Mat UK Energy Materials Review R&D Priorities for Steam Turbine Based Power

Size: px
Start display at page:

Download "Mat UK Energy Materials Review R&D Priorities for Steam Turbine Based Power"

Transcription

1 Mat UK Energy Materials Review R&D Priorities for Steam Turbine Based Power Generation. 3rd August 2007 Prepared by: S Osgerby - ALSTOM Power Send comments to: steve.osgerby@power.alstom.com Page 1 of 11

2 1. EXECUTIVE SUMMARY INTRODUCTION STEAM TURBINE MATERIALS High Pressure (HP) and Intermediate Pressure (IP) Cylinders Rotor Forgings Casings and Valve Chests Blading Sealing Valve Internals Bolting Low Pressure (LP) Cylinder Rotor Forgings Casings Blading R&D PRIORITIES Current R&D Programmes Europe UK Japan USA Future R&D Priorities High Temperature Low temperature Underpinning Activities...11 Page 2 of 11

3 1. EXECUTIVE SUMMARY. This report summarises the current status of material use in steam turbines. Future materials requirements are identified and current collaborative and public-funded materials research is reviewed. The following key recommendations are made for future research programmes into materials for steam turbine applications: Development of alloys with improved creep resistance at higher temperatures; Development of alloys or surface engineering technologies with steam oxidation, erosion and wear resistance at higher temperatures. Development and long-term characterisation of improved welding consumable for high temperature service Development of alloys with improved combination of strength, fracture toughness and stress corrosion cracking resistance Improved understanding and predictive modelling of degradation and damage mechanisms at both high and low temperature Non-invasive inspection techniques for in situ assessment of material condition Test procedures for miniaturised specimens that can be directly correlated with tests results from standard sized specimens Facilities for extended duration exposures to environments that reproduce service conditions eg high pressure steam, solid particle erosion etc Page 3 of 11

4 2. INTRODUCTION. Steam turbines are an essential part of combustion-based power generation technologies. At some point in the cycle, the majority of these technologies raise steam whose energy is converted via a steam turbine. The materials issues related to the steam turbine depend largely on the temperature and pressure of the steam generated and are almost independent of the steam raising technology employed. At the current time steam turbines serve two principal fossil-fired technology markets: Coal or lignite-fired plant based on PF or CFB combustion technology. For utility-scale generation this may require steam turbines with outputs up to 1100MWe. Gas-fired plant incorporating a combined cycle where the exhaust gas from a gas turbine is used to raise steam. To match the lower power output of the gas turbine, steam turbines for these applications have outputs typically in the range up to 350MWe. In the 1990s the second of these markets was dominant. The dash for gas in the UK was replicated to a greater or lesser extent in markets around the world, especially in the North American market. More recently concerns over security of supply and over the volatility of gas prices have led many utilities, both in Europe and the USA, to reexamine the potential for coal-fired generation. In the UK both E.ON and RWE have announced plans for new coal-fired plant, operating at state-of-the-art (>600 o C) steam conditions, at Kingsnorth and Tilbury respectively. This follows orders placed for similar plant by their parent companies in Germany. Orders for such plant have also been placed by US utilities. The enormous growth of generating capacity in China has also been largely based on the construction of coal-fired plant. In addition to the construction of new plant, an important subset of the first market is retrofit turbines. Advances in the internal efficiency of steam turbines have made it economically attractive to replace elements of older turbines with improved modern turbine components. The improvements can either reduce fuel consumption or increase power output. Steam turbine development trends fall into two categories: 1. Engineering led: Improvements in the internal efficiency of the steam turbine. These developments largely focus on improved aerodynamic performance, sealing and cylinder configuration. 2. Materials led: Improvements in the cycle efficiency. These developments focus on increasing steam temperatures and pressures so as to increase the thermal efficiency of the overall cycle. Engineering-led improvements bring benefits to the whole range of technologies served by the steam turbine and they have provided the basis for the current retrofit market. Advanced materials have also played, and continue to play, a role in this area, for example through: The introduction of stronger or less dense blading alloys enabling more efficient steam path arrangements. Page 4 of 11

5 The introduction of rotor materials with the necessary combination of high temperature creep resistance and low temperature fracture toughness to enable the construction of single-flow, single cylinder steam turbines. Materials-led improvements can be sub-divided into high and low temperature applications. At high temperature they are focused much more on steam turbines for coal-fired plant where there are clear advantages in elevating temperature and pressure to increase thermal efficiency and reduce emissions. In combined cycle plant, the drivers for increased temperature in the steam turbine are low. Here the steam turbine inlet temperature is largely dependent on gas turbine exhaust temperatures and there is no great thermodynamic benefit in elevating this exhaust temperature. Currently these steam turbines operate with inlet temperatures of up to 585 C but there is no great driver for increasing this temperature. Improvements in temperature and pressure capability for coal-fired plant are almost entirely dependent on improvements in materials technology through: Development of alloys with improved creep resistance at higher temperatures; Development of alloys or surface treatment technologies with steam oxidation resistance at higher temperatures. The drivers for steam turbine development for current coal gasification based power generation cycles are similar to those for gas-fired combined cycle plant, where superheating is limited to the exhaust gas from the gas turbine. However, if methods of superheating in the high temperature fuel gas or supplementary superheating stages are provided, then these systems could take advantage of the higher steam conditions being used in PF plant. Materials development for low temperature applications applies to all plant types and irrespective of component concentrates on producing the required combination of strength, fracture toughness and stress corrosion resistance at specific localities. 3. STEAM TURBINE MATERIALS. The following sections review the materials used in the different parts of modern steam turbines. Within each chamber the function of individual components such as rotors, blades etc., is identical, although the operating conditions and hence material requirements varies significantly. 3.1 High Pressure (HP) and Intermediate Pressure (IP) Cylinders Material requirements in the HP and IP cylinders depend critically on the steam inlet and reheat temperatures respectively. For the current generation of steam plant being constructed in Japan and Europe these temperatures are up to 620 o C. Materials research is required for plant that will operate at steam inlet temperatures up to 760 o C Rotor Forgings Current rotor forgings are based on 9-10% CrMoVNbN steels, the main alloys currently being applied having either a Mo addition of 1.5% or an addition of up to 1.0%W in partial substitution of the Mo content. V and N contents have been Page 5 of 11

