give red crystals in two crops (140 mg, 75%). 1 H NMR (22 C, C 6 D 6 ) δ 169 (0.1, 1H, backbone CH), 118 (0.3, 1H), 45 (1.1, 18H, C(CH 3 ) 3 ), 41 (1H), 30 (0.3, 1H), 17 (0.2, 1H), -8 (2, 2H, o/m-h), -9 (2, 2H, o/m-h), -21 (0.2, 1H), -25 (2, 6H, CH(CH 3 ) 2 ), -31 (2, 6H, CH(CH 3 ) 2, -47 (2, 1H, hydrazido p-h), -93 (0.2, 6H, CH(CH 3 ) 2, -98 (1, 2H, diketiminate p-h), -182 (8H, CH(CH 3 ) 2 and CH(CH 3 ) 2 ). µ eff (Evans, C 6 D 6 ) 5.1(3) BM. Due to the thermal instability of the solid, we have not been able to obtain successful elemental analysis. Thermolysis of LFeN(Ph)NHPh. A screw-cap NMR tube was charged with LFeN(Ph)NHPh (9.8 mg) and C 6 D 6 (418 µmol). The solution was heated at 80 C and the reaction was monitored by 1 H NMR spectroscopy. After one hour, 1 H NMR showed the formation of a product with an 1 H NMR spectrum identical to LFeNHPh. (There were other minor iron-containing products; their identity is under investigation.) The reaction mixture was passed through an activated alumina column to yield an orange solution. The solvent was removed in vacuo to yield orange PhNNPh. 1 H NMR (CDCl 3, 22 C) δ 7.94 (m, 2H), 7.51 (m, 3H). GC/MS (EI) 182; the fragmentation pattern matches that found online at Independent preparation of LFeNHPh. A slurry of LiNHPh (17 mg, 169 µmol) in Et 2 O (2 ml) was added to a red solution of LFeCl (100 mg, 169 µmol) in Et 2 O (6 ml). The solution became orange in color with the formation of a white precipitate. After stirring at room temperature for one hour, the solution was filtered through Celite to give an orange solution. The volume was reduced to 4 ml, and the solution was cooled to 35 C to give orange-red crystals (45 mg, 41%). 1 H NMR (22 C, C 6 D 6 ) δ 97 (0.4, 1H, backbone CH), 88 (0.3, 2H, NHPh m-h), 41 (0.7, 18H, C(CH 3 ) 3 ), 3 (2.2, 4H, m-h), -25 (2, 12H, CH(CH 3 ) 2 ), -54 (2, 1H, NHPh p-h), -101 (0.1, 4H, CH(CH 3 ) 2 ), (2H, p-h), -116 (12H, CH(CH 3 ) 2 ). µ eff (Evans, C 6 D 6 ) 5.5(3) BM. Anal. Cald. for C 41 H 59 N 3 Fe: C 75.79, H 9.15, N Found C, 74.32, H 9.41, N S-5

6 Kinetics Experiments. 1. [LFeH] 2 + 2EtCCEt: An accurately weighed sample of [LFeH] 2 (10-13 mg) was placed in a J. Young resealable NMR tube with an accurately weighed aliquot of C 7 D 8 (ca. 450 mg). An internal reference consisting of a capillary containing a solution of LFeCl (1.97 µmol) in C 7 D 8 was added. The tube was closed, and sonicated (ca. 5 min) to completely dissolve the complex. The tube was then connected to the vacuum line, the solution frozen and the headspace evacuated. An appropriate amount of alkyne was condensed into the tube. The solution was thawed, and the NMR tube placed into the NMR probe that was already equilibrated at the required temperature. After the sample had equilibrated for 5 min, 1 H NMR spectra were recorded at preset times using an automated program. After Fourier transform, phasing, calibrating and integrating each spectrum, a plot of normalized [LFeH] 2 concentration (y) vs. time (M0) was used to find the best fit to the general, integrated equation: y = m1 + m2*exp(-m0*m3), where m1, m2 and M3 are variables, M3 being the first order rate constant. For this purpose, KaleidaGraph 3.51 was used. A representative curve (Figure S2) and the final Eyring plot (Figure S3) are shown. The vinyl complex was the only observed iron product. Because of the steep dependence of the reaction rate on temperature, it was only practical to monitor the reaction between 277 and 299 K. Table S1. Observed rate of hydride consumption by EtCCEt in C 6 D 6 at 288K in C 6 D 6. Entry [EtCCEt] / mm k obs / 10-4 s (2) (2) (2) S-6

7 y = m1 + m2 * (exp(-m0*m3)) Value Error m e m m e-05 Chisq e-07 NA R NA [LFeH] 2 / mm t / s Figure S2. Plot of [[LFeH] 2 ] vs time for the reaction with 3-hexyne (52 mm) at 298 K. [Fe] = 35.0 mm y = m1 + m2 * M0 Value Error m m Chisq NA R NA ln(k/t) /T Figure S3. Eyring plot for the reaction of 3-hexyne with [LFeH] 2. S-7

8 2. LFeN(Ph)NHPh LFeNHPh PhNNPh: An accurately weighed sample of LFeN(Ph)NHPh (10-13 mg) was placed in a J. Young resealable NMR tube with an accurately weighed aliquot of C 6 D 6 (ca. 450 mg). An internal reference consisting of a capillary containing a solution of CoTp* 2 in C 7 D 8 was added. The NMR tube placed into the NMR probe that was already equilibrated at the required temperature. After the sample had equilibrated for 2 min, 1 H NMR spectra were recorded at preset times using an automated program. After Fourier transform, phasing, calibrating and integrating each spectrum, a plot of normalized LFeN(Ph)NHPh concentration (y) vs. time (M0) was used to find the best fit to the general, integrated equation: y = m1 + m2*exp(-m0*m3), where m1, m2 and M3 are variables, M3 being the first order rate constant. For this purpose, KaleidaGraph 3.51 was used. A representative curve (Figure S4) for the hydrazido cleavage reaction is shown. There were minor amounts of iron-containing products other than LFeNHPh formed; their identity is under investigation. 70 [LFe(N(Ph)N(H)Ph)] / mm y = m1 + m2 * (exp(-m0*m3)) Value Error m m m e -05 Chisq NA R NA Time / s Figure S4 Plot of [LFe(N(Ph)NHPh] vs time at 358 K. [Fe] = 61.0 mm S-8

9 Table S2. Observed rate of LFeN(Ph)NHPh decomposition in C 6 D 6 at 358 K. Entry [LFeN(Ph)N(H)Ph] / mm k obs / 10-4 s (2) (2) (3) Equilibrium Measurements. A sample of [LFeH] 2 (4.9 mg, 4.4 µmol) was placed in a resealable NMR tube with an aliquot of C 7 D 8 (389 mg). An internal reference consisting of a capillary containing a solution of CoTp* 2 (6.4 mm in C 7 D 8 ) was added. The tube was closed and sonicated (ca. 5 min) to completely dissolve the iron complex. Sample equilibration at each temperature was confirmed by recording the 1 H NMR spectrum every 5 min until no change was observed. Thermal equilibration was found to be complete within 10 min at each temperature. Thermodynamic parameters ( H = 72(2) kj/mol; S = 247(4) J/K mol) were obtained from a van t Hoff plot over the range K (Figure S5) ln(k) 0-2 y = m1 + m2 * M0 Value Error m m Chisq NA R NA /T Figure S5 van t Hoff plot for the equilibrium 2LFeH [LFeH] 2. [Fe] = 20 mm at 20 C. S-9

10 Magnetic Moment Measurements. A sample of [LFeH] 2 (13.1 mg, 11.7 µmol) was placed in an NMR tube (connected to a ground glass joint) with an aliquot of C 7 D 8 (412 mg). An internal reference consisting of a capillary containing a solution of LFeCl (1.97 µmol) in C 7 D 8 was added. The tube was connected to the vacuum line, frozen, flame-sealed and sonicated to completely dissolve the iron complex. Magnetic moments were determined by the Evans method. 2 Sample equilibration at each temperature was confirmed by recording the 1 H NMR spectrum every 5 min until no change was observed. Thermal equilibration was complete within 10 min at each temperature. Molecular Weight Determinations. A mixture of [LFeH] 2 (1.8 mg) and naphthalene (185 mg) was heated until an orange solution formed. After cooling, an aliquot of the orange solid was placed in capillary which was then plugged with silicone grease and flame sealed. Melting point depressions, compared to that of authentic naphthalene, were measured on a Thomas Hoover melting point apparatus, using a VWR Precision 0.01 Thermometer equipped with a Pt-100Ω sensor. Molecular weights were determined using the formula: molecular weight = K w 1000/ T W, where K = 4.9 for naphthalene, w = mass of iron complex, W = mass naphthalene and T = temperature depression. 8 Table S3. Observed melting point depressions and corresponding molecular weights. Entry T / C MW S-10

11 X-ray Structural Determinations of [LFeH] 2, LFeC(Et)=C(Et)H, LFe(H)( t Bupy), LFeN(Ph)NHPh and LFeNHPh. Crystalline samples of the three complexes were grown in the glove box from saturated toluene ([LFeH] 2 ) or pentane (LFe(H)( t Bupy), LFeC(Et)=C(Et)(H), LFeN(Ph)NHPh and LFeNHPh) solutions at -35 C. The crystals were rapidly mounted under Paratone-8277 onto glass fibers, and immediately placed in a cold nitrogen stream at -80 C on the X-ray diffractometer. The X-ray intensity data were collected on a standard Bruker-axs SMART CCD Area Detector System equipped with a normal focus molybdenum-target X-ray tube operated at 2.0 kw (50 kv, 40 ma). A total of 1321 frames of data (1.3 hemispheres) were collected using a narrow frame method with scan widths of 0.3 in ω and exposure times of 30 sec/frame for [LFeH] 2 and LFe(H)( t Bupy), and 60s/frame for LFeC(Et)=C(Et)H, LFeN(Ph)NHPh and LFeNHPh, using a detector-to-crystal distance of 5.09 cm. The total data collection time was approximately 12 hours for 30 sec data and 26 hours for 60 sec data. Frames were integrated to a maximum 2θ angle of 56.5 for [LFeH] 2, LFe(H)( t Bupy), LFeN(Ph)NHPh, and LFeNHPh and 46.5 (due to a lack of observed data <0.9 Å) for LFeC(Et)=C(Et)H with the Bruker-axs SAINT program. Laue symmetry revealed monoclinic crystal systems for [LFeH] 2 and LFe(H)( t Bupy), a triclinic crystal system for LFeC(Et)=C(Et)H and orthorhombic crystal systems for LFeN(Ph)NHPh and LFeNHPh. The final unit cell parameters (at -80 C) were determined from the least-squares refinement of three dimensional centroids of >5000 reflections for each crystal. Data were corrected for absorption with the SADABS 9 program. The space groups were assigned as C2/c (#15) for [LFeH] 2, P1 (#2) for LFeC(Et)=C(Et)H, and P2 1 /c (#14) for LFe(H)( t Bupy), Pbca for LFeN(Ph)NHPh, Pca2 1 for LFeNHPh and the structures were solved by direct methods using Sir92 10 (WinGX v ) and refined employing full-matrix least-squares on F 2 (Brukeraxs, SHELXTL-NT, 11 version 5.10). For [LFeH] 2, there is one full molecule in the asymmetric unit (Z = 8) and diffuse solvent that was not assignable. Therefore solvent areas were removed with the SQUEEZE (WinGX v ) program, 12 and H1 was located and its position and thermal parameter was refined. However, the residual value of suggests that the Fe H values may not be trustworthy. Z values were as expected for one full molecule per asymmetric unit in both LFeC(Et)=C(Et)H (Z = 2) and LFe(H)( t Bupy) (Z = 4). For LFeN(Ph)NHPh solvent areas (these most closely resembled two pentane S-11

