ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL

Size: px
Start display at page:

Download "ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL"

Transcription

1 Journal of Engineering Science and Technology Vol. 10, No. 3 (2015) School of Engineering, Taylor s University ANALYSIS OF CUTTING FORCE AND CHIP MORPHOLOGY DURING HARD TURNING OF AISI D2 STEEL X. M. ANTHONY School of Mechanical and Building Sciences, VIT University, Vellore Tamil Nadu, India manthonyxavior@vit.ac.in Abstract In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimental investigation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation along with tool geometry namely, nose radius, clearance angle and rake angle. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. The cutting force generated during the machining process is being measured using Kistler dynamometer and recorded for further evaluation. The chips produced during the machining process for every experimental trail is also collected for understanding the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA) was conducted to understand the influence of all cutting parameters and tool geometry on cutting force. Keywords: Hard machining, Cutting force, Chip morphology, ANOVA, Cutting parameter. 1. Introduction In the recent past, great efforts were spent in understanding and simulating the hard machining process. This process allows manufacturers to machine hardened materials to their finish part quality without the aid of grinding, increasing the efficiency and decreasing the cost and processing time for post finishing. Recently, several steel alloys, such as AISI bearing steel, AISI 4340 and AISI D2 tool steel are machined by using this technology. Understanding the phenomenon of metal removal during hard machining is even more difficult when when compared to conventional machining, because the uncut chip thickness is very small (often lower than the tool tip radius), the cutting speed are high and the material hardness plays a major role on the chip segmentation, the surface integrity 282

2 Analysis of Cutting Force and Chip Morphology During Hard Turning of Nomenclatures d Fc f r t rs Vc Depth of cut, mm Cutting Force, N Feed rate, mm/rev Nose radius, mm Transverse rupture strength of tool material, MPa Cutting speed, m/min. Greek Symbols α Rake angle, degrees γ Clearance angle, degrees integrity and the magnitude of the cutting forces. Guo and Yen [1] conducted a FEM study on mechanisms of discontinuous chip formation in hard machining. It was stated that the mechanism of discontinuous chip formation during hard machining is due to the internal crack initiation and extension in front of the tool and meeting with the surface crack. Adiabatic shearing plays an important role in discontinuous chip formation. Mabrouki and Rigal [2] made some contribution towards a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. It was shown that the velocity of the cutting phenomenon induces the material removal by adiabatic shearing corresponding to a localisation of the deformation in the chip. The latter is characterised by a thermal softening appearing in narrow periodic zones characterised by high straining levels. Consequently, the chip has saw-tooth morphology. El-Wardany et al. [3] presented an experimental investigation of the chip formation mechanism during machining of tool steel with PCBN tools. Umbrello et al. [4] had developed new flow stress models which include the hardness effect and used accordingly in computer simulation of hard machining. These models were found to predict well the cutting forces as well as the change in chip morphology from continuous to segmented chip as the hardness values change. Dolinsek et al. [5] contributed to the understanding of chip formation mechanism in high-speed cutting of hardened steel. The analysis covered the chip segmentation frequency, chip shape and dimensions, and also the size of deformed and un-deformed parts of chip segments. The results showed that there exists a close relationship among these chip parameters. Poulachon and Moisan [6] had mentioned that saw-tooth chip is the result of some interrelated mechanisms such as localised shear, adiabatic shear and also as a catastrophic shear in the form of extensive cracks. Mohamed et al. [7] had reported that beyond 120m/min cutting speed, roughness (Ra) is stabilised because of a reduction in the cutting forces at high speeds leading to a stability of the machining system during hard machining process. Investigations of machining of hardened steel have recently attracted a great deal of attention. The recent investigations in this segment of processes are focused on the four characteristic directions: mechanisms of tool wear, quality of surface finish, mechanisms of chip formations [8-10], and problems of machining of materials in their hardened

3 284 X. M. Anthony state. Gaitonde et al. [11] investigated the influence of cutting speed, feed rate, and machining time on machinability aspects such as specific cutting force, surface roughness, and tool wear in AISI D2 cold work tool steel hard turning with three different ceramic inserts. It is also stated that the specific cutting force is also minimal for lower values of both cutting speed and machining time for all the three ceramic inserts. Shi and Richard [12] developed an FE model and predicted the chip formation and phase transformation in orthogonal machining of hardened AISI steel (62 HRC) using PCBN tools. The chip-formation mechanism analysis is an effective tool for deeper understanding of cutting process. During hard machining, different mechanisms of chip-formation appear and this paper focuses on the analysis of chip segmentation frequency, chip shape and dimensions, and also the size of deformed and un-deformed parts of chip segments. The influence of cutting conditions for the variation in chip characteristics and parameters are analysed and reported in this research paper. Further, Analysis of Variance (ANOVA) was conducted to understand the influence of all cutting parameters and tool geometry on cutting force. 2. Experimentation In this research work AISI D2 tool steel at a hardness of 55 HRC is being used for experimentation. Taguchi s L27 orthogonal array is used for design of experimentation. Cutting speed, feed rate and depth of cut are the cutting parameters considered for the experimentation. Tool geometry namely, nose radius, clearance angle and rake angle are also considered to have a comprehensive investigation on hard machining. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. Tool geometry namely, nose radius, clearance angle and rake angle are also considered to have a comprehensive investigation on hard machining. Three different cutting tool materials are used for experimentation namely multicoated carbide, cermet and ceramic inserts. Gedee Weiler MLZ 250V variable speed adjusting lathe is used for conducting the turning experimental trials. Cutting force generated during the machining process is being measured using Kistler dynamometer (Type 9257B: Piezo-multicomponent dynamometer with a measuring range of -5 to 10kN) The dynamometer output is coupled to a data acquisition system with the display unit, which gives the actual cutting force developed during the cutting operation. The cutting force values were observed and recorded for further evaluation. Figure 1 shows the experimental setup used for the experimentation. The figure shows the dynamometer used to the capture the cutting force generated during the process and the system used to store and process the data. The chips produced during the machining process for every experimental trail is also collected for analysing using CARL ZIESS Optical Microscope having 50 X to 1500 X magnification, equipped with Clemex Vision Professional Edition Image Analysis Software to understand the chip morphology. Based on the experimental data collected Analysis of Variance (ANOVA) will be conducted to understand the influence of all cutting parameters and tool geometry on cutting