6 optimised to provide precipitation strengthening through a dispersion of VN particles and a low level of Nb is incorporated to control grain size during high temperature heat treatments. For the very highest temperature applications, additions of boron are being made Casings and Valve Chests Castings for valve chests and cylinder casings exploit analogous alloys, generally with lower C content to provide improved weldability Blading Blading alloys for operation up to ~600 o C are similar to the rotor forging alloys. However at higher temperatures oxidation becomes an issue: martensitic steels containing higher chromium contents do not possess sufficient creep strength so austenitic alloys are used. As steam inlet temperatures rise to 650 o C and above these alloys will require coating to achieve the necessary oxidation resistance. For plant operating at >700 o C Ni-base alloys will be required to achieve both the strength and oxidation requirements. Solid particle erosion can be an issue and erosion-resistant coatings are required to alleviate this problem Sealing Current ring and brush seals of steam turbine power generation plant are limited to operation at temperatures below C by the capabilities of the materials used. Above this temperature range excessive distortion and wear results in efficiency losses and poor performance that impact upon component design, declared lifetimes and costs of manufacture and operation. The materials requirements necessary to establish the next generation sealing systems capable of operating at 650 C and beyond are: higher temperature creep strength to prevent loss of sealing due to distortion and enable longer lifetimes for components operating under extreme temperatures and pressures high temperature resistance to steam oxidation and wear (use of hard facing treatments) providing lubricant-free abrasion resistance and high load bearing capability effective use of materials in demanding environments providing reduced costs due to improved design, manufacturing and longer periods between overhaul and applicable to retrofit / upgrade of power generation plant Valve Internals The key issues for valves are sliding wear and solid particle erosion. Abrasionresistant coatings or welded inserts are used on a regular basis in current plant Bolting Meeting the requirements of bolts operating at the very highest temperatures has frequently required the exploitation of Ni-based alloys such as Nimonic 80A or Refractalloy 26. Even higher strength alloys will be required for >700 o C. Page 6 of 11

7 3.2 Low Pressure (LP) Cylinder Material requirements for the LP cylinder are primarily dictated by the need to avoid cracking due to stress corrosion cracking (SCC) and fatigue. Steam entry and exit temperatures are typically 250 o C and 40 o C respectively Rotor Forgings LP rotors are usually manufactured from low alloy NiCrMoV steel. Designs may be either monobloc or welded construction. A key requirement is to avoid SCC in blade attachment areas. Approaches used to achieve this are either control of material strength or local surface treatment to introduce compressive residual stresses in critical areas Casings Casings are not generally highly stressed. Carbon steel or cast iron is usually used subject to flow accelerated corrosion resistance being acceptable Blading Blading requirements vary along the steam flow of the LP turbine. Blades near the inlet are relatively small and operate in dry steam. Near the outlet the blades are much longer and operate in steam that contains significant moisture. Precipitation hardened stainless steels are usually used for the longest blades although titanium alloys have acceptable properties (albeit much higher cost). Last stage blades may be subject to water droplet erosion. The leading edge of the blades may be modified for increased erosion resistance through cladding, welded inserts or local hardening. 4. R&D PRIORITIES Current R&D Programmes Europe The UK is active in a number of major EU projects for development of steam turbine materials. The COST 536 programme covers a wide range of power generation technologies but one of its major themes is Steam Power Plant (SPP) within which there is a major activity on steam turbine materials. It includes most European boiler and steam turbine makers and their materials suppliers. The programme started in 2004 and runs to As for the boiler area, UK participants in the steam turbine area are also supported via the DTI s Technology Programme. The COST 536 SPP activity s main objective is the development of materials technology to enable operation of power plants with steam temperatures of 650 C. A parallel programme, COST 538, focuses on Plant Life Extension. The programme includes materials and coatings for steam turbines, gas turbines and boilers and is improving understanding of degradation mechanisms in high temperatue ferrous alloys. Page 7 of 11

8 In the EU AD700 project, launched in 1998, the first three years resulted in confirmation of the technical and economic feasibility of the concept, which fundamentally depends on the application of nickel-based alloys in steam turbine parts to enable steam temperatures of C. The application of Ni-based superalloys at steam temperatures up to 700 C/375 bar will give an overall thermal efficiency of up to 55%, compared with the 47% efficiency of state of the art 600 C/300 bar/300 bar double reheat plant. This is expected to reduce fuel consumption and thus CO 2 emissions by around 15%. Much larger components are required for steam cycle plant than for gas turbines so these temperature increases represent a significant materials challenge. Turbine-related activities included the assessment of a range of candidate alloys and the manufacture of the first prototype components. The second phase, which was completed at the end of 2006, included the extension of the prototype demonstration and characterisation programme. The success of the AD700 project encouraged the launch of a demonstration programme involving the operation of critical boiler and turbine valve components in an operating power station in Germany. This COMTES 700 project is supported by a consortium of European utilities and by the EC. The demonstration components have been successfully operating at 700 o C since July Nationally funded steam turbine development programmes in Europe, outside the UK, are also of importance. In Germany in particular, there is strong national funding for the COORETEC and MARCKO programmes, and the VGB is funding the long term characterisation of advanced 9-12%Cr steel components UK The UK DTI Technology Programme provides support for several steam turbine activities as well as parts of COST 536. Current projects include: Alloy Development For Critical Components On Future Coal-Fired Power Plant High Temperature Sealing for Advanced Super Critical Steam Turbine Plant Advanced Materials For Low Pressure (LP) Steam Turbines Improved Modelling of Materials for Higher Efficiency Power Plant The DTI also funds UK participants in a project allowing collaboration between UK and US organisations. Activities include steam oxidation and microstructural degradation of alloys used in steam turbines. The DTI National Measurement System Materials Programme has a rolling programme that includes projects, carried out at NPL, which support steam turbine development: One current project, Key measurements on in-situ oxide scales to ensure future energy security includes research into oxidation mechanisms on a range of boiler and steam turbine alloys. This project began in April 2007 and is planned to run for three years. There is potential for new projects relevant to steam turbines to be launched in future years. The EPSRC Supergen II Programme on Plant Life Extension funds work, supported by an industrial consortium, at four UK Universities. This programme includes tasks on Condition Monitoring, Microstructural Degradation and Modelling of Mechanical Behaviour. Page 8 of 11