12 molecules, one on an inversion center) were removed with the SQUEEZE (WinGX v ) program. All non-h atoms for the complexes were refined with anisotropic thermal parameters. For all three complexes, hydrogen atoms were included in idealized positions with the exception of H(1) in [LFeH] 2, H(24b) in LFeN(Ph)N(H)Ph, H(1) in LFe( t Bupy)H, and H(1) in LFeNHPh. The structures refined to goodness of fit (GOF) 12 values and final residuals 13 found in the tables below. ORTEP plots for LFeC(Et)=C(Et)H and LFeNHPh are shown in Figures S6 and S7. S-12

13 Figure S6. ORTEP plot of LFeC(Et)C(H)Et, themal ellipsoids shown at 50% probability. Figure S7. ORTEP plot of LFeNHPh, thermal ellipsoids shown at 50% probability. S-13

14 References 1 (a) Ming, L.-J. In Physical Methods in Bioinorganic Chemistry; Que, L., Jr., Ed.; University Science Books: Sausalito, 2000; pp (b) Holland, P.L.; Cundari, T.R.; Perez, L.L.; Eckert, N.A.; Lachicotte, R.J. J. Am. Chem. Soc. 2002, 124, Schubert, E. M. J. Chem. Ed. 1992, 69, (a) Smith, J.M.; Lachicotte, R.J.; Holland, P.L. Chem. Commun. 2001, (b) Smith, J.M.; Lachicotte, R.J.; Holland, P.L. Organometallics 2002, 21, Fryzuk, M.D.; Lloyd, B.R.; Clentsmith, G.K.B.; Rettig, S.J. J. Am. Chem. Soc. 1994, 116, Schock, L.E.; Marks, T.J. J. Am. Chem. Soc. 1988, 110, Amman, C.; Meier, P.; Merbach, A. E. J. Magn. Reson. 1982, 46, Andres, H.; Bominaar, E.M.; Smith, J.M.; Eckert, N.A.; Holland, P.L.; Münck, E. J. Am. Chem. Soc. 2002, 124, Pasto, D.J.; Johnson, C.R. Laboratory Text for Organic Chemistry; Prentice-Hall: Englewood Cliffs, 1979; pp The SADABS program is based on the method of Blessing; see Blessing, R.H. Acta Crystallogr., Sect A 1995, 51, A. Altomare, G. Cascarano, C. Giacovazzo and A. Gualardi (1993) J. Appl. Cryst. 26, SHELXTL NT: Structure Analysis Program, version 5.10; BRUKER-axs: Madison, WI, SQUEEZE: Spek, A. L. Acta Cryst. 1990, A46, C34. / 2 2 [ [ ] ( )] [ [ ] [ ( ) ]] 13 ( o c) G OF = w F F / n p, where n and p denote the number of data and parameters 14 R1 = ( Fo F c ) / Fo ; wr w ( F F ) / w / 2 = o c F o where w = 1 / [ σ ( Fo) + ( a P) + b P] and = [( o) + c] P Max; 0,F 2 F / 3 S-14

15 Table S3. Crystal data and structure refinement for [LFeH]2. Identification code Empirical formula holjs39 C35 H54 Fe N2 Formula weight Temperature Wavelength Crystal system Space group 193(2) K A Monoclinic C2/c deg. Unit cell dimensions a = (2) A alpha = 90 deg. b = (11) A beta = (2) c = (3) A gamma = 90 deg. Volume, Z (12) A^3, 8 Density (calculated) Absorption coefficient Mg/m^ mm^-1 F(000) 2432 Crystal size Theta range for data collection Limiting indices 0.10 x 0.16 x 0.20 mm 1.67 to deg. -17<=h<=26, -13<=k<=13, -28<=l<=28 Reflections collected Independent reflections 5131 [R(int) = ] Reflections >2Sig(I) 4622 Absorption correction Empirical; SADABS Max. and min. transmission and Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters 5131 / 0 / 361 S-15

16 Goodness-of-fit on F^ Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.a^-3 Table S4. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for [LFeH]2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Fe(1) 554(1) 9457(1) 2849(1) 30(1) N(1) 1277(2) 8664(4) 2820(2) 32(1) N(2) 1007(2) 10408(5) 3482(2) 35(1) C(11) 2428(3) 8531(7) 3098(4) 58(2) C(21) 1820(3) 9080(6) 3054(3) 39(2) C(31) 1902(3) 10110(6) 3326(3) 43(2) C(41) 1571(3) 10729(6) 3553(3) 39(2) C(51) 1899(3) 11775(7) 3856(3) 47(2) C(61) 2741(5) 9273(9) 2814(6) 121(6) C(71) 2802(4) 8405(11) 3710(5) 115(5) C(81) 2415(4) 7394(7) 2846(4) 63(3) C(91) 2573(4) 11597(8) 4169(4) 75(3) C(101) 1831(4) 12610(7) 3396(4) 59(2) C(111) 1666(4) 12332(8) 4265(4) 70(3) C(12) 1159(3) 7643(6) 2519(3) 42(2) C(22) 1100(3) 6672(6) 2779(4) 47(2) C(32) 992(4) 5709(7) 2471(5) 74(3) C(42) 932(4) 5704(10) 1931(6) 84(4) C(52) 969(4) 6655(9) 1681(4) 68(3) C(62) 1078(3) 7651(7) 1954(4) 51(2) C(72) 1143(3) 6661(7) 3373(4) 60(3) C(82) 521(4) 6486(9) 3394(5) 82(3) C(92) 1574(5) 5794(9) 3719(5) 99(4) C(102) 1088(4) 8694(9) 1649(4) 63(3) C(112) 1558(5) 8679(12) 1371(5) 117(5) C(122) 475(5) 8913(10) 1206(4) 92(4) C(13) 754(3) 10718(6) 3887(3) 36(2) C(23) 289(4) 11448(6) 3779(3) 42(2) C(33) 72(4) 11692(8) 4192(3) 62(3) S-16

17 C(43) 304(5) 11202(9) 4700(4) 72(3) C(53) 735(4) 10439(10) 4802(3) 70(3) C(63) 978(4) 10161(6) 4403(3) 43(2) C(73) 11(4) 12032(8) 3230(3) 55(2) C(83) -651(4) 11797(11) 2970(4) 89(4) C(93) 118(6) 13277(9) 3293(5) 100(4) C(103) 1436(4) 9232(8) 4527(4) 66(3) C(113) 2013(5) 9498(11) 5021(5) 124(5) C(123) 1190(5) 8151(9) 4643(5) 106(4) Table S5. Bond lengths [A] and angles [deg] for [LFeH]2. Fe(1)-N(2) 1.990(5) Fe(1)-N(1) 2.022(6) Fe(1)-Fe(1)# (19) N(1)-C(21) 1.328(9) N(1)-C(12) 1.445(9) N(2)-C(41) 1.361(9) N(2)-C(13) 1.456(9) C(11)-C(81) 1.532(12) C(11)-C(71) 1.531(14) C(11)-C(61) 1.535(14) C(11)-C(21) 1.577(11) C(21)-C(31) 1.422(10) C(31)-C(41) 1.383(10) C(41)-C(51) 1.558(10) C(51)-C(101) 1.539(11) C(51)-C(111) 1.541(11) C(51)-C(91) 1.544(12) C(12)-C(22) 1.400(11) C(12)-C(62) 1.420(11) C(22)-C(32) 1.395(12) C(22)-C(72) 1.521(12) C(32)-C(42) 1.366(15) C(42)-C(52) 1.354(15) C(52)-C(62) 1.385(12) C(62)-C(102) 1.508(13) C(72)-C(92) 1.526(12) C(72)-C(82) 1.536(12) C(102)-C(122) 1.530(12) C(102)-C(112) 1.558(12) C(13)-C(23) 1.378(10) C(13)-C(63) 1.428(10) C(23)-C(33) 1.396(10) C(23)-C(73) 1.520(11) S-17

18 C(33)-C(43) 1.375(12) C(43)-C(53) 1.347(13) C(53)-C(63) 1.413(12) C(63)-C(103) 1.534(12) C(73)-C(83) 1.515(13) C(73)-C(93) 1.542(14) C(103)-C(123) 1.523(14) C(103)-C(113) 1.546(14) N(2)-Fe(1)-N(1) 95.3(2) N(2)-Fe(1)-Fe(1)# (17) N(1)-Fe(1)-Fe(1)# (16) C(21)-N(1)-C(12) 123.0(6) C(21)-N(1)-Fe(1) 121.3(5) C(12)-N(1)-Fe(1) 115.7(4) C(41)-N(2)-C(13) 119.5(6) C(41)-N(2)-Fe(1) 119.8(5) C(13)-N(2)-Fe(1) 120.6(4) C(81)-C(11)-C(71) 105.7(8) C(81)-C(11)-C(61) 105.2(8) C(71)-C(11)-C(61) 111.1(9) C(81)-C(11)-C(21) 118.9(7) C(71)-C(11)-C(21) 107.0(7) C(61)-C(11)-C(21) 108.9(8) N(1)-C(21)-C(31) 120.0(7) N(1)-C(21)-C(11) 127.2(7) C(31)-C(21)-C(11) 112.7(7) C(41)-C(31)-C(21) 134.7(7) N(2)-C(41)-C(31) 119.4(7) N(2)-C(41)-C(51) 126.9(7) C(31)-C(41)-C(51) 113.6(6) C(101)-C(51)-C(111) 106.9(7) C(101)-C(51)-C(91) 107.3(7) C(111)-C(51)-C(91) 106.1(7) C(101)-C(51)-C(41) 104.8(6) C(111)-C(51)-C(41) 117.9(6) C(91)-C(51)-C(41) 113.2(7) C(22)-C(12)-C(62) 120.8(7) C(22)-C(12)-N(1) 120.1(7) C(62)-C(12)-N(1) 119.1(7) C(32)-C(22)-C(12) 117.7(9) C(32)-C(22)-C(72) 120.7(9) C(12)-C(22)-C(72) 121.6(7) C(42)-C(32)-C(22) 121.8(10) C(52)-C(42)-C(32) 119.8(10) C(42)-C(52)-C(62) 122.5(10) C(52)-C(62)-C(12) 117.3(9) C(52)-C(62)-C(102) 120.3(9) S-18

19 C(12)-C(62)-C(102) 122.3(7) C(22)-C(72)-C(92) 112.8(9) C(22)-C(72)-C(82) 109.8(7) C(92)-C(72)-C(82) 110.2(8) C(62)-C(102)-C(122) 110.5(9) C(62)-C(102)-C(112) 113.1(8) C(122)-C(102)-C(112) 108.4(8) C(23)-C(13)-C(63) 119.9(7) C(23)-C(13)-N(2) 123.1(6) C(63)-C(13)-N(2) 116.8(7) C(13)-C(23)-C(33) 119.2(7) C(13)-C(23)-C(73) 122.8(6) C(33)-C(23)-C(73) 118.0(7) C(43)-C(33)-C(23) 121.3(9) C(53)-C(43)-C(33) 120.2(9) C(43)-C(53)-C(63) 121.3(9) C(53)-C(63)-C(13) 117.9(8) C(53)-C(63)-C(103) 119.0(8) C(13)-C(63)-C(103) 123.0(7) C(83)-C(73)-C(23) 111.3(8) C(83)-C(73)-C(93) 110.0(9) C(23)-C(73)-C(93) 111.3(8) C(123)-C(103)-C(63) 112.3(8) C(123)-C(103)-C(113) 108.2(8) C(63)-C(103)-C(113) 112.2(9) Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2 Table S6. Anisotropic displacement parameters (A^2 x 10^3) for [LFeH]2. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Fe(1) 27(1) 32(1) 32(1) -4(1) 14(1) -2(1) N(1) 28(3) 31(3) 35(3) -1(3) 11(3) -5(3) N(2) 32(3) 37(3) 31(3) -8(3) 7(3) -5(3) C(11) 28(4) 59(6) 90(7) -19(5) 26(5) -8(4) C(21) 40(5) 39(4) 46(5) 0(4) 24(4) -8(4) C(31) 33(4) 45(5) 52(5) -14(4) 18(4) -14(4) C(41) 39(4) 37(5) 37(4) 3(4) 8(4) -3(4) C(51) 46(5) 51(5) 50(5) -17(4) 23(4) -14(4) S-19