4 Analysis of Cutting Force and Chip Morphology During Hard Turning of force. Table 1 shows the experimental plan and the cutting force recorded for each trail of experiment. Data Acquisiton Unit Kistler Dynamometer Variable Speed Lathe Fig. 1. Experimental setup. 3. Results and Discussion Based on the experimental observation Analysis of Variance (ANOVA) was conducted and it is shown in Table 2. From ANOVA it was found that depth of cut has more influence on cutting force followed by cutting speed. As the depth of cut is increased more friction is induced between the tool and workpiece which results in increase of the force required to complete the shearing operation. Beyond a certain level (120 m/min) of cutting speed, there is a rapid increase in cutting force for any depth of cut due to the combined effect of higher speed and more depth (larger contact surface area). Nose radius and clearance angle also have some considerable influence on cutting force. As the nose radius is increased the contact area between the tool and the workpiece is increased which results in more friction, subsequently increased cutting force. Likewise for every trail the chips formed were also collected and chip morphology study was performed. According to the design of experiments 9 trails each was conducted using carbide, ceramic and cermet inserts. Figure 2 shows the microscopic views of the chips collected for the experiments conducted with carbide insert. The matrix of the figure shows the 9 different types of chips collected from the machining experiments conducted using carbide inserts with 9 different combinations of other input parameters. Two of the parameters namely cutting speed and feed rate are marked in the horizontal and vertical lines respectively for the convenience of presenting the

5 286 X. M. Anthony chip morphology in the form of matrix. Accordingly, Figs. 3 and 4 shows the microscopic views of the chips collected for the experiments conducted with ceramic and cermet inserts respectively. The chip morphology was studied under an optical microscope to determine the thickness of the secondary deformation zone and the chip thickness. The secondary deformation zone s thickness at the tool-chip interface is an important factor in analysis of the cutting forces. The thickness of this zone depends on the depth of cut during the process which inturn determines the cutting forces generated and temperatures. Thus, the secondary deformation zone can be assumed to be the direction of maximum shear stress and maximum shear strain rate, and has the highest temperature in the chip. The lesser the secondary deformation zone the better the machining process. Each individual picture shows various dimensions of the chips like maximum, minimum thickness Table 1. Experimental plan and observations. S. No. Vc f d t rs α γ r Fc

6 Analysis of Cutting Force and Chip Morphology During Hard Turning of and the width of single segment in micrometers. Depending upon the machining conditions some differences in the chip morphology was observed. Strong oscillations of the forces occur, with a high absolute value of the force generated when material shearing is in progress and a lower value when a crack propagation is in progress and the discontinuous chip detaches from the workpiece [1]. The findings reveal that a strong relationship exists between the cutting force generated and chip formed during hard machining process. Fig. 2. Matrix of chips collected for carbide inserts. Table 2. ANOVA for cutting force. Source DF Seq SS Adj SS Adj MS F P Feed Depth of cut Cutting speed Nose radius Rake angle Clearance angle Transverse rupture Strength Error Total *S = R-Sq = 87.23% R-Sq (adj) = 84.90%

7 288 X. M. Anthony Fig. 3. Matrix of chips collected for ceramic inserts. Fig. 4. Matrix of chips collected for cermet inserts.

8 Analysis of Cutting Force and Chip Morphology During Hard Turning of Conclusions One of the main characteristic direction for the investigations on hard machining is the mechanisms of chip formation apart from tool wear studies, surface quality and cutting force investigations. The chip formation mechanism analysis is an effective tool for deeper understanding of cutting process. This paper focuses on the chip morphology and cutting force investigations. Experimental investigations on hard machining of AISI D2 steel was performed using three types of cutting inserts under different machining conditions. ANOVA for cutting force was performed and it was found that depth of cut, followed by cutting speed influences cutting force considerably. Even nose radius and clearance angle contributes for the cutting force generated. It was also found that the tool materials have only meager influence on cutting force generated. The chips studied after machining were found to be saw toothed at almost all cutting conditions inferring the high hardness of the workpiece. Based upon the chip shape evaluation obtained during the machining of the investigated steel the optimum cutting velocity for all the three inserts namely carbide, ceramic and cermet was found to be 140 m/min at keeping both feed and depth of cut constant individually as it provides the least secondary deformation zone, which indicates better machining quality. When the cutting speed is increased, the chip thickness and magnitude of chip segments decrease. Since cutting speed has considerable influence on cutting force and chip characteristic, it is also inferred that strong correlation exists between the cutting force generated and the chip morphology. The results show that there exists a close relationship between the cutting parameters on one hand and the chip morphology along with the other performance characteristics on the other hand. References 1. Guo, Y.B.; and Yen, D.W. (2004). A FEM study on mechanisms of discontinuous chip formation in hard machining. Journal of Materials Processing Technology, , Mabrouki, T.; and Rigal, J.F. (2006). A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. Journal of Materials Processing Technology, 176(1-3), El-Wardany, T.I.; Kishawy, H.A.; and Elbestawi, M.A. (2000). Surface integrity of die material in high speed hard machining. Part 2. Microhardness variations and residual stresses. Journal of Manufacturing Science and Engineering, 122(4), Umbrello, D.; Rizzuti, S.; Outeiro, J.C.; Shivpuri, R.; and M Saoubi, R. (2008). Hardness-based flow stress for numerical simulation of hard machining AISI H13 tool steel. Journal of Materials Processing Technology, 199(1-3), Dolinsek, S.; Ekinovic, S.; and Kopac, J. (2004). A contribution to the understanding of chip formation mechanism in high-speed cutting of hardened steel. Journal of Materials Processing Technology, , Poulachon, G.; and Moisan, A.L. (2000). Hard-turning: chip formation mechanisms and metallurgical aspects. Journal of Manufacturing Science and Engineering, 122(3),

9 290 X. M. Anthony 7. Mohamed, A.Y.; Kamel, C.; Nassereddine, Z.; Lakhdar, B.; and Jean- Francois, R. (2009). Hard machining of hardened bearing steel using cubic boron nitride tool. Journal of Materials Processing Technology, 209(2), Ning, Y.; Rahman, M.; and Wong, Y.S. (2001). Investigation of chip formation in high speed end milling. Journal of Materials Processing Technology, 113(1-3), Fallböhmer, P.; Rodrı guez, C.A.; Özel, T.; and Altan, T. (2000). High-speed machining of cast iron and alloy steels for die and mold manufacturing. Journal of Materials Processing Technology, 98(1), Vyas, A.; and Shaw, M.C. (1999). Mechanics of saw-tooth chip formation in metal cutting. Journal of Manufacturing Science and Engineering, 121(2), Gaitonde, V.N.; Karnik, S.R.; Figueira, L.; and Davim, J.P. (2011). Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural modeling. International Journal of Advanced Manufacturing Technology, 52(1), Shi, J.C.; and Richard, L. (2006). On predicting chip morphology and phase transformation in hard machining. International Journal of Advanced Manufacturing Technology, 27(7-8),