9 4.1.3 Japan There are also significant development programmes outside Europe. In Japan NIMS is responsible for a major programme focused on the continued development of 9-12%Cr steels for 650 C steam conditions, the same principal objective of COST 536. A feasibility programme funded by the EPDC whose objective was 700 C steam conditions was carried out in and in 2006 METI and NEDO launched a materials development project with objectives of up to 800C USA In the USA the DOE is funding research on steam turbine materials for temperatures up to 760C. The programme mainly addresses the development of Ni-base alloys and coatings. 4.2 Future R&D Priorities High Temperature As a result of the trends in steam turbine development, the major emphasis of materials development around the world is focused on improved high temperature materials for the high temperature cylinders. High temperature materials development is a very long term procedure. A typical development programme proceeds through several stages: Investigation of trial melts including creep testing to at least 10,000 hours (~2 years); Manufacture of a prototype component in the best trial melt (~1 year). This stage is essential to demonstrate that the alloy can be applied to the very large components required for turbine rotors and casings without problems arising from excessive segregation or cracking during manufacture. The inspectability of large components is also demonstrated. Characterisation of the prototype including creep testing to at least 30,000 hours (~4 years). There is potential for significant variation of properties through the section of large components, especially in comparison to the properties achieved in trial melts. Therefore characterisation of the prototype is essential. Characterisation typically includes long term creep testing, low cycle fatigue and cyclic hold testing and investigation of the influence of long-term ageing on tensile and impact strength. Investigations of fracture toughness and creep crack initiation and growth properties may also be carried out. Launch as commercial material and gain first purchase order (~1 year); Test commercial products to establish scatterband of properties (~4 years). Cast to cast variation in properties is typically of the order of +/-20%. A knowledge of this scatterband and the position of the first prototype within it is required to fully exploit the properties demonstrated in a single prototype. It thus takes about 12 years to achieve a completely reliable, mature material. For example in Europe the development of a new generation of martensitic stainless steel materials for high temperature rotors began in the COST 501 programme in After investigation of trial melts, two prototype rotors were manufactured in Long term characterisation of these materials led to their selection for the Skaerbaek and Nordjylland power plants in Denmark in These machines were Page 9 of 11

10 manufactured and commissioned in Test pieces from the rotor forgings used for these turbines were included in a long-term testing programme funded by VGB which was launched in This programme finished in 2001 with the issue of data establishing a scatterband of properties for commercial rotors manufactured in these alloys. The total time elapsed from launch of the development programme to this fully mature condition has been 15 years. Attempts are being made to reduce this development time. Metallographic studies have been carried out and models are being developed to predict microstructure and the long-term properties that depend on them. One key area of success in this effort has been the development of models predicting thermodynamic equilibria: MTDATA developed by NPL in the UK and Thermocalc developed in Sweden. An alternative approach is the use of neural network modelling to assess the influence of changes in chemical composition and heat treatment. These tools offer the ability to reduce the number of trial melts to be assessed before finding an alloy meeting the objectives and they also offer support for longer term extrapolation of data, increasing confidence so that alloys may be exploited earlier in the development cycle. Nonetheless the models are not yet sufficiently accurate or robust to remove the need for long-term testing. Even where long term data already exist on alloys, it is possible that new applications require a cycle of prototype demonstration and characterisation. For example the application of nickel-based alloys to steam turbine design and manufacture is supported to some extent by the existence of long-term creep data on some of the candidate alloys. However, these data were derived from product forms such as sheet and small diameter bars whereas turbine manufacture requires components with sections in the range mm and weighing many tons. The difference in size has a potentially very significant influence on the microstructures and thus properties that are achieved. The greater potential for chemical segregation, greater difficulty in forging and controlling grain size and the much reduced heating and cooling rates during heat treatment all have potentially significant effects on short and long-term properties. In addition to development and long-term characterisation of the base alloys, development of welding procedures is also necessary, especially for casing materials. Thus development of welding consumables is essential together with long term characterisation of the weld metal and of welded joints. To date the development of high temperature alloys has been dominated by the need for improved creep strength. However, as target temperatures increase, the possibility that steam oxidation will limit application temperatures becomes significant. Current development programmes are now investigating oxidation resistance and it is already clear that some alloys are limited by their oxidation resistance. Attempts to design alloys to improve this characteristic have not so far been successful but an alternative approach is the development of coatings for protection against steam oxidation. This may lead to a radical rethink in alloy design as the requirement for inherent oxidation resistance of the alloy is reduced. Coatings are required that retain their integrity for service lifetimes of at least h. Thus not only must the primary properties (oxidation- or erosionresistance) be sufficient for this but, in addition, the coating must not be susceptible to cracking, spallation or degradation through interaction with the substrate. Page 10 of 11

11 4.2.2 Low temperature Development of materials for single-cylinder turbines and the LP turbine is also required (and often neglected). Rotor development is likely to focus on tailoring properties to site-specific requirements eg high strength where needed and improved SCC resistance where critical. Probable approaches are multi-segment welded rotors, local heat treatment or graded composition rotors. The continued trend towards longer last stage blades requires higher strength materials. This needs to be coupled with improved fracture toughness and SCC resistance. Evaluating the resistance of materials to stress corrosion crack initiation under realistic conditions requires testing in excess of 5 years duration. Test acceleration through using more aggressive test environments is possible but not completely reliable. Improved understanding of the SCC process coupled with predictive modeling is required to develop a robust route to enable the test duration to be reduced Underpinning Activities In addition to the research required to develop new materials there is also a need for underpinning work to develop inexpensive and relevant test facilities to evaluate the material developments. Specific needs are: Non-invasive inspection techniques for in situ assessment of material condition Improved understanding of tests on service-exposed material to predict remaining lifetime Test procedures for miniaturised specimens that can be directly correlated with tests results from standard sized specimens Facilities for extended duration exposures to environments that reproduce service conditions eg high pressure steam, solid particle erosion etc Page 11 of 11

Materials: Steps towards 700 C power plant User Forum of the Power Plant Technology,

Materials: Steps towards 700 C power plant User Forum of the Power Plant Technology, Materials: Steps towards 700 C power plant User Forum of the Power Plant Technology, 21.-25.4.2008 C. Stolzenberger VGB PowerTech e.v. Motivation Actual high efficient Power Plants Activities towards 700

More information

REVIEW OF THE EUROPEAN DEVELOPMENTS OF MARBN STEEL FOR USC POWER PLANTS

REVIEW OF THE EUROPEAN DEVELOPMENTS OF MARBN STEEL FOR USC POWER PLANTS REVIEW OF THE EUROPEAN DEVELOPMENTS OF MARBN STEEL FOR USC POWER PLANTS Bartosz Polomski, Rod Vanstone GE Power, Rugby, United Kingdom ABSTRACT Current demands of the power generation market require components