20 C(61) 80(8) 81(8) 256(17) -31(10) 124(10) -21(7) C(71) 52(6) 132(11) 111(9) -63(9) -29(6) 39(7) C(81) 29(4) 69(6) 86(7) -1(5) 14(5) 24(4) C(91) 61(6) 65(7) 84(7) -26(6) 9(5) -18(5) C(101) 71(6) 42(5) 68(6) -14(5) 30(5) -20(5) C(111) 85(7) 64(6) 70(6) -32(5) 38(6) -42(6) C(12) 26(4) 39(5) 57(5) -20(4) 10(4) 5(3) C(22) 24(4) 39(5) 67(6) -6(4) 3(4) -3(4) C(32) 38(5) 35(5) 130(10) -20(6) 7(6) 0(4) C(42) 37(5) 79(9) 120(10) -58(8) 8(6) -1(6) C(52) 46(6) 76(7) 80(7) -36(6) 21(5) 8(5) C(62) 22(4) 62(6) 65(6) -18(5) 10(4) 18(4) C(72) 34(5) 34(5) 96(7) 17(5) 6(5) -5(4) C(82) 58(6) 77(7) 106(9) 14(6) 24(6) 2(6) C(92) 65(7) 75(8) 141(11) 46(7) 20(7) 18(6) C(102) 55(6) 86(7) 53(5) -8(5) 25(5) 22(5) C(112) 91(9) 179(14) 105(9) 32(10) 66(8) 42(9) C(122) 85(8) 131(10) 61(6) -9(7) 28(6) 44(7) C(13) 41(4) 43(5) 25(4) -3(3) 16(3) -11(4) C(23) 53(5) 48(5) 34(4) -6(4) 27(4) -3(4) C(33) 67(6) 86(7) 44(5) -9(5) 32(5) 13(5) C(43) 75(7) 109(9) 40(5) -9(6) 31(5) 2(7) C(53) 75(7) 100(8) 35(5) -5(5) 20(5) -16(7) C(63) 51(5) 41(5) 35(4) 0(4) 14(4) -9(4) C(73) 61(6) 75(7) 34(5) 5(4) 23(4) 26(5) C(83) 67(7) 148(11) 57(6) 19(7) 28(6) 31(7) C(93) 152(12) 65(7) 96(9) 29(6) 61(8) 51(8) C(103) 68(6) 77(7) 45(5) 19(5) 12(5) 14(5) C(113) 75(8) 113(10) 140(11) 54(10) -14(8) -2(8) C(123) 100(9) 77(8) 123(10) 22(8) 20(8) 5(7) Table S7. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for [LFeH]2. x y z U(eq) H(1) 150(30) 9380(60) 2360(30) 70(30) H(31A) H(61A) H(61B) H(61C) H(71A) H(71B) S-20

21 H(71C) H(81A) H(81B) H(81C) H(91A) H(91B) H(91C) H(10A) H(10B) H(10C) H(11A) H(11B) H(11C) H(32A) H(42A) H(52A) H(72A) H(82A) H(82B) H(82C) H(92A) H(92B) H(92C) H(10D) H(11D) H(11E) H(11F) H(12A) H(12B) H(12C) H(33A) H(43A) H(53A) H(73A) H(83A) H(83B) H(83C) H(93A) H(93B) H(93C) H(10E) H(11G) H(11H) H(11I) H(12D) H(12E) H(12F) S-21

22 Table S8. Crystal data and structure refinement for LFe(H)(4-tBupy). Identification code Empirical formula holjs71 C44 H67 Fe N3 Formula weight Temperature Wavelength Crystal system, space group 193(2) K A Monoclinic, P2(1)/c deg. Unit cell dimensions a = (7) A alpha = 90 deg. b = (11) A beta = (1) c = (11) A gamma = 90 deg. Volume (4) A^3 Z, Calculated density 4, Mg/m^3 Absorption coefficient mm^-1 F(000) 1512 Crystal size Theta range for data collection Limiting indices 0.53 x 0.30 x 0.21 mm 1.56 to deg. -16<=h<=16, -23<=k<=18, -26<=l<=21 Reflections collected / unique / [R(int) = ] Completeness to theta = % Absorption correction Empirical Max. and min. transmission and Refinement method Full-matrix least-squares on F^2 Data / restraints / parameters / 0 / 454 Goodness-of-fit on F^ S-22

23 Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.a^-3 Table S9. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for LFe(H)(4-tBupy). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) Fe(1) 2777(1) 2581(1) 1603(1) 32(1) N(21) 1108(1) 2545(1) 1052(1) 34(1) N(13) 3215(1) 1474(1) 1477(1) 37(1) N(11) 3295(1) 3065(1) 834(1) 32(1) C(51) 741(2) 2655(1) 348(1) 34(1) C(61) -510(2) 2660(1) -141(1) 43(1) C(41) 1516(2) 2785(1) -40(1) 35(1) C(31) 2644(2) 2999(1) 146(1) 33(1) C(22) 5366(2) 3214(1) 1366(1) 41(1) C(14) 2978(2) 1171(1) 824(1) 39(1) C(23) 125(2) 1668(1) 1622(1) 47(1) C(12) 4289(2) 3523(1) 1059(1) 35(1) C(21) 3071(2) 3096(1) -522(1) 40(1) C(13) 430(2) 2395(1) 1515(1) 40(1) C(103) 527(2) 3761(1) 1846(1) 52(1) C(64) 4543(2) -661(1) 1173(1) 56(1) C(24) 3364(2) 493(1) 700(1) 42(1) C(62) 4174(2) 4294(1) 1012(1) 42(1) C(63) 182(2) 2977(1) 1914(1) 47(1) C(44) 4260(2) 391(1) 1942(1) 43(1) C(54) 3843(2) 1069(1) 2028(1) 41(1) C(34) 4039(2) 80(1) 1268(1) 41(1) C(102) 3027(2) 4663(1) 750(1) 49(1) C(111) -685(2) 2016(2) -675(1) 57(1) C(72) 5575(2) 2395(1) 1461(1) 47(1) C(101) -725(2) 3391(2) -557(1) 56(1) C(71) -1426(2) 2600(2) 227(1) 53(1) C(32) 6300(2) 3679(1) 1586(1) 52(1) C(33) -460(2) 1547(2) 2117(1) 60(1) C(82) 5985(2) 2194(1) 2254(1) 56(1) S-23

24 C(42) 6196(2) 4426(1) 1516(1) 55(1) C(73) 390(2) 1004(1) 1236(1) 56(1) C(43) -732(2) 2115(2) 2494(1) 66(1) C(53) -413(2) 2813(2) 2397(1) 61(1) C(81) 2336(2) 3636(2) -1066(1) 68(1) C(11) 4291(2) 3355(2) -380(1) 67(1) C(123) 1275(2) 4065(2) 2566(1) 64(1) C(52) 5145(2) 4727(1) 1237(1) 52(1) C(91) 3000(3) 2337(2) -862(2) 71(1) C(92) 6428(2) 2119(2) 1098(2) 66(1) C(122) 3015(3) 5323(2) 258(1) 72(1) C(93) 1161(2) 465(2) 1765(2) 79(1) C(83) -676(2) 591(2) 787(2) 76(1) C(112) 2667(2) 4907(2) 1385(1) 70(1) C(113) -483(3) 4279(2) 1553(2) 85(1) C(84) 4187(3) -920(2) 405(2) 100(1) C(94) 5834(3) -562(2) 1391(2) 100(1) C(74) 4255(5) -1225(2) 1640(3) 146(2) Table S10. Bond lengths [A] and angles [deg] for LFe(H)(4-tBupy). Fe(1)-N(11) (14) Fe(1)-N(21) (16) Fe(1)-N(13) (16) Fe(1)-H(1) 1.740(18) N(21)-C(51) 1.332(2) N(21)-C(13) 1.446(2) N(13)-C(14) 1.343(2) N(13)-C(54) 1.345(2) N(11)-C(31) 1.349(2) N(11)-C(12) 1.447(2) C(51)-C(41) 1.425(3) C(51)-C(61) 1.560(3) C(61)-C(71) 1.536(3) C(61)-C(101) 1.542(3) C(61)-C(111) 1.544(3) C(41)-C(31) 1.398(3) C(31)-C(21) 1.573(2) C(22)-C(32) 1.398(3) C(22)-C(12) 1.411(3) C(22)-C(72) 1.517(3) C(14)-C(24) 1.375(3) C(23)-C(33) 1.402(3) C(23)-C(13) 1.411(3) C(23)-C(73) 1.518(3) S-24

25 C(12)-C(62) 1.412(3) C(21)-C(91) 1.525(3) C(21)-C(81) 1.532(3) C(21)-C(11) 1.536(3) C(13)-C(63) 1.411(3) C(103)-C(63) 1.510(4) C(103)-C(123) 1.537(3) C(103)-C(113) 1.537(3) C(64)-C(74) 1.493(4) C(64)-C(84) 1.512(4) C(64)-C(34) 1.524(3) C(64)-C(94) 1.546(4) C(24)-C(34) 1.394(3) C(62)-C(52) 1.399(3) C(62)-C(102) 1.521(3) C(63)-C(53) 1.406(3) C(44)-C(54) 1.371(3) C(44)-C(34) 1.388(3) C(102)-C(112) 1.519(3) C(102)-C(122) 1.539(3) C(72)-C(82) 1.528(3) C(72)-C(92) 1.538(3) C(32)-C(42) 1.369(3) C(33)-C(43) 1.375(4) C(42)-C(52) 1.371(3) C(73)-C(93) 1.535(3) C(73)-C(83) 1.547(3) C(43)-C(53) 1.363(4) N(11)-Fe(1)-N(21) 97.36(6) N(11)-Fe(1)-N(13) (6) N(21)-Fe(1)-N(13) 99.53(6) N(11)-Fe(1)-H(1) 126.1(6) N(21)-Fe(1)-H(1) 124.9(6) N(13)-Fe(1)-H(1) 103.5(6) C(51)-N(21)-C(13) (16) C(51)-N(21)-Fe(1) (12) C(13)-N(21)-Fe(1) (11) C(14)-N(13)-C(54) (17) C(14)-N(13)-Fe(1) (12) C(54)-N(13)-Fe(1) (14) C(31)-N(11)-C(12) (15) C(31)-N(11)-Fe(1) (12) C(12)-N(11)-Fe(1) (11) N(21)-C(51)-C(41) (17) N(21)-C(51)-C(61) (16) C(41)-C(51)-C(61) (16) C(71)-C(61)-C(101) (18) S-25