EXPERIMENTAL INVESTIGATION ON CUTTING FORCE AND SURFACE ROUGHNESS IN MACHINING OF HARDENED AISI STEEL USING CBN TOOL

EXPERIMENTAL INVESTIGATION ON CUTTING FORCE AND SURFACE ROUGHNESS IN MACHINING OF HARDENED AISI STEEL USING CBN TOOL 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India EXPERIMENTAL INVESTIGATION ON CUTTING

More information

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: Volume 1 Issue 8 (September 2014)

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: Volume 1 Issue 8 (September 2014) Optimization of Cutting Parameters in Hard Turning of AISI 4340 Steel Basil K Mathew Paul * Tina Raju Dr. Biju B PG Scholar, Department of Mechanical Asst. Professor, Department of Associate Professor

More information

Machinability studies on INCONEL 718

Machinability studies on INCONEL 718 IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Machinability studies on INCONEL 718 To cite this article: M Anthony Xavior et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 149 012019

More information

STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report -

STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report - STATUS OF FEM MODELING IN HIGH SPEED CUTTING - A Progress Report - Dr. Taylan Altan, Professor and Director Partchapol (Jay) Sartkulvanich, Graduate Research Associate Ibrahim Al-Zkeri, Graduate Research

More information

MACHINING PERFORMANCE ASSESSMENT OF HARDENED AISI STEEL USING MULTILAYER COATED CARBIDE INSERT

MACHINING PERFORMANCE ASSESSMENT OF HARDENED AISI STEEL USING MULTILAYER COATED CARBIDE INSERT Journal of Engineering Science and Technology Vol. 12, No. 6 (2017) 1488-1505 School of Engineering, Taylor s University MACHINING PERFORMANCE ASSESSMENT OF HARDENED AISI 52100 STEEL USING MULTILAYER COATED

More information

Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM

Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM Optimization of Process parameters in hot machining of Inconel 718 alloy using FEM A. Kiran Kumar 1 and Dr. P. Venkataramaiah 2 1 Assistant Professor, Department of Mechanical Engineering, GITAM, Hyderabad,

More information

FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY

FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY P.DEEPAGANESH. ME CAD/CAM, Shanmuganathan Engineering College, Pudukottai. ABSTRACT Knowing the stringent operating conditions to which

More information

Comprehensive study of chip morphology in turning of Ti-6Al-4V

Comprehensive study of chip morphology in turning of Ti-6Al-4V 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Vikas Upadhyay 1 *, P.K. Jain 2, N.K.

More information

Taguchi Analysis on Cutting Forces and Temperature in Turning Titanium Ti-6Al-4V

Taguchi Analysis on Cutting Forces and Temperature in Turning Titanium Ti-6Al-4V Taguchi Analysis on Forces and Temperature in Turning Titanium Ti-6Al-4V Satyanarayana Kosaraju, Venu Gopal Anne & Bangaru Babu Popuri Mechanical Engineering Department, National Institute of Technology,

More information

INVESTIGATION OF SURFACE ROUGHNESS IN FINISH TURNING OF TITANIUM ALLOY TI-6AL-4V

INVESTIGATION OF SURFACE ROUGHNESS IN FINISH TURNING OF TITANIUM ALLOY TI-6AL-4V INVESTIGATION OF SURFACE ROUGHNESS IN FINISH TURNING OF TITANIUM ALLOY TI-6AL-4V V. G. Umasekar, M. Gopal, Kadivendi Rahul, Saini Saikiran and G. V. Sasanka Mowli Department of Mechanical Engineering,

More information

Available online at ScienceDirect. Procedia Engineering 97 (2014 )

Available online at  ScienceDirect. Procedia Engineering 97 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 97 (2014 ) 308 319 12th GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT, GCMM 2014 Fuzzy Inference System for Prediction During

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 AN INVESTIGATION

More information

Tool Life Performances on Turning Austenised and Quenched AISI Bearing Steel with Ceramics and CBN/TiC Cutting Tools

Tool Life Performances on Turning Austenised and Quenched AISI Bearing Steel with Ceramics and CBN/TiC Cutting Tools Research Article International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347-5161 2014 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Tool

More information

NUMERICAL MACHINING SIMULATION FOR AN AISI 304 STAINLESS STEEL CONSIDERING MICROFRACTURE MECHANICS ASPECTS

NUMERICAL MACHINING SIMULATION FOR AN AISI 304 STAINLESS STEEL CONSIDERING MICROFRACTURE MECHANICS ASPECTS Copyright 2013 by ABCM NUMERICAL MACHINING SIMULATION FOR AN AISI 304 STAINLESS STEEL CONSIDERING MICROFRACTURE MECHANICS ASPECTS Gil Magno Portal Chagas University of Sao Paulo USP Polytechnic School

More information

Chapter 8. Material-Removal

Chapter 8. Material-Removal 4 4 6. 3 0 5 A M A N U F A C T U R I N G P R O C E S S E S Chapter 8. Material-Removal Processes: Cutting Sung-Hoon Ahn School of Mechanical and Aerospace Engineering Seoul National University Machining

More information

1379. Finite element analysis and experiments of saw chip formation for bearing steel GCr15 in hard cutting process

1379. Finite element analysis and experiments of saw chip formation for bearing steel GCr15 in hard cutting process 1379. Finite element analysis and experiments of saw chip formation for bearing steel GCr15 in hard cutting process Guangjun Chen 1, Lingguo Kong 2, Xianli Liu 3 1, 2 College of Mechanical Engineering,

More information

A Comparative Study of Tool Life Between Ceramic and CBN Cutting Tools when Machining Steel and Optimization of Cutting Parameters

A Comparative Study of Tool Life Between Ceramic and CBN Cutting Tools when Machining Steel and Optimization of Cutting Parameters International Journal of Manufacturing Science and Technology 5(2) December 2011; pp. 91-99 Serials Publications A Comparative Study of Tool Life Between Ceramic and CBN Cutting Tools when Machining 52100

More information

Optimization of Process Parameters in Turning Operation of AISI-1018 with Carbon boron nitride cutting tool Using Taguchi Method And ANOVA

Optimization of Process Parameters in Turning Operation of AISI-1018 with Carbon boron nitride cutting tool Using Taguchi Method And ANOVA International Archive of Applied Sciences and Technology Int. Arch. App. Sci. Technol; Vol 8 [3] September 2017: 47-52 2017 Society of Education, India [ISO9001: 2008 Certified Organization] www.soeagra.com/iaast.html