More information

Recent Technologies for Steam Turbines

Recent Technologies for Steam Turbines Recent Technologies for Steam Turbines Kenji Nakamura Takahiro Tabei Tetsu Takano A B S T R A C T In response to global environmental issues, higher efficiency and improved operational reliability are

More information

Relationship Between Design and Materials for Thermal Power Plants. S. C. Chetal

Relationship Between Design and Materials for Thermal Power Plants. S. C. Chetal Relationship Between Design and Materials for Thermal Power Plants S. C. Chetal Contents *Introduction to design codes *Operational life vs design basis life *Material selection basics *Materials for boiler

More information

Stainless Steel (17/4PH&630) Bar

Stainless Steel (17/4PH&630) Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

Stainless Steel Bar

Stainless Steel Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

Development of 700 C Class Steam Turbine Technology

Development of 700 C Class Steam Turbine Technology 10 Development of 700 C Class Steam Turbine Technology EIJI SAITO *1 SHIN NISHIMOTO *2 HIROYUKI ENDO *3 RYUICHI YAMAMOTO *4 KENJI KAWASAKI *5 JUN SATO *6 Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has

More information

GE Power. Fleet360* Total Plant Service Solutions Steam Turbine Advanced Steam Path Upgrade

GE Power. Fleet360* Total Plant Service Solutions Steam Turbine Advanced Steam Path Upgrade GE Power Fleet360* Total Plant Service Solutions Steam Turbine Advanced Steam Path Upgrade Let GE s Advanced Technology and Service Help Reduce your Operating Costs While Increasing your Unit s Availability

More information

Stainless Steel (17/4PH&630) Bar

Stainless Steel (17/4PH&630) Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

Power Plants. Structural Alloys for. Operational Challenges and. High-temperature Materials. Edited by. Amir Shirzadi and Susan Jackson.

Power Plants. Structural Alloys for. Operational Challenges and. High-temperature Materials. Edited by. Amir Shirzadi and Susan Jackson. Woodhead Publishing Series in Energy: Number 45 Structural Alloys for Power Plants Operational Challenges and High-temperature Materials Edited by Amir Shirzadi and Susan Jackson AMSTERDAM BOSTON CAMBRIDGE

More information

Stainless Steel (17/4PH&630) Bar

Stainless Steel (17/4PH&630) Bar SPECIFICATIONS Commercial 17/4 PH EN 1.4542 Precipitation hardening stainless steels are chromium and nickel containing steels that provide an optimum combination of the properties of martensitic and austenitic

More information

Powder metallurgy (PM) technology integrated with

Powder metallurgy (PM) technology integrated with Technical paper: Powder metallurgy methods for producing large components The manufacture of large, complex components will be extremely costly for the power industry over the next few decades as many

More information

DEVELOPMENT OF CASTABLE PRECIPITATION HARDENED NI-BASE ALLOYS FOR 750 C TECHNOLOGY WITHIN NEXTGENPOWER PROJECT

DEVELOPMENT OF CASTABLE PRECIPITATION HARDENED NI-BASE ALLOYS FOR 750 C TECHNOLOGY WITHIN NEXTGENPOWER PROJECT DEVELOPMENT OF CASTABLE PRECIPITATION HARDENED NI-BASE ALLOYS FOR 750 C TECHNOLOGY WITHIN NEXTGENPOWER PROJECT R. Leese (1) S. Roberts (2) Goodwin Steel Castings Limited, Ivy House Foundry, Ivy House Road,

More information

Creep and creep-fatigue

Creep and creep-fatigue VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Creep and creep-fatigue VTT ProperScan HT Life Creep? = time dependent deformation of solids at T ½ T m Important for: Design of high temperature applications

More information

Efficient and sustainable power plants : emerging technology options an academic perspective

Efficient and sustainable power plants : emerging technology options an academic perspective Efficient and sustainable power plants : emerging technology options an academic perspective Prof.dr.ir. Adrian Verkooijen Faculty of Mechanical, maritime and Materials Engineering Laboratory for Energy

More information

Cast steel: Group of ASTM standards for steel castings and forgings

Cast steel: Group of ASTM standards for steel castings and forgings Cast steel: Group of ASTM standards for steel castings and forgings Abstract: This group of ASTM specifications covers standard properties of steel and iron castings and forgings for valves, flanges, fittings,

More information

Fossil Materials and Repair - Program 87

Fossil Materials and Repair - Program 87 Fossil Materials and Repair - Program 87 Program Description Program Overview Today s fossil power plants are increasingly adopting market-driven operating strategies such as cycling, pushing for maximum

More information

Avoidance of Premature Weld Failure by Type IV cracking

Avoidance of Premature Weld Failure by Type IV cracking FOURCRACK ADVANCED COAL- FIRED POWER PLANT STEELS OBJECTIVES To generate and assess cross-weld creep rupture data on welded joints failing by the Type IV Heat- Affected Zone (HAZ) cracking mechanism in

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

Efficiency Improvement and Biomass. Robin Irons

Efficiency Improvement and Biomass. Robin Irons Efficiency Improvement and Biomass Robin Irons APGTF February 2009 CO 2 abatement from coal twin track approach Carbon -95% Dioxide Reduction TRACK 2 Carbon Capture and Storage (CCS) Track 2-60% Increased

More information

VDM Alloy 80 A Nicrofer 7520 Ti

VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A Nicrofer 7520 Ti Material Data Sheet No. 4048 February 2017 February 2017 VDM Alloy 80 A 2 VDM Alloy 80 A Nicrofer 7520 Ti VDM Alloy 80 A is a nickel-chromium alloy that can be age-hardened.