26 C(71)-C(61)-C(111) (19) C(101)-C(61)-C(111) (18) C(71)-C(61)-C(51) (16) C(101)-C(61)-C(51) (18) C(111)-C(61)-C(51) (17) C(31)-C(41)-C(51) (17) N(11)-C(31)-C(41) (16) N(11)-C(31)-C(21) (16) C(41)-C(31)-C(21) (16) C(32)-C(22)-C(12) 119.0(2) C(32)-C(22)-C(72) (18) C(12)-C(22)-C(72) (18) N(13)-C(14)-C(24) (18) C(33)-C(23)-C(13) 118.3(2) C(33)-C(23)-C(73) 117.5(2) C(13)-C(23)-C(73) (18) C(22)-C(12)-C(62) (18) C(22)-C(12)-N(11) (17) C(62)-C(12)-N(11) (17) C(91)-C(21)-C(81) 109.7(2) C(91)-C(21)-C(11) 106.2(2) C(81)-C(21)-C(11) 106.1(2) C(91)-C(21)-C(31) (17) C(81)-C(21)-C(31) (16) C(11)-C(21)-C(31) (17) C(63)-C(13)-C(23) (18) C(63)-C(13)-N(21) (19) C(23)-C(13)-N(21) (18) C(63)-C(103)-C(123) 111.6(2) C(63)-C(103)-C(113) 112.9(2) C(123)-C(103)-C(113) 108.6(2) C(74)-C(64)-C(84) 110.3(3) C(74)-C(64)-C(34) 110.4(2) C(84)-C(64)-C(34) 113.1(2) C(74)-C(64)-C(94) 109.8(3) C(84)-C(64)-C(94) 105.8(3) C(34)-C(64)-C(94) 107.3(2) C(14)-C(24)-C(34) (19) C(52)-C(62)-C(12) (19) C(52)-C(62)-C(102) (19) C(12)-C(62)-C(102) (19) C(53)-C(63)-C(13) 117.9(2) C(53)-C(63)-C(103) 119.1(2) C(13)-C(63)-C(103) (18) C(54)-C(44)-C(34) (18) N(13)-C(54)-C(44) (19) C(44)-C(34)-C(24) (19) C(44)-C(34)-C(64) (18) S-26

27 C(24)-C(34)-C(64) (19) C(112)-C(102)-C(62) (18) C(112)-C(102)-C(122) 109.9(2) C(62)-C(102)-C(122) 112.6(2) C(22)-C(72)-C(82) (19) C(22)-C(72)-C(92) 112.4(2) C(82)-C(72)-C(92) (19) C(42)-C(32)-C(22) 121.8(2) C(43)-C(33)-C(23) 121.5(3) C(32)-C(42)-C(52) 119.2(2) C(23)-C(73)-C(93) 111.1(2) C(23)-C(73)-C(83) 113.0(2) C(93)-C(73)-C(83) 108.8(2) C(53)-C(43)-C(33) 119.8(2) C(43)-C(53)-C(63) 122.0(2) C(42)-C(52)-C(62) 121.9(2) Table S11. Anisotropic displacement parameters (A^2 x 10^3) for LFe(H)(4- tbupy). The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 U h k a* b* U12 ] U11 U22 U33 U23 U13 U12 Fe(1) 31(1) 41(1) 26(1) 5(1) 11(1) 8(1) N(21) 30(1) 48(1) 27(1) 5(1) 13(1) 7(1) N(13) 36(1) 42(1) 35(1) 8(1) 12(1) 6(1) N(11) 31(1) 38(1) 29(1) 5(1) 12(1) 8(1) C(51) 30(1) 44(1) 29(1) 2(1) 10(1) 8(1) C(61) 31(1) 67(1) 30(1) 4(1) 8(1) 8(1) C(41) 36(1) 47(1) 24(1) 4(1) 11(1) 10(1) C(31) 36(1) 35(1) 30(1) 6(1) 15(1) 10(1) C(22) 35(1) 50(1) 41(1) 2(1) 15(1) 1(1) C(14) 37(1) 44(1) 36(1) 10(1) 10(1) 6(1) C(23) 31(1) 74(2) 36(1) 14(1) 11(1) 0(1) C(12) 39(1) 40(1) 30(1) 4(1) 14(1) 2(1) C(21) 41(1) 52(1) 31(1) 6(1) 18(1) 6(1) C(13) 27(1) 69(1) 25(1) 8(1) 9(1) 8(1) C(103) 49(1) 74(2) 36(1) -6(1) 17(1) 19(1) C(64) 63(2) 39(1) 58(1) 1(1) 6(1) 14(1) C(24) 42(1) 43(1) 38(1) 2(1) 8(1) 2(1) C(62) 50(1) 44(1) 33(1) 6(1) 15(1) 3(1) C(63) 29(1) 83(2) 26(1) 3(1) 8(1) 13(1) C(44) 44(1) 42(1) 40(1) 12(1) 7(1) 6(1) S-27

28 C(54) 41(1) 46(1) 35(1) 8(1) 11(1) 5(1) C(34) 37(1) 37(1) 47(1) 6(1) 11(1) 2(1) C(102) 58(1) 41(1) 45(1) 6(1) 13(1) 10(1) C(111) 43(1) 83(2) 42(1) -8(1) 11(1) -5(1) C(72) 31(1) 50(1) 59(1) -1(1) 12(1) 6(1) C(101) 40(1) 80(2) 45(1) 16(1) 10(1) 23(1) C(71) 27(1) 93(2) 38(1) 3(1) 8(1) 8(1) C(32) 38(1) 62(1) 55(1) 4(1) 15(1) -3(1) C(33) 38(1) 102(2) 42(1) 22(1) 14(1) -4(1) C(82) 45(1) 55(1) 65(2) 9(1) 14(1) 7(1) C(42) 50(1) 61(2) 58(1) 4(1) 19(1) -14(1) C(73) 47(1) 65(2) 63(2) 17(1) 25(1) -4(1) C(43) 37(1) 130(3) 35(1) 12(1) 17(1) -2(1) C(53) 37(1) 117(2) 30(1) -3(1) 14(1) 13(1) C(81) 73(2) 92(2) 47(1) 30(1) 32(1) 23(2) C(11) 53(1) 113(2) 44(1) 3(1) 30(1) -8(1) C(123) 50(1) 87(2) 52(1) -9(1) 12(1) 10(1) C(52) 70(2) 42(1) 47(1) 6(1) 23(1) -6(1) C(91) 106(2) 65(2) 69(2) -12(1) 66(2) -1(2) C(92) 46(1) 79(2) 73(2) -11(1) 18(1) 17(1) C(122) 94(2) 66(2) 63(2) 26(1) 34(2) 34(2) C(93) 65(2) 73(2) 107(2) 41(2) 38(2) 7(1) C(83) 72(2) 79(2) 81(2) 2(2) 28(2) -18(2) C(112) 71(2) 84(2) 64(2) 20(1) 33(1) 24(2) C(113) 76(2) 95(2) 65(2) -11(2) -7(2) 35(2) C(84) 116(3) 73(2) 91(2) -24(2) 4(2) 37(2) C(94) 72(2) 95(2) 116(3) -34(2) 6(2) 32(2) C(74) 253(6) 49(2) 173(4) 30(2) 120(4) 36(3) Table S12. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for LFe(H)(4-tBupy). x y z U(eq) H(41) H(14) H(103) H(24) H(44) H(54) H(102) H(11A) H(11B) S-28

29 H(11C) H(72) H(10A) H(10B) H(10C) H(71A) H(71B) H(71C) H(32) H(33) H(82A) H(82B) H(82C) H(42) H(73) H(43) H(53) H(81A) H(81B) H(81C) H(11D) H(11E) H(11F) H(12A) H(12B) H(12C) H(52) H(91A) H(91B) H(91C) H(92A) H(92B) H(92C) H(12D) H(12E) H(12F) H(93A) H(93B) H(93C) H(83A) H(83B) H(83C) H(11G) H(11H) H(11I) H(11J) H(11K) H(11L) S-29

30 H(84A) H(84B) H(84C) H(94A) H(94B) H(94C) H(74A) H(74B) H(74C) H(1) 3333(15) 2729(10) 2520(10) 29(5) S-30

31 Table S13. Crystal data and structure refinement for LFeC(Et)CHEt. Identification code holjs58 Empirical formula C41 H64 Fe N2 Formula weight Temperature 193(2) K Wavelength Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = (7) Å a= (10). b = (9) Å b= (10). c = (12) Å g = (10). Volume (2) Å 3 Z 2 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 700 Crystal size 0.16 x 0.18 x 0.18 mm 3 Theta range for data collection 1.78 to Index ranges -12<=h<=12, -16<=k<=16, -18<=l<=22 Reflections collected Independent reflections 8407 [R(int) = ] Completeness to theta = % Absorption correction Empirical Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 8407 / 0 / 413 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 S-31

32 Table S14. Atomic coordinates ( x 10 4 ) and equivalent isotropic displacement parameters (Å 2 x 10 3 ) for LFeC(Et)CHEt. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) Fe(1) 7386(1) 2304(1) 2681(1) 29(1) N(11) 8366(3) 1213(2) 2825(1) 26(1) N(21) 8293(3) 2819(2) 1725(1) 28(1) C(11) 9841(3) 23(3) 2409(2) 33(1) C(21) 9212(3) 972(2) 2342(2) 27(1) C(31) 9562(4) 1552(3) 1681(2) 34(1) C(41) 9202(4) 2415(3) 1386(2) 32(1) C(51) 9978(5) 2885(4) 672(2) 51(1) C(61) 8956(5) -973(3) 1695(2) 59(1) C(71) 11484(5) 508(4) 2357(4) 74(2) C(81) 9697(4) -532(3) 3175(2) 42(1) C(91) 11527(8) 3290(15) 891(8) 311(11) C(101) 9599(18) 1841(9) 11(5) 263(9) C(111) 9451(10) 3597(11) 218(5) 212(6) C(12) 8049(3) 805(2) 3569(2) 27(1) C(22) 6698(3) -129(3) 3581(2) 30(1) C(32) 6330(4) -372(3) 4331(2) 40(1) C(42) 7245(4) 271(3) 5043(2) 43(1) C(52) 8600(4) 1174(3) 5022(2) 40(1) C(62) 9037(3) 1457(3) 4297(2) 31(1) C(72) 5675(3) -862(3) 2804(2) 36(1) C(82) 5309(4) -2172(3) 2771(3) 52(1) C(92) 4238(4) -679(3) 2682(2) 45(1) C(102) 10541(4) 2410(3) 4281(2) 38(1) C(112) 11756(4) 2502(4) 4970(2) 51(1) C(122) 10465(5) 3596(3) 4272(3) 58(1) C(13) 7727(4) 3626(3) 1450(2) 32(1) C(23) 6404(4) 3196(3) 871(2) 40(1) C(33) 5771(5) 3967(4) 688(2) 53(1) C(43) 6394(5) 5124(4) 1069(3) 58(1) C(53) 7675(5) 5523(3) 1627(2) 50(1) S-32

33 C(63) 8368(4) 4800(3) 1837(2) 37(1) C(73) 5636(4) 1919(3) 478(2) 50(1) C(83) 4363(6) 1270(4) 898(3) 80(2) C(93) 5092(7) 1756(5) -438(3) 89(2) C(103) 9740(4) 5287(3) 2494(2) 45(1) C(113) 9367(5) 5650(4) 3308(2) 62(1) C(123) 10999(5) 6343(4) 2292(3) 77(1) C(14) 6460(6) 3333(4) 4782(3) 70(1) C(24) 5583(4) 2358(3) 4076(2) 43(1) C(34) 5918(4) 2700(3) 3253(2) 36(1) C(44) 5230(4) 3294(3) 2894(3) 51(1) C(54) 4088(5) 3703(4) 3171(3) 69(1) C(64) 4500(8) 4956(5) 3183(4) 104(2) S-33