More information

CHAPTER 5 INVESTIGATION ON DRILLING CHARACTERISTICS OF HYBRID COMPOSITES

CHAPTER 5 INVESTIGATION ON DRILLING CHARACTERISTICS OF HYBRID COMPOSITES CHAPTER 5 INVESTIGATION ON DRILLING CHARACTERISTICS OF HYBRID COMPOSITES 5.1 Introduction This chapter presents the experimental work carried out with different cutting parameters in drilling to evaluate

More information

International Journal of Industrial Engineering Computations

International Journal of Industrial Engineering Computations International Journal of Industrial Engineering Computations (2014) 407 416 Contents lists available at GrowingScience International Journal of Industrial Engineering Computations homepage: www.growingscience.com/ijiec

More information

Study of Cutting Forces and Surface Roughness in Turning of Bronze Filled Polytetrafluoroethylene

Study of Cutting Forces and Surface Roughness in Turning of Bronze Filled Polytetrafluoroethylene International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 2 (2014), pp. 151-160 Research India Publications http://www.ripublication.com/ijame.htm Study of Cutting Forces

More information

RESIDUAL STRESSES IN MACHINING USING FEM

RESIDUAL STRESSES IN MACHINING USING FEM : Rev. Adv. A : Mater. Sci. 30 (2012) : : : : 267-272 : 267 RESIDUAL STRESSES IN MACHINING USING FEM A REVIEW C. Maranh o and J. P. Davim Department of Mechanical Engineering, University of Aveiro, Campus

More information

Identification of material constitutive law constants using machining tests: a response surface methodology based approach

Identification of material constitutive law constants using machining tests: a response surface methodology based approach High Performance and Optimum Design of Structures and Materials 25 Identification of material constitutive law constants using machining tests: a response surface methodology based approach M. Daoud, W.

More information

Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation

Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation K. S. Vijay Sekar vijaysekarks@ssn.edu.in SSN College of Engineering

More information

Cutting Data and Grinding. Dr Mirza Jahanzaib

Cutting Data and Grinding. Dr Mirza Jahanzaib Cutting Data and Grinding Dr Mirza Jahanzaib Cutting Data TABLE 8.1 Data on orthogonal cutting of 4130 steel. TABLE 8.2 Data on orthogonal cutting of 9445 steel. Thrust force as a function of rake angle

More information

International Journal of Engineering Trends and Technology (IJETT) Volume 49 Number 7 July India.

International Journal of Engineering Trends and Technology (IJETT) Volume 49 Number 7 July India. Hard Turning with Wiper Ceramic Insert; Parametric Analysis and Optimization with Desirability Approach K.Venkata Subbaiah 1 Ch. Raju *2 R. S.Pawade 3 Ch. Suresh 4 1 Professor, Department of Mechanical

More information

Surface integrity in finishing turning of Inconel 718

Surface integrity in finishing turning of Inconel 718 Surface integrity in finishing turning of Inconel 718 J. Díaz, A. Díaz-Álvarez, X. Soldani, J.L. Cantero, H. Miguélez (1) Department of Mechanical Engineering, Universidad Carlos III de Madrid, Avda. Universidad

More information

MODELING AND OPTIMIZATION TECHNIQUES IN MACHINING OF HARDENED STEELS: A BRIEF REVIEW

MODELING AND OPTIMIZATION TECHNIQUES IN MACHINING OF HARDENED STEELS: A BRIEF REVIEW Modeling Rev. Adv. Mater. and optimization Sci. 34 (2013) techniques 141-147in machining of hardened steels: a brief review 141 MODELING AND OPTIMIZATION TECHNIQUES IN MACHINING OF HARDENED STEELS: A BRIEF

More information

School of Mechanical Engineering, Shandong University, Jinan , China 2

School of Mechanical Engineering, Shandong University, Jinan , China 2 Analysis and Prediction of Tool Flank Wear under Constant Material Removal Volume Condition in Turning of AISI 4140 Steel R. W. Wang 1, 2, a, S. Zhang 1, 2, b *, G. Li 1, 2, c 1, 2, d, J. F. Li 1 School

More information

Comparative assessment of standard and wiper insert on surface roughness in turning of Titanium alloy (Ti-6Al-4V)

Comparative assessment of standard and wiper insert on surface roughness in turning of Titanium alloy (Ti-6Al-4V) International Journal of Engineering Research and Technology. ISSN - Volume, Number (2) Comparative assessment of standard and wiper insert on surface roughness in turning of Titanium alloy (Ti-Al-V) Pravin

More information

Influence of cutting-edge modifications on the cutting process when machining Inconel 718

Influence of cutting-edge modifications on the cutting process when machining Inconel 718 Surface and Contact Mechanics including Tribology XII 71 Influence of cutting-edge modifications on the cutting process when machining Inconel 718 M. Zetek & I. Zetková Regional Technological Institute,

More information

Machinability Investigation of Inconel 657 in High-speed Turning

Machinability Investigation of Inconel 657 in High-speed Turning Journal of Modern Processes in Manufacturing and Production, Vol. 3, No. 1, Winter 2014 Machinability Investigation of Inconel 657 in High-speed Turning Amir Hossein Khoei 1, Hasan Fathi 1, Masoud Farahnakian

More information

Amarjit Prakashrao Kene 1*, S.K. Choudhury 2. Abstract

Amarjit Prakashrao Kene 1*, S.K. Choudhury 2.  Abstract 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Behaviour of Cutting Forces in Hard Turning

More information

Finite Element Modeling for Prediction of Cutting Forces during Micro Turning of Titanium Alloy

Finite Element Modeling for Prediction of Cutting Forces during Micro Turning of Titanium Alloy 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Finite Element Modeling for Prediction

More information

Manufacturing Technology I. Lecture 3. Fundamentals of Cutting

Manufacturing Technology I. Lecture 3. Fundamentals of Cutting Manufacturing Technology I Lecture 3 Fundamentals of Cutting Prof. Dr.-Ing. F. Klocke Structure of the lecture Examples: turning of steel The cutting part - Terms and symbols The cutting operation Loads

More information

Dry Machining of Superalloys: Difficulties and Remedies

Dry Machining of Superalloys: Difficulties and Remedies Dry Machining of Superalloys: Difficulties and Remedies Ravindra K. Palakudtewar 1, Sharad V. Gaikwad 2 1 P.G. Research Scholar, Department of Mechanical Engineering, Walchand College of Engineering, Vishrambag,

More information

Available online at ScienceDirect. Procedia Materials Science 6 (2014 )

Available online at   ScienceDirect. Procedia Materials Science 6 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Materials Science 6 (2014 ) 1351 1358 3rd International Conference on Materials Processing and Characterization (ICMPC 2014) Investigations