More information

Steam Turbine Castings

Steam Turbine Castings Steam Turbine Castings Components for coal fired steam turbine applications have to endure arduous high stress and temperature environments. These castings within the pressure barrier of the turbine have

More information

Fossil Materials and Repair - Program 87

Fossil Materials and Repair - Program 87 Fossil Materials and Repair - Program 87 Program Description Program Overview Today s fossil power plants increasingly are adopting market-driven operating strategies such as cycling, pushing for maximum

More information

Typical aerospace-standard materials

Typical aerospace-standard materials JOHANN MAIER GmbH & Co. KG Schockenriedstraße 3 70565 Stuttgart-Vaihingen Typical aerospace-standard materials 1.4314.7 Stainless, austenitic steel 0,05C-1Cr-Ni X5 CrNi 1 1.4301 / AISI 304 60 * * Special

More information

Alloy Design and Innovative Manufacturing Technology of High-Strength Ni-base Wrought Alloy for Efficiency Improvement in Thermal Power Plants

Alloy Design and Innovative Manufacturing Technology of High-Strength Ni-base Wrought Alloy for Efficiency Improvement in Thermal Power Plants Alloy Design and Innovative Manufacturing Technology of High-Strength Ni-base Wrought Alloy for Efficiency Improvement in Thermal Power Plants 32 SHINYA IMANO *1 JUN SATO *2 HIRONORI KAMOSHIDA *2 TAKASHI

More information

CLADDING AND HARDFACING POWDERS

CLADDING AND HARDFACING POWDERS CLADDING AND HARDFACING POWDERS GTV consumables for Laser Cladding Version 1.1 Ni: NICKEL BASED POWDERS GTV No. Description Particle size Hardness C Ni Cr B Si Fe Mo Others 31.25.10 Inconel 625-160 +53

More information

MLX 17 X1CrNiMoAlTi

MLX 17 X1CrNiMoAlTi A very High Strength Stainless Steel CONTINUOUS METALLURGICAL SPECIAL STEELS INNOVATION RESEARCH SERVICE DEVELOPMENT Enhancing your performance THE INDUSTRIAL ENVIRONMENT The use of Precipitation Hardening

More information

8th Charles Parsons Turbine Conference

8th Charles Parsons Turbine Conference U.S. Department of Energy/Fossil Energy Materials Research Development for Power and Steam Turbines 8th Charles Parsons Turbine Conference Robert Romanosky Advanced Research Technology Manager September

More information

NDE AND MATERIAL EVALUATION FOR LIFETIME ASSESSMENT OF POWER PLANT COMPONENTS. Waheed Abbasi, Ph.D. Sazzadur Rahman, Ph.D. Michael J.

NDE AND MATERIAL EVALUATION FOR LIFETIME ASSESSMENT OF POWER PLANT COMPONENTS. Waheed Abbasi, Ph.D. Sazzadur Rahman, Ph.D. Michael J. NDE AND MATERIAL EVALUATION FOR LIFETIME ASSESSMENT OF POWER PLANT COMPONENTS Waheed Abbasi, Ph.D. Sazzadur Rahman, Ph.D. Michael J. Metala Siemens Energy, Inc. 841 Old Frankstown Road Pittsburgh, PA 15239,

More information

High strength low alloy (HSLA).

High strength low alloy (HSLA). 7 Alloy Steels High strength low alloy (HSLA). a type of steel alloy that provides many benefits over regular steel alloys contain a very small percentage of carbon (less than one-tenth of a percent) and

More information

A Systematic Study to Determine the Remaining Life of a 60 year old Westinghouse-design Steam Chest

A Systematic Study to Determine the Remaining Life of a 60 year old Westinghouse-design Steam Chest A Systematic Study to Determine the Remaining Life of a 60 year old Westinghouse-design Steam Chest Sazzadur Rahman, Ph.D. Waheed Abbasi, Ph.D. Thomas W. Joyce Siemens Energy, Inc., 4400 Alafaya Trail,

More information

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718) ATI 718 Nickel-Base Superalloy (UNS Designation N07718) INTRODUCTION ATI 718 alloy (N07718) is an austenitic nickel-base superalloy which is used in applications requiring high strength to approximately

More information

Guidelines for ASTM Specification and Metal Grades

Guidelines for ASTM Specification and Metal Grades Guidelines for ASTM Specification and Metal Grades CONTENTS 27/A 27M Standard Specification for Steel Castings, Carbon Suitable For General Applications... 1 A 128/ A 128M Standard Specification for Steel

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

High-Quality Tool Steel Hot-Work Steels

High-Quality Tool Steel Hot-Work Steels High-Quality Tool Steel Hot-Work Steels Hot-forming tools are needed for chipless forming of workpieces from iron and non-ferrous materials and their alloys as well as the production of articles of daily

More information

Steam Turbines. A Finmeccanica Company

Steam Turbines. A Finmeccanica Company Steam Turbines A Finmeccanica Company Steam Turbines Ansaldo Energia has a comprehensive steam turbine offering covering a wide range of power generation applications: Geothermal steam turbines Cogeneration

More information

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion.

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion. Glossary of Terms Alloying Elements ALUMINIUM - Al is used to deoxidise steel and control grain size. Grain size control is effected by forming a fine dispersion with nitrogen and oxygen which restricts

More information

NICKEL CHROMIUM ALLOYS

NICKEL CHROMIUM ALLOYS NICKEL CHROMIUM AND NICKEL THORIA ALLOYS 1 NICKEL CHROMIUM ALLOYS Two distinct groups of nickel chromium alloys for high temperature uses are as follow. The first group, which includes cast alloys containing

More information

Products and customer service

Products and customer service Products and customer service Supplier of Equipment and Services for Power Generation Technology quality products / our people / smart solutions / advanced technology Doosan Škoda Power Part of Doosan

More information

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood

Alloy Steels. Engineering Materials. Introduction : Msc. Shaymaa Mahmood Alloy Steels Introduction : Steels are, essentially, alloys of iron and carbon, containing up to 1.5 % of carbon. Steel is made by oxidizing away the impurities that are present in the iron produced in

More information

Ultra High Temperature Refractory Metal Based Silicide Materials For Next Generation Turbines

Ultra High Temperature Refractory Metal Based Silicide Materials For Next Generation Turbines Ultra High Temperature Refractory Metal Based Silicide Materials For Next Generation Turbines Dr. Stefan DRAWIN ONERA (French aerospace research centre) Metallic Materials and Processing Department 92320

More information

1. Introduction. 2. Objective of development and effects of alloying elements

1. Introduction. 2. Objective of development and effects of alloying elements Recent boilers have been designed for higher temperatures and pressures than those in the past and require steels with high temperature strength that is greater than that of conventional 18-8 austenitic

More information

Mat UK Energy Materials Review R&D Priorities for PF Boiler Materials. 7 th August Prepared by: Matt Barrie Doosan Babcock Energy Ltd.