34 Table S15. Bond lengths [Å] and angles [ ] for LFeC(Et)CHEt. Fe(1)-N(11) 1.988(2) Fe(1)-N(21) 1.990(2) Fe(1)-C(34) 2.021(3) N(11)-C(21) 1.328(4) N(11)-C(12) 1.434(3) N(21)-C(41) 1.346(4) N(21)-C(13) 1.433(4) C(11)-C(71) 1.519(5) C(11)-C(81) 1.533(4) C(11)-C(61) 1.536(5) C(11)-C(21) 1.557(4) C(21)-C(31) 1.409(4) C(31)-C(41) 1.393(4) C(41)-C(51) 1.557(4) C(51)-C(91) 1.404(8) C(51)-C(111) 1.447(7) C(51)-C(101) 1.519(10) C(12)-C(22) 1.404(4) C(12)-C(62) 1.418(4) C(22)-C(32) 1.394(4) C(22)-C(72) 1.513(4) C(32)-C(42) 1.370(5) C(42)-C(52) 1.392(5) C(52)-C(62) 1.385(4) C(62)-C(102) 1.516(4) C(72)-C(92) 1.523(4) C(72)-C(82) 1.540(5) C(102)-C(122) 1.529(5) C(102)-C(112) 1.532(5) C(13)-C(63) 1.407(5) C(13)-C(23) 1.413(5) C(23)-C(33) 1.389(5) C(23)-C(73) 1.517(5) C(33)-C(43) 1.386(6) S-34

35 C(43)-C(53) 1.367(6) C(53)-C(63) 1.390(5) C(63)-C(103) 1.517(5) C(73)-C(83) 1.519(6) C(73)-C(93) 1.540(6) C(103)-C(113) 1.531(6) C(103)-C(123) 1.537(5) C(14)-C(24) 1.512(6) C(24)-C(34) 1.538(5) C(34)-C(44) 1.339(5) C(44)-C(54) 1.513(5) C(54)-C(64) 1.468(7) N(11)-Fe(1)-N(21) 94.18(10) N(11)-Fe(1)-C(34) (11) N(21)-Fe(1)-C(34) (11) C(21)-N(11)-C(12) 127.5(2) C(21)-N(11)-Fe(1) (19) C(12)-N(11)-Fe(1) (17) C(41)-N(21)-C(13) 127.4(2) C(41)-N(21)-Fe(1) (19) C(13)-N(21)-Fe(1) (18) C(71)-C(11)-C(81) 106.1(3) C(71)-C(11)-C(61) 110.0(3) C(81)-C(11)-C(61) 106.3(3) C(71)-C(11)-C(21) 110.9(3) C(81)-C(11)-C(21) 117.1(2) C(61)-C(11)-C(21) 106.3(3) N(11)-C(21)-C(31) 120.7(3) N(11)-C(21)-C(11) 125.5(2) C(31)-C(21)-C(11) 113.8(2) C(41)-C(31)-C(21) 132.9(3) N(21)-C(41)-C(31) 121.2(3) N(21)-C(41)-C(51) 124.1(3) C(31)-C(41)-C(51) 114.6(3) C(91)-C(51)-C(111) 116.0(7) S-35

36 C(91)-C(51)-C(101) 102.7(9) C(111)-C(51)-C(101) 99.7(7) C(91)-C(51)-C(41) 110.4(4) C(111)-C(51)-C(41) 118.5(4) C(101)-C(51)-C(41) 107.2(4) C(22)-C(12)-C(62) 121.1(3) C(22)-C(12)-N(11) 120.0(3) C(62)-C(12)-N(11) 118.3(3) C(32)-C(22)-C(12) 118.0(3) C(32)-C(22)-C(72) 120.7(3) C(12)-C(22)-C(72) 121.3(3) C(42)-C(32)-C(22) 121.9(3) C(32)-C(42)-C(52) 119.5(3) C(62)-C(52)-C(42) 121.5(3) C(52)-C(62)-C(12) 117.9(3) C(52)-C(62)-C(102) 121.1(3) C(12)-C(62)-C(102) 121.0(3) C(22)-C(72)-C(92) 111.6(3) C(22)-C(72)-C(82) 112.1(3) C(92)-C(72)-C(82) 109.6(3) C(62)-C(102)-C(122) 111.9(3) C(62)-C(102)-C(112) 113.3(3) C(122)-C(102)-C(112) 110.3(3) C(63)-C(13)-C(23) 120.6(3) C(63)-C(13)-N(21) 119.7(3) C(23)-C(13)-N(21) 119.1(3) C(33)-C(23)-C(13) 118.3(3) C(33)-C(23)-C(73) 119.8(3) C(13)-C(23)-C(73) 121.9(3) C(43)-C(33)-C(23) 121.4(4) C(53)-C(43)-C(33) 119.4(3) C(43)-C(53)-C(63) 122.1(4) C(53)-C(63)-C(13) 118.2(3) C(53)-C(63)-C(103) 119.2(3) C(13)-C(63)-C(103) 122.6(3) C(23)-C(73)-C(83) 110.7(3) S-36

37 C(23)-C(73)-C(93) 112.5(4) C(83)-C(73)-C(93) 110.8(4) C(63)-C(103)-C(113) 110.8(3) C(63)-C(103)-C(123) 112.4(3) C(113)-C(103)-C(123) 108.8(4) C(14)-C(24)-C(34) 113.1(3) C(44)-C(34)-C(24) 119.5(3) C(44)-C(34)-Fe(1) 117.8(3) C(24)-C(34)-Fe(1) 122.7(2) C(34)-C(44)-C(54) 129.6(4) C(64)-C(54)-C(44) 113.0(4) S-37

38 Table S16. Anisotropic displacement parameters (Å 2 x 10 3 )for LFeC(Et)CHEt. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U h k a* b* U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 Fe(1) 34(1) 31(1) 30(1) 10(1) 11(1) 19(1) N(11) 29(1) 27(1) 25(1) 7(1) 5(1) 14(1) N(21) 35(1) 29(1) 24(1) 7(1) 5(1) 17(1) C(11) 38(2) 38(2) 37(2) 12(1) 11(1) 25(1) C(21) 29(1) 28(1) 25(1) 4(1) 3(1) 14(1) C(31) 43(2) 40(2) 31(2) 11(1) 14(1) 26(2) C(41) 42(2) 36(2) 24(1) 10(1) 10(1) 19(1) C(51) 75(3) 70(2) 39(2) 30(2) 33(2) 50(2) C(61) 98(3) 51(2) 41(2) 2(2) 4(2) 48(2) C(71) 49(2) 82(3) 127(4) 60(3) 41(3) 48(2) C(81) 58(2) 46(2) 41(2) 16(2) 10(2) 37(2) C(91) 75(5) 630(30) 284(14) 378(18) 101(7) 108(10) C(101) 620(30) 170(9) 140(8) 97(7) 258(13) 241(14) C(111) 200(9) 448(18) 179(8) 262(11) 159(7) 243(11) C(12) 32(1) 29(1) 26(1) 9(1) 8(1) 17(1) C(22) 32(2) 29(2) 36(2) 9(1) 10(1) 16(1) C(32) 38(2) 40(2) 49(2) 23(2) 19(2) 18(2) C(42) 53(2) 53(2) 33(2) 20(2) 19(2) 27(2) C(52) 53(2) 46(2) 26(2) 10(1) 7(1) 24(2) C(62) 35(2) 34(2) 29(2) 8(1) 6(1) 18(1) C(72) 32(2) 31(2) 46(2) 9(1) 10(1) 11(1) C(82) 48(2) 35(2) 72(3) 6(2) 5(2) 16(2) C(92) 34(2) 42(2) 56(2) 6(2) 1(2) 14(2) C(102) 40(2) 41(2) 28(2) 2(1) 3(1) 11(1) C(112) 41(2) 67(3) 42(2) 2(2) 1(2) 22(2) C(122) 57(2) 39(2) 64(3) 11(2) -4(2) 8(2) C(13) 41(2) 37(2) 29(2) 13(1) 11(1) 23(1) C(23) 46(2) 49(2) 32(2) 12(1) 5(1) 25(2) C(33) 55(2) 69(3) 48(2) 23(2) 5(2) 39(2) C(43) 74(3) 63(3) 64(3) 33(2) 17(2) 50(2) C(53) 69(3) 36(2) 56(2) 18(2) 18(2) 30(2) S-38

39 C(63) 45(2) 34(2) 39(2) 14(1) 14(1) 19(1) C(73) 55(2) 53(2) 41(2) -1(2) -5(2) 27(2) C(83) 74(3) 54(3) 94(4) 3(3) 14(3) 11(2) C(93) 110(4) 98(4) 47(3) -18(3) -28(3) 51(4) C(103) 49(2) 32(2) 50(2) 10(2) 6(2) 13(2) C(113) 83(3) 47(2) 48(2) -2(2) 4(2) 24(2) C(123) 59(3) 64(3) 90(4) 26(3) 12(3) 3(2) C(14) 83(3) 74(3) 47(2) 5(2) 20(2) 25(3) C(24) 50(2) 40(2) 48(2) 13(2) 22(2) 24(2) C(34) 40(2) 32(2) 43(2) 10(1) 16(1) 18(1) C(44) 57(2) 53(2) 63(2) 27(2) 32(2) 35(2) C(54) 75(3) 71(3) 100(4) 42(3) 47(3) 54(3) C(64) 141(6) 81(4) 145(6) 45(4) 79(5) 82(4) S-39

40 Table S17. Hydrogen coordinates ( x 10 4 ) and isotropic displacement parameters (Å 2 x 10 3 ) for LFeC(Et)CHEt. x y z U(eq) H(31A) H(61A) H(61B) H(61C) H(71A) H(71B) H(71C) H(81A) H(81B) H(81C) H(91A) H(91B) H(91C) H(10A) H(10B) H(10C) H(11A) H(11B) H(11C) H(32A) H(42A) H(52A) H(72A) H(82A) H(82B) H(82C) H(92A) H(92B) H(92C) H(10D) S-40

41 H(11D) H(11E) H(11F) H(12A) H(12B) H(12C) H(33A) H(43A) H(53A) H(73A) H(83A) H(83B) H(83C) H(93A) H(93B) H(93C) H(10E) H(11G) H(11H) H(11I) H(12D) H(12E) H(12F) H(14A) H(14B) H(14C) H(24A) H(24B) H(44A) H(54A) H(54B) H(64A) H(64B) H(64C) S-41

42 Table S18. Crystal data and structure refinement for LFeN(Ph)NHPh. Identification code holjs77 Empirical formula C47 H64 Fe N4 Formula weight Temperature 193(2) K Wavelength Å Crystal system Orthorhombic Space group Pbca Unit cell dimensions a = (6) Å a= 90. b = (13) Å b= 90. c = (3) Å g = 90. Volume (10) Å 3 Z 8 Absorption coefficient mm -1 F(000) 3200 Crystal size 0.20 x 0.22 x 0.30 mm 3 Theta range for data collection 1.71 to Index ranges -11<=h<=12, -25<=k<=31, -59<=l<=59 Reflections collected Independent reflections [R(int) = ] Completeness to theta = % Absorption correction Empirical Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters / 0 / 503 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Largest diff. peak and hole and e.å -3 S-42