More information

OPTIMIZATION OF TOOL WEAR IN HARD TURNING OF EN 24 STEEL USING DoE AND VERIFICATION THROUGH ANOVA AND RSM

OPTIMIZATION OF TOOL WEAR IN HARD TURNING OF EN 24 STEEL USING DoE AND VERIFICATION THROUGH ANOVA AND RSM OPTIMIZATION OF TOOL WEAR IN HARD TURNING OF EN 24 STEEL USING DoE AND VERIFICATION THROUGH ANOVA AND RSM G. Ragul 1, Dr. S. Sankar 2 1 PG Scholar, Department of Mechanical Engineering, 2 Associate Professor,

More information

Study on Effects of Cutting Fluids on Cutting Resistance and Tool Wear in Simple Method for Incoloy 825 Reaming

Study on Effects of Cutting Fluids on Cutting Resistance and Tool Wear in Simple Method for Incoloy 825 Reaming Proceedings of the 4th IIAE International Conference on Industrial Application Engineering 2016 Study on Effects of Cutting Fluids on Cutting Resistance and Tool Wear in Simple Method for Incoloy 825 Reaming

More information

AN EXPERIMENTAL STUDY ON PERFORMANCE OF TITANIUM ALLOY USING COATED AND UNCOATED INSERTS IN CNC TURNING

AN EXPERIMENTAL STUDY ON PERFORMANCE OF TITANIUM ALLOY USING COATED AND UNCOATED INSERTS IN CNC TURNING June 217, Volume 4, Issue 6 AN EXPERIMENTAL STUDY ON PERFORMANCE OF TITANIUM ALLOY USING COATED AND UNCOATED INSERTS IN CNC TURNING 1 Digvijay K. Patil, 2 Kaveri N. Kudave, 3 Pooja A. Sutar 1 Assistant

More information

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL

CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL 142 CHAPTER 7 PREDICTION OF TEMPERATURE DISTRIBUTION ON CUTTING TOOL The main objective of this chapter is to predict the temperature distribution on a turning tool by using the following methods: Build

More information

Optimization of Machining Parameters for Turning Mild Steel Using Design of Experiment

Optimization of Machining Parameters for Turning Mild Steel Using Design of Experiment International Conference of Advance Research and Innovation (-2015) Optimization of Machining Parameters for Turning Mild Steel Using Design of Experiment Parshvam Jain *, Ranganath M S, Vipin, R. S. Mishra,

More information

CIRP Annals - Manufacturing Technology

CIRP Annals - Manufacturing Technology CIRP Annals - Manufacturing Technology 59 (2010) 77 82 Contents lists available at ScienceDirect CIRP Annals - Manufacturing Technology journal homepage: http://ees.elsevier.com/cirp/default.asp Investigations

More information

Effect of HSS and Tungsten Carbide Tools on Surface Roughness of Aluminium Alloy during Turning Operation

Effect of HSS and Tungsten Carbide Tools on Surface Roughness of Aluminium Alloy during Turning Operation American Journal of Mechanical Engineering, 2016, Vol. 4, No. 2, 60-64 Available online at http://pubs.sciepub.com/ajme/4/2/3 Science and Education Publishing DOI:10.12691/ajme-4-2-3 Effect of HSS and

More information

Life Science Journal 2014;11(10s) Effect of changing turning parameters on the cutting forces.

Life Science Journal 2014;11(10s)   Effect of changing turning parameters on the cutting forces. Effect of changing turning parameters on the cutting forces Naseer Ahmed 1, Raghied Atta 2, Yasir Maqbool Shariff 1 1 Department of Mechanical Engineering, Taibah University, Saudi Arabia 2 Department

More information

Comparative Assessment of Wiper and Conventional Carbide Inserts on Surface Roughness in the Turning of High Strength Steel

Comparative Assessment of Wiper and Conventional Carbide Inserts on Surface Roughness in the Turning of High Strength Steel Journal of Materials Science Research; Vol. 5, No. 1; 2016 ISSN 1927-0585 E-ISSN 1927-0593 Published by Canadian Center of Science and Education Comparative Assessment of Wiper and Conventional Carbide

More information

Machining Behavior of En24 and En36c Steels

Machining Behavior of En24 and En36c Steels Machining Behavior of En24 and Enc Steels Nikhil Bharat, Vishal Mishra 2, Dr Kalyan Chakraborty 3,2 M.Tech (Mechanical) Student, Department of Mechanical Engineering National Institute of Technology, Silchar,

More information

Development of SUMIBORON BN7500 for Ferrous Powder Metal Finishing

Development of SUMIBORON BN7500 for Ferrous Powder Metal Finishing INDUSTRIAL MATERIALS Development of SUMIBORON for Ferrous Powder Metal Finishing Yusuke MATSUDA*, Katsumi OKAMURA and Satoru KUKINO SUMIBORON tools are widely used in the cutting of hard-to-cut ferrous

More information

EXPERIMENTAL INVESTIGATION OF DRY DRILLING OF AUSTENITIC STAINLESS STEEL

EXPERIMENTAL INVESTIGATION OF DRY DRILLING OF AUSTENITIC STAINLESS STEEL EXPERIMENTAL INVESTIGATION OF DRY DRILLING OF AUSTENITIC STAINLESS STEEL M. Arun 1, N. Arunkumar 2 and R.Vijayaraj 3 1 Department of Mechanical Engineering Anna University, Chennai, Tamilnadu, India 2

More information

Analysis of Tool Temperature Distribution in Turning Processes

Analysis of Tool Temperature Distribution in Turning Processes Analysis of Tool Temperature Distribution in Turning Processes Indra Jufri Nurraksana 1, Gaguk Jatisukamto 2, Agus Triono 3 1,2,3 Department of Mechanical Engineering, Faculty of Engineering, University

More information

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining

Development of New Grade SUMIBORON BN7000 for Cast Iron and Ferrous Powder Metal Machining SPECIAL ISSUE Development of New SUMIBORON for Cast Iron and Ferrous Powder Metal Machining Yusuke Matsuda*, Katsumi OKaMura, shinya uesaka and tomohiro FuKaYa SUMIBORON P (polycrystalline cubic boron

More information

Measurement 45 (2012) Contents lists available at SciVerse ScienceDirect. Measurement

Measurement 45 (2012) Contents lists available at SciVerse ScienceDirect. Measurement Measurement 45 (2012) 1872 1884 Contents lists available at SciVerse ScienceDirect Measurement journal homepage: www.elsevier.com/locate/measurement Some studies on hard turning of AISI 4340 steel using

More information

Multi Objective Optimization Using Taguchi Grey Relational Analysis (GRA) for CNC Turning of Poly-ether-ether-ketone (PEEK) Polymer