Mat UK Energy Materials Review R&D Priorities for PF Boiler Materials. 7 th August Prepared by: Matt Barrie Doosan Babcock Energy Ltd. Mat UK Energy Materials Review R&D Priorities for PF Boiler Materials. 7 th August 2007. Prepared by: Matt Barrie Doosan Babcock Energy Ltd. Page 1 of 8 1. Executive Summary: This report summarises the

More information

Improved Quality by Electro Slag Re-Melting

Improved Quality by Electro Slag Re-Melting Improved Quality by Electro Slag Re-Melting BY GÜNTER BUSCH* SYNOPSIS Electro Slag Re-Melting is a process performed after the primary melting steps in electro arc, induction or vacuum induction furnaces.

More information

Fossil Materials and Repair - Program 87

Fossil Materials and Repair - Program 87 Program Description Program Overview Today s fossil power plants are being tasked with flexible operation by pushing for maximum output during peak price periods, transitioning to low-load and multi-shift

More information

Development of Large-Capacity Single-Casing Reheat Steam Turbines for Single-Shaft Combined Cycle Plant

Development of Large-Capacity Single-Casing Reheat Steam Turbines for Single-Shaft Combined Cycle Plant Development of Large-Capacity Single-Casing Reheat Steam Turbines for Single-Shaft Combined Cycle Plant TAKASHI NAKANO*1 TAMIAKI NAKAZAWA*1 KENYU TAKEDA*1 KEIZO TANAKA*1 SHIN NISHIMOTO*1 TOSHIHIRO MIYAWAKI*2

More information

New heat resistant alloys more over 700 C

New heat resistant alloys more over 700 C New heat resistant alloys more over 700 C Seiichi Muneki, Hiroshi Okubo and Fujio Abe Heat Resistant Design Group, Steel Research Center, National Institute for Materials Science, Japan Abstract The carbon

More information

FACT SHEET. Introduction

FACT SHEET. Introduction Materials Aluminium Introduction Aluminium performs well in both mechanical and electrical applications. For mechanical applications, aluminium can provide a high strength to weight ratio, ease of manufacture

More information

CHAPTER 3 VALVE STEEL MATERIAL AND THERMAL PROCESSING

CHAPTER 3 VALVE STEEL MATERIAL AND THERMAL PROCESSING 48 CHAPTER 3 VALVE STEEL MATERIAL AND THERMAL PROCESSING This chapter discusses the materials used for making internal combustion engine inlet and exhaust valves. The general heat treatments followed for

More information

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications.

The ATI 17-4 precipitation hardening stainless steel (S17400) is covered by the following wrought product specifications. ATI 17-4 Precipitation Hardening Stainless Steel (UNS S17400) INTRODUCTION ATI 17-4 precipitation hardening stainless steel (S17400), Type 630, is a chromium-nickel-copper precipitation hardening stainless

More information

Perspectives for an Economic and Climate Friendly Power Generation

Perspectives for an Economic and Climate Friendly Power Generation Perspectives for an Economic and Climate Friendly Power Generation Forum II Fossil Fired Power Generation Position of Technology Suppliers ALSTOM Power AG Dr. Georg Gasteiger Hanover, April 26th 2006 Seite

More information

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES ATI 332 Stainless Steel: Austenitic (UNS N08800) GENERAL PROPERTIES ATI 332 alloy is a nickel and chromium austenitic stainless steel designed to resist oxidation and carburization at elevated temperatures.

More information

Standards & Specifications

Standards & Specifications Acme Alloys Products Standards & Specifications Page 1 of 12 Standards & Specifications Like any other technology, engineering and science; material science and metallurgy is an ever-widening field with

More information

ATI 18CrCb. ATI 18CrCb. Technical Data Sheet. Stainless Steel: Ferritic GENERAL PROPERTIES STRUCTURE TYPICAL COMPOSITION (UNS S44100)

ATI 18CrCb. ATI 18CrCb. Technical Data Sheet. Stainless Steel: Ferritic GENERAL PROPERTIES STRUCTURE TYPICAL COMPOSITION (UNS S44100) ATI 18CrCb Stainless Steel: Ferritic (UNS S44100) GENERAL PROPERTIES ATI's AL 18CrCb stainless steel is a heat-resisting ferritic grade providing good oxidation and corrosion resistance for applications

More information

Resource Guide. Section 4: Ni-Resist

Resource Guide. Section 4: Ni-Resist Resource Guide Section 4: Ni-Resist Section 4 Ni-Resist Description of Grades... 4-3 201 (Type 1) Ni-Resist... 4-4 202 (Type 2) Ni-Resist... 4-6 Stock Listings... 4-8 4-2 Ni-Resist Description of Grades

More information

Recent Development of Steam Turbines with High Steam Temperatures

Recent Development of Steam Turbines with High Steam Temperatures 218 Recent Development of Steam Turbines with High Steam Temperatures Hideo NOMOTO, Yoshikazu KUROKI, Masafumi FUKUDA and Shinya FUJITSUKA Power plants with high thermal efficiency are essential and indispensable

More information

Manufacturing of advanced Rotor Forgings for Highly Efficient Fossil Power Plants

Manufacturing of advanced Rotor Forgings for Highly Efficient Fossil Power Plants Manufacturing of advanced Rotor Forgings for Highly Efficient Fossil Power Plants B. Donth N. Blaes D. Bokelmann Saarschmiede GmbH Freiformschmiede Völklingen, Germany 1 Content Introduction Development

More information

Thermal Surfacing Powder choice with ease

Thermal Surfacing Powder choice with ease Thermal Surfacing Powder choice with ease Why Thermal Surfacing Thermal surfacing is a cost effective method to achieve high performance characteristics on exposed metallic surfaces. A metal object can

More information

A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought

A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought ASTM Volume 01.05, January 2018 Steel Bars, Forgings, Bearing, Chain, Tool A29/A29M-16 Standard Specification for General Requirements for Steel Bars, Carbon and Alloy, Hot-Wrought A108-13 Standard Specification

More information

Identification. Type Analysis

Identification. Type Analysis Page 1 of 12 Unit Display: English Print Now Custom 455 Stainless E-Mail Datasheet Add to My Materials UNS Number S45500 Identification Type Analysis Carbon 0.05 % Manganese 0.50 % Phosphorus 0.040 % Sulfur

More information

a service offered by the Hempel Special Metals Group

a service offered by the Hempel Special Metals Group Hot Isostatic Pressing of Near Net Shaped Parts a service offered by the Hempel Special Metals Group content introduction description of the method supply chain aspects & quality management applications