Brian T. Makowski, a Joseph Lott, a Brent Valle, b Kenneth D. Singer b* and Christoph Weder a,c*

Brian T. Makowski, a Joseph Lott, a Brent Valle, b Kenneth D. Singer b* and Christoph Weder a,c* Brian T. Makowski, a Joseph Lott, a Brent Valle, b Kenneth D. Singer b* and Christoph Weder a,c* a Department of Macromolecular Science and Engineering and b Department of Physics, Case Western Reserve

More information

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2007

Supporting Information. for. Advanced Materials, adma Wiley-VCH 2007 Supporting Information for Advanced Materials, adma.200701772 Wiley-VCH 2007 69451 Weinheim, Germany Supporting Information Oligo(p-phenylene vinylene)s as a New Class of Piezochromic Fluorophores Jill

More information

A7.1 CRYSTAL STRUCTURE ANALYSIS OF

A7.1 CRYSTAL STRUCTURE ANALYSIS OF Appendix 7 X-ray Crystallography Reports Relevant to Chapter 2 326 APPENDIX 7 X-ray Crystallography Reports Relevant to Chapter 2 A7.1 CRYSTAL STRUCTURE ANALYSIS OF 240 240 Note: The crystallographic data

More information

Meg E. Fasulo, Mark C. Lipke, and T. Don Tilley* *

Meg E. Fasulo, Mark C. Lipke, and T. Don Tilley* * Structural and Mechanistic Investigation of a Cationic Hydrogen-Substituted Ruthenium Silylene Catalyst for Alkene Hydrosilation Supporting Information Contents: Meg E. Fasulo, Mark C. Lipke, and T. Don

More information

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Supporting Information for Synthesis of 2,6-Hexatertiarybutylterphenyl Derivatives, 2,6- (2,4,6-t-Bu 3 C 6 H 2 ) 2 C 6 H 3 X, where X = I, Li, OH, SH, N 3, or NH 2. Konstantin V. Bukhryakov, Richard R.

More information

Ruthenium-catalyzed Olefin Metathesis Accelerated by Steric Effect of Backbone Substituent in Cyclic (Alkyl)(Amino)Carbenes

Ruthenium-catalyzed Olefin Metathesis Accelerated by Steric Effect of Backbone Substituent in Cyclic (Alkyl)(Amino)Carbenes Electronic Supplementary Information for Ruthenium-catalyzed Olefin Metathesis Accelerated by Steric Effect of Backbone Substituent in Cyclic (Alkyl)(Amino)Carbenes Jun Zhang,* a Shangfei Song, a Xiao

More information

Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography

Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography Supporting information Chiral Structure of Thiolate-Protected 28-Gold-Atom Nanocluster Determined by X-ray Crystallography Chenjie Zeng, Tao Li, Anindita Das, Nathaniel L. Rosi, and Rongchao Jin *, Department

More information

Supporting Information

Supporting Information Supporting Information Synthesis of pincer hydrido ruthenium olefin complexes for catalytic alkane dehydrogenation Yuxuan Zhang, Huaquan Fang, Wubing Yao, Xuebing Leng and Zheng Huang* State Key Laboratory

More information

Supplementary Figure S1 A comparison between the indium trimer in ITC-n and nickel trimer in ITC-n-Ni.

Supplementary Figure S1 A comparison between the indium trimer in ITC-n and nickel trimer in ITC-n-Ni. Supplementary Figure S1 A comparison between the indium trimer in ITC-n and nickel trimer in ITC-n-Ni. Supplementary Figure S2 Powder XRD and the simulation pattern of (a) ITC-1, (b) ITC-2, ITC-2NH 2 and

More information

Supporting Information for

Supporting Information for Supporting Information for Regioselective Cis Insertion of DMAD into Au-P Bonds: Effect of Auxiliary Ligands on Reaction Mechanism Hitoshi Kuniyasu, * Takuya Nakajima, Takashi Tamaki, Takanori Iwasaki,

More information

Supporting Information. Metal-coordination-driven Mixed Ligand Binding in Supramolecular Bisporphyrin Tweezers

Supporting Information. Metal-coordination-driven Mixed Ligand Binding in Supramolecular Bisporphyrin Tweezers Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Metal-coordination-driven Mixed Ligand Binding in Supramolecular Bisporphyrin

More information

Appendix A. X-ray Crystal Structure of methyl 3-chlorothiophene-2-carboxylate

Appendix A. X-ray Crystal Structure of methyl 3-chlorothiophene-2-carboxylate 120 Appendix A X-ray Crystal Structure of methyl 3-chlorothiophene-2-carboxylate X-ray crystallographic diffraction, data collection and data work-up run by Dr. Michael W. Day at the X-Ray Crystallography

More information

Complexes of High-Valent Rhenium. Supported by the PCP Pincer

Complexes of High-Valent Rhenium. Supported by the PCP Pincer Supporting Information Complexes of High-Valent Rhenium Supported by the PCP Pincer Alex J. Kosanovich; Joseph H. Reibenspies; Oleg V. Ozerov* Department of Chemistry, Texas A&M University, College Station,

More information

Supporting Information for

Supporting Information for Supporting Information for Interior Aliphatic C-H Bond Activation on Iron(II) N-Confused Porphyrin Through Synergistic Nitric Oxide Binding and Iron Oxidation Wei-Min Ching a,b and Chen-Hsiung Hung* a

More information

A Designed 3D Porous Hydrogen-Bonding Network Based on a Metal-Organic Polyhedron

A Designed 3D Porous Hydrogen-Bonding Network Based on a Metal-Organic Polyhedron Supporting Information A Designed 3D Porous Hydrogen-Bonding Network Based on a Metal-Organic Polyhedron Wei Wei,*, Wanlong Li, Xingzhu Wang, Jieya He Department of Chemistry, Capital Normal University,

More information

Generation Response. (Supporting Information: 14 pages)

Generation Response. (Supporting Information: 14 pages) Cs 4 Mo 5 P 2 O 22 : A First Strandberg-Type POM with 1D straight chains of polymerized [Mo 5 P 2 O 23 ] 6- units and Moderate Second Harmonic Generation Response (Supporting Information: 14 pages) Ying

More information

Correlation between the Structure and Catalytic. Activity of [Cp*Rh(Substituted Bipyridine)] Complexes for NADH Regeneration

Correlation between the Structure and Catalytic. Activity of [Cp*Rh(Substituted Bipyridine)] Complexes for NADH Regeneration Supporting Information Correlation between the Structure and Catalytic Activity of [Cp*Rh(Substituted Bipyridine)] Complexes for NADH Regeneration Vinothkumar Ganesan, Dharmalingam Sivanesan and Sungho

More information

M. Toufiqur Rahman, Jeffrey R. Deschamps, Gregory H. Imler, Alan W. Schwabacher and James M. Cook *

M. Toufiqur Rahman, Jeffrey R. Deschamps, Gregory H. Imler, Alan W. Schwabacher and James M. Cook * SUPPORTING INFORMATION TOTAL SYNTHESIS OF MACROCARPINE D AND E VIA AN ENOLATE-DRIVEN COPPER- MEDIATED CROSS-COUPLING PROCESS: REPLACEMENT OF CATALYTIC PALLADIUM WITH COPPER IODIDE M. Toufiqur Rahman, Jeffrey

More information

Electronic Supplementary Information. Jian-Rong Wang, Junjie Bao, Xiaowu Fan, Wenjuan Dai and Xuefeng Mei *

Electronic Supplementary Information. Jian-Rong Wang, Junjie Bao, Xiaowu Fan, Wenjuan Dai and Xuefeng Mei * Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information ph-switchable vitamin B 9 gels for stoichiometry-controlled

More information

Supporting Information

Supporting Information Supporting Information Two-Dimensional Organic Single Crystals with Scale Regulated, Phase Switchable, Polymorphism-Dependent and Amplified Spontaneous Emission Properties Zhenyu Zhang, Xiaoxian Song,

More information

Electronic Supplementary Information. Synthesis and crystal structure of a rare square-planar Co (II) complex of a hydroxyamidinate ligand.

Electronic Supplementary Information. Synthesis and crystal structure of a rare square-planar Co (II) complex of a hydroxyamidinate ligand. Electronic Supplementary Information Synthesis and crystal structure of a rare square-planar Co (II) complex of a hydroxyamidinate ligand. Mihaela Cibian, a Sofia Derossi, a and Garry S. Hanan* a Département

More information

Supporting Information for. Nitric Oxide Reactivity of Copper(II) Complexes of Bidentate Amine Ligands: Effect of. Substitution on Ligand Nitrosation

Supporting Information for. Nitric Oxide Reactivity of Copper(II) Complexes of Bidentate Amine Ligands: Effect of. Substitution on Ligand Nitrosation 1 Supporting Information for Nitric Oxide Reactivity of Copper(II) Complexes of Bidentate Amine Ligands: Effect of Substitution on Ligand Nitrosation Moushumi Sarma and Biplab Mondal Department of Chemistry,

More information

Supporting Information for:

Supporting Information for: Supporting Information for: Capture of Ni II, Cu I and Zn II by Thiolate Sulfurs of an N 2 S 2 Ni Complex: A Role for a Metallothiolate Ligand in the Acetyl-coenzyme A Synthase Active Site Melissa L. Golden,

More information

Supporting Information

Supporting Information Supporting Information Synthesis and characterization of a luminescence metallosupramolecular hyperbranched polymer Bingran Yu, Shuwen Guo, Lipeng He, and Weifeng Bu* Key Laboratory of Nonferrous Metals

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: Supplementary Figure 1. Crystal structure of ligand 4 drawn with 50% thermal ellipsoid probability. Hydrogens are omitted for clarity. Zinc atoms are dark blue; sulfur, yellow; phosphorus,

More information

On the quantitative recycling of Raney-Nickel catalysts on a labscale

On the quantitative recycling of Raney-Nickel catalysts on a labscale On the quantitative recycling of Raney-Nickel catalysts on a labscale Waldemar M. Czaplik, Jörg-M. Neudörfl and Axel Jacobi von Wangelin* Supporting information General Toluene was freshly dried and distilled

More information

Supporting Information for: Well defined Au(III)-bisfluorides supported by N-ligands

Supporting Information for: Well defined Au(III)-bisfluorides supported by N-ligands Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information for: Well defined Au(III)-bisfluorides supported by N-ligands Mohammad Albayer,

More information

Supporting Information. for. Group-assisted purification (GAP) chemistry for the synthesis of Velcade via asymmetric borylation of N- phosphinylimines

Supporting Information. for. Group-assisted purification (GAP) chemistry for the synthesis of Velcade via asymmetric borylation of N- phosphinylimines Supporting Information for Group-assisted purification (GAP) chemistry for the synthesis of Velcade via asymmetric borylation of N- phosphinylimines Jian-bo Xie 1, Jian Luo 1, Timothy R. Winn 1, David

More information

Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I)phenanthroline-Polyoxometalate Hybrid Complex

Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I)phenanthroline-Polyoxometalate Hybrid Complex Photoreduction of Carbon Dioxide to Carbon Monoxide with Hydrogen Catalyzed by a Rhenium(I)phenanthroline-Polyoxometalate Hybrid Complex Jessica Ettedgui, Yael Diskin-Posner, Lev Weiner and Ronny Neumann

More information

Triply ferrocene-bridged boroxine cyclophane

Triply ferrocene-bridged boroxine cyclophane Triply ferrocene-bridged boroxine cyclophane Teng-Hao Chen, Watchareeya Kaveevivitchai, Nghia Bui and Ognjen Š. Miljanić* University of Houston Department of Chemistry 136 Fleming Building Houston, TX