Multi Objective Optimization Using Taguchi Grey Relational Analysis (GRA) for CNC Turning of Poly-ether-ether-ketone (PEEK) Polymer Multi Objective Optimization Using Taguchi Grey Relational Analysis (GRA) for CNC Turning of Poly-ether-ether-ketone (PEEK) Polymer Multi Objective Optimization Using Taguchi Grey Relational Analysis (GRA)

More information

Designing and Conducting Experiments for Optimization of Satisfactory Cutting Conditions in Precision Turning

Designing and Conducting Experiments for Optimization of Satisfactory Cutting Conditions in Precision Turning American-Eurasian Journal of Scientific Research 8 (5): 206-213, 2013 ISSN 1818-6785 IDOSI Publications, 2013 DOI: 10.5829/idosi.aejsr.2013.8.5.1125 Designing and Conducting Experiments for Optimization

More information

FINITE ELEMENT MODELLING OF BURR FORMATION IN METAL CUTTING 1. INTRODUCTION

FINITE ELEMENT MODELLING OF BURR FORMATION IN METAL CUTTING 1. INTRODUCTION Journal of Machine Engineering, Vol. 14, No. 2, 2014 orthogonal cutting, burr, FEM simulation Pawel PRES 1 Waclaw SKOCZYNSKI 1 Marek STEMBALSKI 1 FINITE ELEMENT MODELLING OF BURR FORMATION IN METAL CUTTING

More information

Response Surface Methodology in the Study of Induced Machining Vibration and Work Surface Roughness in the Turning of 41Cr4 Alloy Steel

Response Surface Methodology in the Study of Induced Machining Vibration and Work Surface Roughness in the Turning of 41Cr4 Alloy Steel Website: www.ijetae.com (ISSN 50-59, ISO 900:008 Certified Journal, Volume 3, Issue, December 03) Response Surface Methodology in the Study of Induced Machining Vibration and Work Surface Roughness in

More information

Optimization of Process Parameters for Surface Roughness and Material Removal Rate for SS 316 on CNC Turning Machine

Optimization of Process Parameters for Surface Roughness and Material Removal Rate for SS 316 on CNC Turning Machine Optimization of Process Parameters for Surface Roughness and Material Removal Rate for SS 316 on CNC Turning Machine NAVNEET K. PRAJAPATI Department of Mechanical Engineering, S.P.B.Patel Engineering College

More information

International Journal of Mechanical Engineering and Applications

International Journal of Mechanical Engineering and Applications International Journal of Mechanical Engineering and Applications 2016; 4(3): 109-114 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20160403.12 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

OPTIMIZATION OF TURNING PARAMETERS OF EN-9 STEEL USING DESIGN OF EXPERIMENTS CONCEPTS

OPTIMIZATION OF TURNING PARAMETERS OF EN-9 STEEL USING DESIGN OF EXPERIMENTS CONCEPTS Int. J. Mech. Eng. & Rob. Res. 2013 B Kumaragurubaran et al., 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 3, July 2013 2013 IJMERR. All Rights Reserved OPTIMIZATION OF TURNING PARAMETERS

More information

PERFORMANCE EVALUATION OF TiN COATED AND UNCOATED CARBIDE TOOLS IN TURNING AISI 4140 STEEL

PERFORMANCE EVALUATION OF TiN COATED AND UNCOATED CARBIDE TOOLS IN TURNING AISI 4140 STEEL 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India PERFORMANCE EVALUATION OF TiN COATED AND

More information

Wear behavior in turning high hardness alloy steel by CBN tool

Wear behavior in turning high hardness alloy steel by CBN tool Available online at www.sciencedirect.com Wear 264 (2008) 679 684 Wear behavior in turning high hardness alloy steel by CBN tool H.M. Lin a, Y.S. Liao b,, C.C. Wei b a Department of Mechanical Engineering,

More information

CUTTING TOOL TECHNOLOGY

CUTTING TOOL TECHNOLOGY CUTTING TOOL TECHNOLOGY Tool Life Tool Materials Tool Geometry Cutting Fluids Cutting Tool Technology Two principal aspects: 1. Tool material 2. Tool geometry Three Modes of Tool Failure Fracture failure

More information

Optimization of Cutting Parameters for surface roughness and MRR in CNC Turning of 16MnCr5

Optimization of Cutting Parameters for surface roughness and MRR in CNC Turning of 16MnCr5 Optimization of Cutting Parameters for surface roughness and MRR in CNC Turning of 16MnCr5 Jitendra Kumar Verma M. Tech Student, Department of Mechanical Engineering, Geeta Engineering College, Panipat,

More information

Wear of PVD Coated and CVD+PVD Coated Inserts in Turning

Wear of PVD Coated and CVD+PVD Coated Inserts in Turning Wear of PVD Coated and CVD+PVD Coated Inserts in Turning Paper No.: 65 Session No.: Author Name: Title: Affiliation: Address: Email: 56 (Dynamics and Vibrations in Experimental Mechanics) M.A. Zeb Assistant

More information

A Parametric Study on Performance of Titanium Alloy Using Coated and Uncoated Carbide Insert in CNC Turning

A Parametric Study on Performance of Titanium Alloy Using Coated and Uncoated Carbide Insert in CNC Turning International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 5 (2014), pp. 557-564 Research India Publications http://www.ripublication.com A Parametric Study on Performance

More information

Application of Taguchi Method for Optimizing Material Removal Rate in Turning of En-47 Spring Steel

Application of Taguchi Method for Optimizing Material Removal Rate in Turning of En-47 Spring Steel 5 th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) December 12 th 14 th, 2014, IIT Guwahati, Assam, India Application of Taguchi Method for Optimizing

More information

Analysis of Cutting Forces in High Speed Turning of Inconel 718 by using Ceramic Tools

Analysis of Cutting Forces in High Speed Turning of Inconel 718 by using Ceramic Tools International Conference on Multidisciplinary Research & Practice P a g e 17 Analysis of Cutting Forces in High Speed Turning of Inconel 718 by using Ceramic Tools Ganesh. S. Sonawane 1 1 PG Student, Mechanical

More information

Experimental Investigation to Study the Effect of the Mineral Oil and Carbide Insert Shapes on Machining of Aisi 4140

Experimental Investigation to Study the Effect of the Mineral Oil and Carbide Insert Shapes on Machining of Aisi 4140 Experimental Investigation to Study the Effect of the Mineral Oil and Carbide Insert Shapes on Machining of Aisi 440 Pardeep Singh, Hartaj Singh 2, Anil Singh 3, Rewat Mahajan 4 Department of Mechanical

More information

ANALYSIS OF SURFACE ROUGHNESS IN HARD TURNING BY USING TAGUCHI METHOD

ANALYSIS OF SURFACE ROUGHNESS IN HARD TURNING BY USING TAGUCHI METHOD ANALYSIS OF SURFACE ROUGHNESS IN HARD TURNING BY USING TAGUCHI METHOD S.B.SALVI * * Asst.Prof.Department of Mechanical Engineering, MGM s Jawaharlal Nehru Engineering College, Aurangabad. salvisunilkumar@gmail.com

More information

Determination of Optimal Cutting Conditions in Orthogonal Metal Cutting Using LS-DYNA with Design of Experiments Approach.