More information

Power plant lite management and performance improvement

Power plant lite management and performance improvement Woodhead Publishing Series in Energy: Number 23 Power plant lite management and performance improvement Edited by John E. Oakey Oxford Cambridge Philadelphia New Delhi Woodhead Publishing Limited, 2011

More information

Power Generation Technologies, Trends, and Influences

Power Generation Technologies, Trends, and Influences Power Generation Technologies, Trends, and Influences David W. Gandy Technical Executive, Nuclear Electric Power Research Institute Valve and Actuator Trends for the Power Industry March 7, 2013 Presentation

More information

Chapter 11 Part 2. Metals and Alloys

Chapter 11 Part 2. Metals and Alloys Chapter 11 Part 2 Metals and Alloys Nomenclature of Steels Historically, many methods for identifying alloys by their composition have been developed The commonly used schemes in this country are those

More information

Seam Welded Air-Hardenable Corrosion Resistant Steel Tubing: Automotive Applications Overview

Seam Welded Air-Hardenable Corrosion Resistant Steel Tubing: Automotive Applications Overview KVA, Inc. / 124 S. Market Place, Suite 200 / Escondido, CA. 92029 U.S.A. (760) 489-5821 phone (760) 489-5823 fax 1-888-410-WELD www.kvastainless.com Seam Welded Air-Hardenable Corrosion Resistant Steel

More information

A coefficient of thermal expansion approximately 20% lower than that of INCONEL alloy 718.

A coefficient of thermal expansion approximately 20% lower than that of INCONEL alloy 718. www.specialmetals.com The newest of the high-performance superalloys invented by Special Metals Corporation, INCONEL alloy 783 (UNS R3783/U.S. Patent 5,478,417), is an oxidation-resistant, low expansion,

More information

Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants

Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants Hitachi Review Vol. 47 (1998), No. 5 225 Fundamental Materials Technologies for Supporting Highly-Reliable Power-Generation Plants Masateru Suwa Hideyo Kodama Takao Iwayanagi Abstract: Finding a best-mix

More information

ATI Nb. ATI Nb. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES SPECIFICATION COVERAGE CHEMICAL COMPOSITION

ATI Nb. ATI Nb. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES SPECIFICATION COVERAGE CHEMICAL COMPOSITION ATI 20-25+Nb Stainless Steel: Austenitic (UNS S35140) GENERAL PROPERTIES ATI 20-25+Nb alloy is an austenitic stainless steel intended primarily for elevated temperature service. This alloy fills a performance

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

ALLOYS 625 AND 725: TRENDS IN PROPERTIES AND APPLICATIONS

ALLOYS 625 AND 725: TRENDS IN PROPERTIES AND APPLICATIONS Superalloys 718, 625, 706 and Derivatives 2005 Edited by E.A. Loria TMS (The Minerals, Metals & Materials Society), 2005 ALLOYS 625 AND 725: TRENDS IN PROPERTIES AND APPLICATIONS Lewis E. Shoemaker Huntington

More information

Appendix 3 JIS Steel and Related Standards 471

Appendix 3 JIS Steel and Related Standards 471 Appendix 3 JIS Steel and Related Standards 471 G 3314:1995 G 3315:2002 G 3316:1987 G 3317:1994 G 3318:1994 G 3320:1999 G 3321:1998 G 3322:1998 G 3350:1987 G 3351:1987 G 3352:2003 G 3353:1990 G 3429:1988

More information

Finding the Root Cause is Critical

Finding the Root Cause is Critical Finding the Root Cause is Critical Have you ever repaired a tube leak and put the boiler back in service, only to be forced off-line by another leak? Identifying and correcting the root cause is essential.

More information

Development of Long Life Case-Hardened Bearing Steel with Rust Resistance

Development of Long Life Case-Hardened Bearing Steel with Rust Resistance TECHNICAL PAPER Development of Long Life Case-Hardened Bearing Steel with Rust Resistance M. GOTO Customers are requiring rolling bearings whose function has been improved through enhanced materials and

More information

Update on CSEF Steels

Update on CSEF Steels Update on CSEF Steels Grade 91 The Reduction in Allowable Stress Values Development of Grade 91, Type 2 EHG Workshop May 2018 J. Henry ATC-CES Reduction in Allowable Stress Values for 91 Not an action

More information

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini.

Alloy Steels. Chapter 7. Copyright 2007 Dr. Ali Ourdjini. 7 Alloy Steels At the end of this lesson students should be able to: Classify alloy steels Explain: effects of alloying elements to steel properties Discuss: composition, microstructure, mechanical properties

More information

INTRODUCTION. Think HSS

INTRODUCTION. Think HSS INTRODUCTION Think HSS SUMMARY METALLURGY 2 Excellent strength 3 A super sharp edge 4 Safe and reliable tools Alloy elements 6 The influence of alloy elements 7 Standard compositions of HSS 8 The HSS-PM

More information

Final Report. Development of New Stainless Steel. Covering Period: August 1, 2003 to May 31, Date of Report: August 30, 2005

Final Report. Development of New Stainless Steel. Covering Period: August 1, 2003 to May 31, Date of Report: August 30, 2005 Final Report Project Title: Development of New Stainless Steel Covering Period: August 1, 2003 to May 31, 2005 Date of Report: August 30, 2005 Recipient: Award Number: Working Partners: Universal Stainless

More information

The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials

The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials The Effect of Heat Flux on the Steam Oxidation Kinetics and Scale Morphology of Low Alloy Materials Tony Fry 6th International Conference on Advances in Materials Technology for Fossil Power Plants, La

More information

Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt

Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt Material Selection Jacob Klinginsmith, Russ Glass Naomi Sanders, Becky Moffitt The most significant feature of our poster is the slider bar graph at the top of each material category. This quick reference

More information

Use the arrow keys to easily navigate through the course.

Use the arrow keys to easily navigate through the course. STEEL Use the arrow keys to easily navigate through the course. Back Next 1 STEEL 2 A BRIEF HISTORY OF STEEL The history of steel is closely connected to the development of human culture and civilization.