More information

2,6-Diphenybenzo[1,2-b:4,5-b ]dichalcogenophens: A new class of high-performance

2,6-Diphenybenzo[1,2-b:4,5-b ]dichalcogenophens: A new class of high-performance 2,6-Diphenybenzo[1,2-b:4,5-b ]dichalcogenophens: A new class of high-performance semiconductors for Organic Field-Effect Transistors Kazuo Takimiya,* Yoshihito Kunugi, Yasushi Konda, Naoto Niihara, Tetsuo

More information

Supporting Information

Supporting Information Supporting Information Interconversion between Metal-Organic Polyhedra and Metal-Organic Frameworks Jian-Rong Li, Daren J. Timmons, and Hong-Cai Zhou Department of Chemistry, Texas A&M University, College

More information

Department of Biology and Chemistry, City University of Hong Kong, Tat Chee

Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Supplementary Information Addition of [CH(CN) 2 ] - and [TCNE] to Ru VI N bearing 8-quinolinolato ligands Chi-Fai Leung, a Shek-Man Yiu, a Jing Xiang, a and Tai-Chu Lau a, * a Department of Biology and

More information

Supporting Information. Photochromic, Photoelectric and Fluorescent Properties

Supporting Information. Photochromic, Photoelectric and Fluorescent Properties Supporting Information Multifunctional Open-Framework Zinc Phosphate C 12 H 14 N 2 [Zn 6 (PO 4 ) 4 (HPO 4 )(H 2 O) 2 ]: Photochromic, Photoelectric and Fluorescent Properties Junbiao Wu, Yan Yan, Bingkun

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/5/e1603171/dc1 Supplementary Materials for Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes

More information

Supporting Material. for

Supporting Material. for Supporting Material for Assembly of a D oordination Polymer Through in situ Formation of a ew Ligand by Double - oupling on Hl 3 under Solvothermal onditions Guo-Bi Li, Jun-Min Liu, Zhi-Quan Yu, Wei Wang,

More information

Preparation and X-ray structure of 2-iodoxybenzenesulfonic. acid (IBS) a powerful hypervalent iodine(v) oxidant

Preparation and X-ray structure of 2-iodoxybenzenesulfonic. acid (IBS) a powerful hypervalent iodine(v) oxidant Supporting Information for Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) a powerful hypervalent iodine(v) oxidant Irina A. Mironova 1, Pavel S. Postnikov 1, Rosa Y. Yusubova 1,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Mechanochromism and aggregation induced emission in benzothiazole substituted

More information

Syntheses of Bipyricorroles and their meso-meso coupled dimers

Syntheses of Bipyricorroles and their meso-meso coupled dimers SUPPORTING INFORMATION Syntheses of Bipyricorroles and their meso-meso coupled dimers B. Adinarayana, Ajesh P. Thomas, Pardhasaradhi Satha and A. Srinivasan* School of Chemical Sciences, National Institute

More information

Supporting Information

Supporting Information 1 Supporting Information Practical One-Step Synthesis of Symmetrical Liquid Crystalline Dialkyloligothiophenes for Molecular Electronic Applications Julie Leroy, Jeremy Levin, Sergey Sergeyev, and Yves

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2005 69451 Weinheim, Germany Molecular and polymeric hybrids based on covalently linked polyoxometalates and transition metal complexes ** Jeonghee Kang, Bubin Xu, Zhonghua

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Tetrakis(1-allyl-1H-imidazole-jN 3 )bis- (thiocyanato-jn)manganese(ii) Juan Zhao a * and Yan-Ling Jin b

More information

Supplementary Figure F NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF 2 H) Supplementary Figure 2. 1 H NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF 2 H)

Supplementary Figure F NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF 2 H) Supplementary Figure 2. 1 H NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF 2 H) Supplementary Figure 1. 19 F NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF 2 H) Supplementary Figure 2. 1 H NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF 2 H) S1 Supplementary Figure 3. 13 C NMR of (TMEDA)Pd(4-MeOC 6 H 4 )(CF

More information

A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal- Ligand Electron Transfer

A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal- Ligand Electron Transfer Supporting Information for: A Ferric Semiquinoid Single-Chain Magnet via Thermally-Switchable Metal- Ligand Electron Transfer Jordan A. DeGayner, Kunyu Wang, and T. David Harris* Department of Chemistry,

More information

= (7) V = (3) Å 3 Z =2 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (7) V = (3) Å 3 Z =2 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 trans-cyclohexane-1,4-diyl bis(4-nitrophenyl) dicarbonate = 82.310 (7) V = 974.6 (3) Å 3 Z =2 Mo K radiation Data

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supplementary Online Data Reversible Redox Reactions in an Extended Polyoxometalate Framework Solid Chris Ritchie 1, Carsten Streb 1, Johannes

More information

Supplementary information

Supplementary information Supplementary information ligonucleotide models of telomeric DA and RA form a hybrid G-quadruplex structure as a potential component of telomeres Yan Xu*, Takumi Ishizuka, Jie Yang, Kenichiro Ito, Hitoshi

More information

Department of Chemistry and the Macromolecular Science and Engineering Program,

Department of Chemistry and the Macromolecular Science and Engineering Program, Supporting Information for the Design and Synthesis of a Series of Nitrogen-rich Energetic Cocrystals of 5,5 -dinitro-2h,2h -3,3 -bi-1,2,4- triazole (DNBT) Jonathan C. Bennion, Andrew McBain, Steven F.

More information

Supporting Information. Reversible ph-responsive Behavior of. Ruthenium(II) Arene Complexes with. Tethered Carboxylate

Supporting Information. Reversible ph-responsive Behavior of. Ruthenium(II) Arene Complexes with. Tethered Carboxylate Supporting Information Reversible ph-responsive Behavior of Ruthenium(II) Arene Complexes with Tethered Carboxylate Francisco Martínez-Peña, Sonia Infante-Tadeo, Abraha Habtemariam and Ana M. Pizarro*

More information

Nucleophilic Trifluoromethylation of Unactivated Arenes Jack A Pike, James W Walton

Nucleophilic Trifluoromethylation of Unactivated Arenes Jack A Pike, James W Walton Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 07 Nucleophilic Trifluoromethylation of Unactivated Arenes Jack A Pike, James W Walton Table of contents:.

More information

Supporting Information

Supporting Information Supporting Information A Unique Pair: Ag 40 and Ag 46 Nanoclusters with the Same Surface but Different Cores for Structure-Property Correlation Jinsong Chai, Sha Yang, Ying Lv, Tao Chen, Shuxin Wang, Haizhu

More information

= (7) V = (3) Å 3 Z =2 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (7) V = (3) Å 3 Z =2 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 trans-cyclohexane-1,4-diyl bis(4-nitrophenyl) dicarbonate = 82.310 (7) V = 974.6 (3) Å 3 Z =2 Mo K radiation Data

More information

Supporting Information

Supporting Information Supporting Information Access to Hexahydrocarbazoles: The Thorpe Ingold Effects of the Ligand on Enantioselectivity Hao Chen, Lijia Wang, Feng Wang, Liu-Peng Zhao, Pan Wang, and Yong Tang* anie_201700042_sm_miscellaneous_information.pdf

More information

Workshop in X-ray structure analysis

Workshop in X-ray structure analysis 10th International Symposium and Summer School on Bioanalysis Workshop in X-ray structure analysis Practical parts II & III Ivica Đilović & Dalibor Milić Zagreb, 7 July 010 Aims and objectives You will:

More information

* solvent and impurities

* solvent and impurities * solvent and impurities upplementary Figure 1. 1 H MR spectrum of 3b in CDCl 3 (1.3 mm). upplementary Figure 2. 13 C MR spectrum of 3b in CDCl 3 (1.3 mm). upplementary Figure 3. 1 H MR spectrum of 4a

More information

Supporting Information. Small Molecule Activation by Frustrated Lewis Pairs

Supporting Information. Small Molecule Activation by Frustrated Lewis Pairs Supporting Information Small Molecule Activation by Frustrated Lewis Pairs Alastair L. Travis, Samantha. C. Binding, Hasna Zaher, Thomas A. Q. Arnold, Jean-Charles Buffet, and Dermot O Hare* Chemistry

More information

Supporting Information

Supporting Information Supporting Information Synthesis of 4-Ynamides and Cyclization by the Vilsmeier Reagent to Dihydrofuran-2(3H)-ones Zhaocheng Zhang, b Rapolu Kiran Kumar, a Guangzhi Li, b Dongmei Wu,* b Xihe Bi* a,b,c

More information

Supporting Information

Supporting Information 1 Supporting Information Early-Late Heterobimetallic Complexes as Catalyst for Ethylene Polymerization. Cooperative Effect of Two Metal Centers to Afford Highly Branched Polyethylene Junpei Kuwabara, Daisuke

More information

Characterization and strong piezoelectric response of an. organometallic nonlinear optical crystal: CdHg(SCN) 4 (C 2 H 6 SO) 2

Characterization and strong piezoelectric response of an. organometallic nonlinear optical crystal: CdHg(SCN) 4 (C 2 H 6 SO) 2 Supplementary Information Characterization and strong piezoelectric response of an organometallic nonlinear optical crystal: CdHg(SCN) 4 (C 2 H 6 SO) 2 Xitao Liu, Xinqiang Wang *, Xin Yin, Shaojun Zhang,

More information

Supplementary Material

Supplementary Material ARKIVC 212 (viii) S1-S Supplementary Material An efficient method for the preparation of 2,2,4- trisubstituted 1,2- dihydroquinolines using catalytic amount Bi(Tf) as catalyst Zeynep Gültekin, a* Wolfgang

More information

Regioselective (thio)carbamoylation of 2,7-di-tertbutylpyrene at the 1-position with iso(thio)cyanates

Regioselective (thio)carbamoylation of 2,7-di-tertbutylpyrene at the 1-position with iso(thio)cyanates Supporting Information Regioselective (thio)carbamoylation of 2,7-di-tertbutylpyrene at the 1-position with iso(thio)cyanates for Anna Wrona-Piotrowicz *,1, Marzena Witalewska 1, Janusz Zakrzewski *1 and

More information

Fluorescent-based detection of nitric oxide in aqueous and methanol media using copper(ii) complex

Fluorescent-based detection of nitric oxide in aqueous and methanol media using copper(ii) complex Supporting Information for Fluorescent-based detection of nitric oxide in aqueous and methanol media using copper(ii) complex Biplab Mondal, * Pankaj Kumar, Pokhraj Ghosh and Apurba Kalita. Department

More information

Hydrogenolysis of carbon-carbon σ-bond using water catalyzed by. semi-rigid diiridium(iii) porphyrins

Hydrogenolysis of carbon-carbon σ-bond using water catalyzed by. semi-rigid diiridium(iii) porphyrins Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019 Electronic Supplementary Information

More information

metal-organic compounds

metal-organic compounds metal-organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Bis(l-3-carboxy-2-oxidobenzoato)- j 3 O 1,O 2 :O 3 ;j 3 O 3 :O 1,O 2 -bis[aqua(2,2 0 - bipyridine-j 2 N,N

More information

Synthesis and Materials. All reactions and manipulations were performed under Ar

Synthesis and Materials. All reactions and manipulations were performed under Ar Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Supporting Information for: A Fundamental Study on the [( -) 3 Mg 2 () 6 ] + Dimer

More information

Supplementary information for Nature Materials. Gas-induced transformation and expansion of a 'nonporous'

Supplementary information for Nature Materials. Gas-induced transformation and expansion of a 'nonporous' Supplementary information for Nature Materials Gas-induced transformation and expansion of a 'nonporous' organic solid Praveen K. Thallapally, 1, * B. Peter McGrail, 1, Scott J. Dalgarno, 2 Herbert T.