Determination of Optimal Cutting Conditions in Orthogonal Metal Cutting Using LS-DYNA with Design of Experiments Approach. 8 th International LS-DYNA Users Conference Metal Forming (1) Determination of Optimal Cutting Conditions in Orthogonal Metal Cutting Using LS-DYNA with Design of Experiments Approach. David P. Masillamani

More information

Technologie Houari Boumediene (USTHB), BP 32, El-Alia, Bab-Ezzouar, Alger, Algeria

Technologie Houari Boumediene (USTHB), BP 32, El-Alia, Bab-Ezzouar, Alger, Algeria Sādhanā Vol. 42, No. 12, December 2017, pp. 2157 2170 https://doi.org/10.1007/s12046-017-0746-1 Ó Indian Academy of Sciences Comparative assessment of coated and uncoated ceramic tools on cutting force

More information

Federico M. Aneiro Institute Superior Polytechnic José Antonio Echeverria" Ciudad Habana, Cuba

Federico M. Aneiro Institute Superior Polytechnic José Antonio Echeverria Ciudad Habana, Cuba Federico M. Aneiro et al Federico M. Aneiro faneiro@yahoo.es Institute Superior Polytechnic José Antonio Echeverria" Ciudad Habana, Cuba Reginaldo T. Coelho rtcoelho@sc.usp.br University of São Paulo USP

More information

Study of the Effect of Minimum Quantity Lubrication on the Surface Roughness of Incoloy 800 during Turning Operation

Study of the Effect of Minimum Quantity Lubrication on the Surface Roughness of Incoloy 800 during Turning Operation International Journal of Mechanical Engineering and Research. ISSN No. 2249-009, Volume 3, Number 5 (203), pp. 439-448 Research India Publications http://www.ripublication.com/ ijmer.htm Study of the Effect

More information

Optimization of process parameters using Taguchi approach with minimum quantity lubrication for turning

Optimization of process parameters using Taguchi approach with minimum quantity lubrication for turning Optimization of process parameters using Taguchi approach with minimum quantity lubrication for turning Dr.S.S.Chaudhari*, S.S. Khedkar **, N.B. Borkar *** *(Department of Mechanical Engg.Yashwantrao Chavan

More information

CHAPTER 2 LITERATURE REVIEW OF HARD TURNING

CHAPTER 2 LITERATURE REVIEW OF HARD TURNING 6 CHAPTER 2 LITERATURE REVIEW OF HARD TURNING The process of hard turning has been studied theoretically and experimentally for over 40 years (Tonshoff et al 2000). In the late 60s itself, Shaw and Nakayama

More information

Optimization of Surface Roughness for hot machining of AISI 4340 steel using DOE method

Optimization of Surface Roughness for hot machining of AISI 4340 steel using DOE method Optimization of Surface Roughness for hot machining of AISI 4340 steel using DOE method Ketul M. Trivedi 1, Jayesh V.Desai 2, Kiran Patel 3 1 M.E Scholar,Department of Mechanical Engineering,KSV University,

More information

Influences of minimum quantity lubrication parameters on cutting forces under cutting C45 carbon steel

Influences of minimum quantity lubrication parameters on cutting forces under cutting C45 carbon steel IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 7 (July. 2018), V (II) PP 51-57 www.iosrjen.org Influences of minimum quantity lubrication parameters on cutting

More information

Effect of Cutting Parameters on Tool Life

Effect of Cutting Parameters on Tool Life International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sandip

More information

Ming Luo a * , Haizhen Li a

Ming Luo a * , Haizhen Li a Materials Research. 2018; 21(4): e20171086 DOI: http://dx.doi.org/10.1590/1980-5373-mr-2017-1086 On the Machinability and Surface Finish of Superalloy GH909 Under Dry Cutting Conditions Ming Luo a *, Haizhen

More information

Print citation overview

Print citation overview Print citation overview < Back Print Date of creation: 28 February 2013 This is a citation overview for a set of 71 documents. h index = 18 Of the 71 documents considered for the h-index, 18 have been

More information

Effect of Gases on the Performance of Cryogenically Treated Tungsten Carbide Inserts in Turning

Effect of Gases on the Performance of Cryogenically Treated Tungsten Carbide Inserts in Turning Effect of Gases on the Performance of Cryogenically Treated Tungsten Carbide Inserts in Turning 89 Effect of Gases on the Performance of Cryogenically Treated Tungsten Carbide Inserts in Turning Ashwani

More information

OPTIMIZATION OF CUTTING PARAMETERS BASED ON TAUGCHI METHOD OF AISI316 USING CNC LATHE MACHINE

OPTIMIZATION OF CUTTING PARAMETERS BASED ON TAUGCHI METHOD OF AISI316 USING CNC LATHE MACHINE International Research Journal of Engineering and Technology (IRJET) e-issn: 395-0056 Volume: 04 Issue: 07 July -017 www.irjet.net p-issn: 395-007 OPTIMIZATION OF CUTTING PARAMETERS BASED ON TAUGCHI METHOD

More information

TO STUDY THE PROCESS PARAMETERS OF NIMONIC80A ON SURFACE ROUGHNESS IN DRY MACHINING: BY ANOVA APPROACH 1

TO STUDY THE PROCESS PARAMETERS OF NIMONIC80A ON SURFACE ROUGHNESS IN DRY MACHINING: BY ANOVA APPROACH 1 TO STUDY THE PROCESS PARAMETERS OF NIMONIC80A ON SURFACE ROUGHNESS IN DRY MACHINING: BY ANOVA APPROACH O. Archana M. V. R Durga Prasad Research Scholar, Department of Mechanical Engineering, VNR Vignana

More information

Wear Characteristics of AA5050/TiC Metal Matrix Composites

Wear Characteristics of AA5050/TiC Metal Matrix Composites Wear Characteristics of AA5050/TiC Metal Matrix Composites A. Chennakesava Reddy Associate Professor, Department of Mechanical Engineering, JNTU College of Engineering, Hyderabad, India dr_acreddy@yahoo.com

More information

Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr-Mo Steel

Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr-Mo Steel Investigation of Surface Roughness and Flank Wear by CBN and PCBN Tools on Hard Cr-Mo Steel S.Thamizhmanii* and S.Hasan Abstract Hard turning is the latest technology and is used to turn hard materials