More information

ATI 441 HP ATI 441 HP. Technical Data Sheet. Stainless Steel: Ferritic INTRODUCTION STRUCTURE TYPICAL COMPOSITION (UNS S44100)

ATI 441 HP ATI 441 HP. Technical Data Sheet. Stainless Steel: Ferritic INTRODUCTION STRUCTURE TYPICAL COMPOSITION (UNS S44100) ATI 441 HP Stainless Steel: Ferritic (UNS S44100) INTRODUCTION ATI 441 HP alloy is a heat resisting ferritic grade that provides good oxidation and corrosion resistance for applications like automotive

More information

Operation Experience, Operation Procedures In Supercritical And Ultra Supercritical Boilers

Operation Experience, Operation Procedures In Supercritical And Ultra Supercritical Boilers Operation Experience, Operation Procedures In Supercritical And Ultra Supercritical Boilers Dr M. Bader E.ON Anlagenservice 2 E.ON Anlagenservice 3 Content 1. Steam Generator Overview and Examples 2. Material

More information

Technology Options for New Coal Units

Technology Options for New Coal Units Technology Options for New Coal Units Advanced Ultra- Supercritical (A-USC) Power Plants Revis W. James Senior Technical Executive Generation Sector Research and Development Workshop on Best Practices

More information

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE Superalloys 2004 Edited by K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston TMS (The Minerals, Metals & Materials Society), 2004 DEVELOPMENT OF Ni BASE SUPERALLOY

More information

Delving into Data. 718 Plus Nickel-Based Superalloy CINDAS AHAD Database

Delving into Data. 718 Plus Nickel-Based Superalloy CINDAS AHAD Database Delving into Data Here is an in-depth look at what we have to offer for one of our most popular nickel superalloys. Each of our chapters contains tables and figures in comparable detail. Please check out

More information

U.S. Program for Advanced Ultrasupercritical (A-USC) Coal Fired Power Plants

U.S. Program for Advanced Ultrasupercritical (A-USC) Coal Fired Power Plants U.S. Program for Advanced Ultrasupercritical (A-USC) Coal Fired Power Plants Dr. Jeffrey Phillips Senior Program Manager, Advanced Generation McIlvaine Company Hot Topic Webcast: Next Generation of Coal

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

SUPERGEN Conventional Power Plant Lifetime Extension Consortium

SUPERGEN Conventional Power Plant Lifetime Extension Consortium SUPERGEN Conventional Power Plant Lifetime Extension Consortium Case Study: Cracked Header The Engineering Problem This case study focuses on a header, which is a major component in a coal fired power

More information

Results are presented in Table 1. The tube was fabricated from a Type 347 and no unusual conditions were noted.

Results are presented in Table 1. The tube was fabricated from a Type 347 and no unusual conditions were noted. 1. Introduction Hydroprocessing units such as isomax in oil refineries upgrade hydrocarbon feedstocks by converting heavier feeds into more valuable lighter products. The reactions occur under a hydrogen-rich

More information

Identification. Type Analysis

Identification. Type Analysis Page 1 of 16 Unit Display: Metric Print Now Custom 465 Stainless E-Mail Datasheet Add to My Materials Request More Information U.S. Patent Number Identification 5,681,528 5,855,844 UNS Number S46500 Type

More information

Materials for elevated temperature heat exchangers in reactors

Materials for elevated temperature heat exchangers in reactors Materials for elevated temperature heat exchangers in reactors Several materials have been introduced for heat exchangers in 4 th generation extremely high temperature reactor (EHTR) also called as next

More information

Material development for emerging energy technologies

Material development for emerging energy technologies Material development for emerging energy technologies Need and Approach Need Sustainable power generation is needed for the mitigation of global warming caused by greenhouse gas emissions. Advanced materials

More information

AEROSPACE MATERIAL SPECIFICATION

AEROSPACE MATERIAL SPECIFICATION AEROSPACE MATERIAL SPECIFICATION Licensed to Juan Rodriguez AMS 5754M Issued MAY 1954 Revised AUG 2007 Superseding AMS 5754L Nickel Alloy, Corrosion and Heat-Resistant, Bars, Forgings, and Rings 47.5Ni

More information

Bromalloy 152. The ultimate. high-temperature, wear-resistant. and corrosive-resistant. material. specifically engineered. for the. glass industry.

Bromalloy 152. The ultimate. high-temperature, wear-resistant. and corrosive-resistant. material. specifically engineered. for the. glass industry. Bromalloy 152 The ultimate high-temperature, wear-resistant and corrosive-resistant material specifically engineered for the glass industry. Bromalloy 152 High surface finish. Excellent edge retention.

More information

New Requirements for Steam Turbines due to Renewable Energy Innovative Concepts for Thermal Power Plants

New Requirements for Steam Turbines due to Renewable Energy Innovative Concepts for Thermal Power Plants New Requirements for Steam Turbines due to Renewable Energy Innovative Concepts for Thermal Power Plants NTPC Conference Green Power - Challenges and Innovation Noida / Delhi, June 9th 2017 Peter Brueggemann

More information

ATI 601 ATI 601. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N06601)

ATI 601 ATI 601. Technical Data Sheet. Nickel-base Alloy INTRODUCTION PRODUCT FORMS SPECIFICATIONS & CERTIFICATES (UNS N06601) Nickel-base Alloy (UNS N06601) INTRODUCTION alloy (UNS Designation N06601) is an austenitic nickel-chromium-iron alloy designed for both heat and corrosion resistance. As compared to ATI 600 alloy (UNS

More information

ATI 13-8 ATI Technical Data Sheet. Precipitation Hardening Alloy INTRODUCTION FORMS AND CONDITIONS. (UNS S13800, ASTM Type XM-13)

ATI 13-8 ATI Technical Data Sheet. Precipitation Hardening Alloy INTRODUCTION FORMS AND CONDITIONS. (UNS S13800, ASTM Type XM-13) ATI 13-8 Precipitation Hardening Alloy (UNS S13800, ASTM Type XM-13) INTRODUCTION ATI 13-8 alloy (UNS S13800) is a martensitic precipitation-hardening stainless steel that has excellent strength, high

More information

Metal components getting too complex? Start from the smallest particles!

Metal components getting too complex? Start from the smallest particles! Metal components getting too complex? Start from the smallest particles! From powder to 15 tonnes of solid specialty steel Steam turbine rotor (650 kg) Courtesy of Siemens Industrial Turbomachinery AB,

More information

Sandvik SAF 2205 (Billets)

Sandvik SAF 2205 (Billets) Datasheet updated 2013 11 28 14:13:21 (supersedes all previous editions) Sandvik SAF 2205 (Billets) Sandvik SAF 2205 is a duplex (austenitic ferritic) stainless steel characterized by: High resistance

More information