More information

Inspecting Metal Coordination Induced Perturbation of Molecular Ligand Orbitals at a Sub-molecular Resolution

Inspecting Metal Coordination Induced Perturbation of Molecular Ligand Orbitals at a Sub-molecular Resolution Inspecting Metal Coordination Induced Perturbation of Molecular Ligand rbitals at a Sub-molecular Resolution Weihua Wang 1, Yuning Hong 2, Xingqiang Shi 3, C. Minot 3,4, M.A. Van Hove 3, Ben Zhong Tang

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION 1. SYNTHESIS OF THE MONOMERS 2-(Methylacryloyloxy)ethyl-trimethylammonium tetrafluoroborate ([MATMA][BF 4 ]) and p-vinylbenzyltrimethylammonium tetrafluoroborate ([VBTMA][BF 4 ])

More information

A pcu-type Metal-Organic Framework with Spindle [Zn 7 (OH) 8 ] 6+ Cluster as Secondary Building Units

A pcu-type Metal-Organic Framework with Spindle [Zn 7 (OH) 8 ] 6+ Cluster as Secondary Building Units A pcu-type Metal-Organic Framework with Spindle [Zn 7 (OH) 8 ] 6+ Cluster as Secondary Building Units Jian-Rong Li, Ying Tao, Qun Yu and Xian-He Bu* Materials, methods and synthesis All the reagents for

More information

Iron(II) hydrazinium sulfate

Iron(II) hydrazinium sulfate inorganic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Iron(II) hydrazinium sulfate Krishnan Srinivasan, a Subbaiah Govindarajan a and William T. A. Harrison b * a Department

More information

Supporting Information. Department of Chemistry, University of California at Berkeley, Berkeley, California

Supporting Information. Department of Chemistry, University of California at Berkeley, Berkeley, California Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Efficient C-H Bond Activations via O 2 Cleavage by a Dianionic Cobalt(II)

More information

Transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties

Transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) for Transformative route to

More information

Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions

Multi-step and multi-component organometallic synthesis in one pot using orthogonal mechanochemical reactions Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Multi-step and multi-component organometallic synthesis in one pot

More information

Supporting Information For: Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel Crafts C H Silylation

Supporting Information For: Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel Crafts C H Silylation Supporting Information For: Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel Crafts C H Silylation Qing-An Chen, Hendrik F. T. Klare, and Martin Oestreich* martin.oestreich@tu-berlin.de

More information

L. R. Hill et al. 1 Ternary self-assemblies in water

L. R. Hill et al. 1 Ternary self-assemblies in water L. R. Hill et al. 1 Ternary self-assemblies in water Supporting information for: Ternary self-assemblies in water: forming a pentanuclear ReLn 4 assembly by association of binuclear lanthanide binding

More information

Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune (India) Sr. No. Contents Page Numbers

Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune (India) Sr. No. Contents Page Numbers Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2019 Does Stoichiometry Matter? Cocrystals of Aliphatic Dicarboxylic Acids with Isonicotinamide:

More information

A new polymorph of 1-hydroxy-2-naphthoic acid obtained

A new polymorph of 1-hydroxy-2-naphthoic acid obtained Supporting information Volume 71 (2015) Supporting information for article: A new polymorph of 1-hydroxy-2-naphthoic acid obtained during failed co-crystallization experiments Qi Zhang, Meiqi Li and Xuefeng

More information

Supporting Information. Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted

Supporting Information. Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted Supporting Information Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted divinyl ether and its conversion into epoxyglycidyl propargyl ether Yiwu Yao 1, Zheng Li 2, Yatao Qiu 1,

More information

Supporting information. Nanoparticles from Catalytic Step Growth Polymerization

Supporting information. Nanoparticles from Catalytic Step Growth Polymerization Supporting information Nanoparticles from Catalytic Step Growth Polymerization Johannes Pecher and Stefan Mecking* Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, D-78457 Konstanz, Germany

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Covalent attachment of [Ni(alkynyl-cyclam)] 2+ catalysts to glassy carbon electrodes. Almagul Zhanaidarova,

More information

The effect of metal distribution on the luminescence properties of mixedlanthanide metal-organic frameworks

The effect of metal distribution on the luminescence properties of mixedlanthanide metal-organic frameworks Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 The effect of metal distribution on the luminescence properties of mixedlanthanide metal-organic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 SUPPLEMENTARY INFORMATION NO-binding in {Ru(NO) 2 } 8 -type [Ru(NO) 2 (PR 3 ) 2 X]BF

More information

Supporting Information for manuscript entitled Chromatography in a Single. Northwestern University, Evanston, Illinois 60208, USA

Supporting Information for manuscript entitled Chromatography in a Single. Northwestern University, Evanston, Illinois 60208, USA Supporting Information for manuscript entitled Chromatography in a Single Metal-Organic Framework Crystal by Shuangbing Han 1, Yanhu Wei 1,2, Cory Valente 2, István Lagzi 2, Jeremiah J. Gassensmith 2,

More information

Are gamma amino acids promising tools of crystal engineering? Multicomponent crystals of baclofen

Are gamma amino acids promising tools of crystal engineering? Multicomponent crystals of baclofen Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Are gamma amino acids promising tools of crystal engineering?

More information

Color polymorphs of aldose reductase inhibitor Epalrestat: configurational, conformational and synthon differences

Color polymorphs of aldose reductase inhibitor Epalrestat: configurational, conformational and synthon differences Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Color polymorphs of aldose reductase inhibitor Epalrestat: configurational, conformational

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Efficient Synthesis of Diverse Well-defined Functional Polypropylenes

More information

Supporting information

Supporting information Supporting information Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1 Suresh Babu Kalidindi, 1 Christian Wiktor, 1, 2 Ayyappan Ramakrishnan,

More information

Supporting Information. Highly Photostable Near-Infrared Fluorescent ph Indicators and Sensors based on BF 2 -Chelated Tetraarylazadipyrromethene Dyes

Supporting Information. Highly Photostable Near-Infrared Fluorescent ph Indicators and Sensors based on BF 2 -Chelated Tetraarylazadipyrromethene Dyes Supporting Information Highly Photostable Near-Infrared Fluorescent ph Indicators and Sensors based on BF 2 -Chelated Tetraarylazadipyrromethene Dyes Tijana Jokic, a Sergey M. Borisov, a* Robert Saf, b

More information

Nb 2 O 2 F 3 : A Reduced Niobium (III/IV) Oxyfluoride. with a Complex Structural, Magnetic and Electronic. Phase Transition

Nb 2 O 2 F 3 : A Reduced Niobium (III/IV) Oxyfluoride. with a Complex Structural, Magnetic and Electronic. Phase Transition Supporting Information for: Nb 2 O 2 F 3 : A Reduced Niobium (III/IV) Oxyfluoride with a Complex Structural, Magnetic and Electronic Phase Transition T. Thao Tran,, Melissa Gooch,, Bernd Lorenz,, Alexander

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Supplementary Information Aggregation-Induced Emission Enhancement in Boron

More information

The Influence of Solvent Coordination on Hybrid. Organic-Inorganic Perovskite Formation. (Supporting Information)

The Influence of Solvent Coordination on Hybrid. Organic-Inorganic Perovskite Formation. (Supporting Information) The Influence of Solvent Coordination on Hybrid Organic-Inorganic Perovskite Formation (Supporting Information) J. Clay Hamill, Jr., Jeffrey Schwartz, and Yueh-Lin Loo, * Department of Chemical and Biological

More information

1001 Nitration of toluene to 4-nitrotoluene, 2-nitrotoluene and 2,4-dinitrotoluene

1001 Nitration of toluene to 4-nitrotoluene, 2-nitrotoluene and 2,4-dinitrotoluene 1001 Nitration of toluene to 4-nitrotoluene, 2-nitrotoluene and 2,4-dinitrotoluene CH 3 CH 3 CH 3 NO 2 CH 3 NO 2 HNO 3 /H 2 SO 4 + + + side products NO 2 NO 2 C 7 H 8 (92.1) HNO 3 (63.0) H 2 SO 4 (98.1)

More information

Synthesis and Reactions of [Cp* 2 Yb] 2 (μ-me) and [Cp* 2 Yb] 2 (μ-me)(me) and Related Yb 2 (II, III) and Yb 2 (III, III) Compounds

Synthesis and Reactions of [Cp* 2 Yb] 2 (μ-me) and [Cp* 2 Yb] 2 (μ-me)(me) and Related Yb 2 (II, III) and Yb 2 (III, III) Compounds Synthesis and Reactions of [Cp* 2 Yb] 2 (μ-me) and [Cp* 2 Yb] 2 (μ-me)(me) and Related Yb 2 (II, III) and Yb 2 (III, III) Compounds Marc D. Walter,, Phillip T. Matsunaga, Carol J. Burns, Laurent Maron,

More information

Laser-derived One-Pot Synthesis of Silicon Nanocrystals Terminated with Organic Monolayers

Laser-derived One-Pot Synthesis of Silicon Nanocrystals Terminated with Organic Monolayers Electronic Supplementary Information for: Laser-derived One-Pot Synthesis of Silicon Nanocrystals Terminated with Organic Monolayers N. Shirahata,*,a M. R. Linford, b S. Furumi, a L. Pei, b Y. Sakka, a

More information

Radical-mediated Anti-Markovnikov Hydrophosphonation of Olefins

Radical-mediated Anti-Markovnikov Hydrophosphonation of Olefins Radical-mediated Anti-Markovnikov Hydrophosphonation of Olefins Christopher S. Daeffler and Robert H. Grubbs Division of Chemistry and Chemical Engineering California Institute of Technology MC 164-30

More information

Supplemental Information for Long Tethers Binding Redox Centers to Polymer. Backbones Enhance Electron Transport in Enzyme Wiring Hydrogels by Fei

Supplemental Information for Long Tethers Binding Redox Centers to Polymer. Backbones Enhance Electron Transport in Enzyme Wiring Hydrogels by Fei Supplemental Information for Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme Wiring Hydrogels by Fei Mao, Nicolas Mano and Adam Heller, Department of Chemical

More information

Isomerism in Au 28 (SR) 20 Nanocluster and Stable Structures

Isomerism in Au 28 (SR) 20 Nanocluster and Stable Structures (Supporting Information) Isomerism in Au 28 (SR) 20 Nanocluster and Stable Structures Yuxiang Chen, Chong Liu, Qing Tang, Chenjie Zeng, Tatsuya Higaki, Anindita Das, De-en Jiang, *, Nathaniel L. Rosi,

More information

Networking Nanoswitches for ON/OFF Control of Catalysis

Networking Nanoswitches for ON/OFF Control of Catalysis Supporting Information for etworking anoswitches for O/OFF Control of Catalysis ikita Mittal, Susnata Pramanik, Indrajit Paul, Soumen De, Michael Schmittel* Center of Micro and anochemistry and Engineering,

More information

Supporting Information

Supporting Information S1 Supporting Information Metallocenes@COF-102: Organometallic Host-Guest Chemistry of Porous Crystalline Organic Frameworks Suresh Babu Kalidindi, [a] Kirill Yusenko, [a] and Roland A. Fischer* a Inorganic

More information

Crystal Quality A Practical Guide

Crystal Quality A Practical Guide Crystal Quality A Practical Guide Louis J Farrugia Suitability for Charge Density Analysis The suitability factor S,, which defines how likely you are to obtain a satisfactory charge density analysis from

More information