More information

3D FEM SIMULATIONS AND EXPERIMENTAL STUDIES OF THE TURNING PROCESS OF INCONEL 718 SUPERALLOY 1. INTRODUCTION

3D FEM SIMULATIONS AND EXPERIMENTAL STUDIES OF THE TURNING PROCESS OF INCONEL 718 SUPERALLOY 1. INTRODUCTION Journal of Machine Engineering, Vol. 14, No. 2, 2014 2D and 3D FEM simulation, cutting process, Inconel 718 Piotr NIESLONY 1 Wit GRZESIK 1 Krzysztof ZAK 1 Piotr LASKOWSKI 2 3D FEM SIMULATIONS AND EXPERIMENTAL

More information

Experimental Study on Tool Parameters of Al2O3 in High Speed Machining

Experimental Study on Tool Parameters of Al2O3 in High Speed Machining International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 215INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Study on

More information

COMPARISON BETWEEN NUMERICAL SIMULATIONS AND EXPERIMENTS FOR SINGLE POINT DIAMOND TURNING OF SILICON CARBIDE

COMPARISON BETWEEN NUMERICAL SIMULATIONS AND EXPERIMENTS FOR SINGLE POINT DIAMOND TURNING OF SILICON CARBIDE COMPARISON BETWEEN NUMERICAL SIMULATIONS AND EXPERIMENTS FOR SINGLE POINT DIAMOND TURNING OF SILICON CARBIDE John A. Patten, Jerry Jacob and Biswarup Bhattacharya Department of Manufacturing Engineering

More information

Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL- 4V Alloy Based on Orthogonal Experimental Design

Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL- 4V Alloy Based on Orthogonal Experimental Design Technics Research on Polycrystalline Cubic Boron Nitride Cutting Tools Dry Turning Ti-6AL- 4V Alloy Based on Orthogonal Experimental Design Yunhai Jia 1,2 *, Lixin Zhu 2 1 Beijing Institute of Electro-machining,

More information

An Approach towards Machining of GFRP Using Alumina Based Cutting Tools

An Approach towards Machining of GFRP Using Alumina Based Cutting Tools An Approach towards Machining of GFRP Using Alumina Based Cutting Tools Mohit Mittal, Mahesh Kumar, Ranjeet Sharma Department of Mechanical Engineering, BSAITM Faridabad * Corresponding author. Tel.:+91-9971698741;

More information

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING

PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore DEPARTMENT OF MECHANICAL ENGINEERING PES INSTITUTE OF TECHNOLOGY BANGALORE SOUTH CAMPUS Hosur Road, (1K.M. Before Electronic City), Bangalore 560 100 DEPARTMENT OF MECHANICAL ENGINEERING SOLUTION 3 rd INTERNAL TEST Subject : Machine Tools

More information

GSJ: Volume 7, Issue 1, January 2019 ISSN GSJ: Volume 7, Issue 1, January 2019, Online: ISSN

GSJ: Volume 7, Issue 1, January 2019 ISSN GSJ: Volume 7, Issue 1, January 2019, Online: ISSN 676, Online: EXPERT MODELLING AND PREDICTION OF VON MISES STRESSES IN CARBIDE INSERT CUTTING TOOL USING FEM (ANSYS) M.O Ozakpolor 1, J.I Achebo 2 and S.E Ogbeide 3 othuke2477@gmail.com (Ozakpolor, M.O)

More information

Evaluation of the Minimum Quantity Lubrication in Orthogonal Cutting with the Application of Finite Element Method

Evaluation of the Minimum Quantity Lubrication in Orthogonal Cutting with the Application of Finite Element Method International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:01 1 Evaluation of the Minimum Quantity Lubrication in Orthogonal Cutting with the Application of Finite Element Method

More information

High Speed Machining of Inconel 718 Focusing on Tool Surface Topography of CBN Tool

High Speed Machining of Inconel 718 Focusing on Tool Surface Topography of CBN Tool Procedia Manufacturing Volume 1, 2015, Pages 675 682 43rd Proceedings of the North American Manufacturing Research Institution of SME http://www.sme.org/namrc High Speed Machining of Inconel 718 Focusing

More information

Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting Surface Quality of Super Alloy

Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting Surface Quality of Super Alloy International Journal of Smart Home Vol. 10, No. 5 (016), pp. 55-60 http://dx.doi.org/10.1457/ijsh.016.10.5.06 Experimental Research on the Influence of Tool Material and Geometric Parameters on Cutting

More information

Uday A. Dabade 1, Suhas S. Joshi 1* and V. V. Bhanuprasad 2

Uday A. Dabade 1, Suhas S. Joshi 1* and V. V. Bhanuprasad 2 Uday A. Dabade 1, Suhas S. Joshi 1* and V. V. Bhanuprasad 2 1 Department of Mechanical Engineering, IIT Bombay, Mumbai 400076, India 2 Defence Metallurgical Research Laboratory, Hyderabad 500058, India

More information

ABSTRACT: This study aims to investigate the effect of cutting

ABSTRACT: This study aims to investigate the effect of cutting Simulation of Cutting Force During High Speed End Milling of Inconel 718 SIMULATION OF CUTTING FORCE DURING HIGH SPEED END MILLING OF INCONEL 718 H. N. Ganesan 1, M. S. Kasim 1, R. Izamshah, T.J.S Anand

More information

Investigation on Surface Quality in Machining of Hybrid Metal Matrix Composite (Al-SiC B4C)

Investigation on Surface Quality in Machining of Hybrid Metal Matrix Composite (Al-SiC B4C) International Conference on Thermal, Material and Mechanical Engineering (ICTMME'0) July 5-6, 0 Singapore Investigation on Surface Quality in Machining of Hybrid Metal Matrix Composite (Al-SiC B4C) Vignesh.

More information

Optimization of Cylindrical Grinding Process Parameters on C40E Steel Using Taguchi Technique

Optimization of Cylindrical Grinding Process Parameters on C40E Steel Using Taguchi Technique RESEARCH ARTICLE OPEN ACCESS Optimization of Cylindrical Grinding Process Parameters on C40E Steel Using Taguchi Technique *Naresh Kumar, **Himanshu Tripathi, ***Sandeep Gandotra *Assistant Professor,

More information

Machining Studies of EN-353 Steel Using Taguchi Technique by Turning Operation

Machining Studies of EN-353 Steel Using Taguchi Technique by Turning Operation Machining Studies of EN-353 Steel Using Taguchi Technique by Turning peration adapeer B Assistant professor epartment of Mechanical Engineering, AMC Engineering College BG Road Bangalore-560083 dadapeerb@yahoo.com

More information