Mechanical Properties of Injection-Moulded Jute/Glass Fibre Hybrid Composites

Size: px
Start display at page:

Download "Mechanical Properties of Injection-Moulded Jute/Glass Fibre Hybrid Composites"

Transcription

1 Mechanical Properties of Injection-Moulded Jute/Glass Fibre Hybrid Composites Tomoko Ohta, Yoshihiro Takai, Yew Wei Leong, and Hiroyuki Hamada* Advanced Fibro Science, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto Japan Received: 18 November 2008, Accepted: 29 May 2009 SUMMARY In order to improve the mechanical performance of natural fibre composites, glass fibres (GF) and natural fibres were simultaneously incorporated into a single matrix system. Such a practice would of course decrease the degree of green, which measures the amount (in weight percentage) of natural materials in a composite system. Nevertheless, it was found that hybrid composites containing up to 20 wt.% jute fibres exhibited similar tensile properties to those of glass fibre composites. The distribution of glass and jute fibres was anisotropic, wherein the GF tend to accumulate at the skin regions of the mouldings, thus orientating towards the resin flow direction. Jute fibres, on the other hand, tend to remain at the core regions and were mostly oriented transverse to the flow direction. This anisotropic distribution and orientation are thought to be responsible for the weakening of the composites at high natural fibre loadings. INTRODUCTION Recent developments in natural fibre (or green) composites indicate the vast awareness of the need to reduce the usage of inorganic reinforcements as well as petroleum based polymers. There are many types of natural fibres and green polymers that are suitable for various applications 1-3, and they are considered to be very promising materials for the future. However, several problems are still being confronted regarding the processing of natural fibre composites. One of them is the hygroscopic nature of natural fibres, which causes numerous surface and internal defects to the final product 3-4. For example, hemp fibre mats can absorb 5% moisture within 5 minutes after complete drying, which causes blistering and delamination of composite structures during postcuring processes under elevated temperatures. In addition, the bulk volume of short natural fibre is very large, which complicates the compounding process, especially when high fibre volume fraction is desired in the composite. The density of natural fibres is lower than that of resins; the densities of bamboo fibres and polypropylene (PP) are g/cm 3 5 and 0.9 g/cm 3, respectively. The side feeder technique that is commonly used for incorporating glass fibres during the compounding of composites is not applicable to low density natural fibres as this would produce pellets with inconsistent fibre volume fractions. Moreover, if the natural fibres are dry-blended with resin pellets, especially at high fibre contents, the material flow from the hopper to the extruder barrel can be difficult, which again causes inconsistencies in the compound. As far as the authors are concerned, a truly effective surface treatment for natural fibres to improve composite properties is yet to be developed 3-4,6-8. Mechanical properties of natural fibre composites with or without fibre treatments are still comparatively low and highly scattered. Without overcoming these problems, natural fibre composites would still be considered as materials that could only sustain low loads and are incapable of being used as structural materials. In this paper we propose two technologies for producing natural fibre composites of highly consistent fibre volume fraction with superior Figure 1. Comparison between the volume of PP resin (90 wt.%) and bamboo fibres (10 wt.%; volume fraction = 6.3%) *Corresponding author address: Hhamada1@aol.com Smithers Rapra Technology,

2 Tomoko Ohta, Yoshihiro Takai, Yew Wei Leong, and Hiroyuki Hamada performance. Firstly, the long fibre pellet production technique was adopted to resolve the abovementioned compounding difficulties as well as to control precisely the fibre volume fraction in the pellets. Secondly, the hybrid fibre concept was introduced, whereby natural and glass fibres were simultaneously incorporated to enhance the mechanical properties of the composite. Although this concept is not fully environmentally friendly, the problem of natural fibre composites having low mechanical properties can be addressed. Here, the Degree of Green terminology is introduced, which is an estimation of the content of natural materials in a composite; for example the Degree of Green in GF/PP composites is zero while a 20 wt.% jute fibre-pp composite has a Degree of Green of 20%. Long jute fibre-pp (jute/pp) and long glass fibre-pp (GF/PP) pellets were prepared by using the long fibre pellet pultrusion technology, whereby the fibre bundle is continuously twisted while being impregnated by a resin through a heated die before being cut into pellets with pre-determined lengths after sufficient cooling. The pellet length is longer than normal short fibre pellets so that higher fibre aspect ratios can be retained, which is known to contribute towards better tensile and impact properties in composites In this study, the lengths of the pellets are 7 mm and 11 mm for the jute/pp and GF/PP composites, respectively. These pellets were dry-blended prior to being injection moulded into dumbbell specimens. EXPERIMENTAL Materials and Specimen Fabrication Jute and glass fibres were used as reinforcements while PP resin acted as the matrix. The long fibre pellets were produced by Calp Co. Ltd. with the use of a long fibre pellet pultrusion machine, as schematically represented in Figure 2. Continuous fibres were fed into the extruder from a roving stand. A twin screw extruder is used to supply the resin to the fibre bundles while they are pulled through a die at which pressure is applied to impregnate the resin into the fibres. Upon sufficient cooling, the extrudate was then cut into the desired lengths. The pellets were then dry blended to obtain the desired composition prior to being injection moulded into dumbbell specimens with a 100 ton injection moulding machine. Before moulding, the pellets were dried at 80 C for 3 hours. The barrel temperature was set at 200 C while injection and holding pressures were 85 MPa and 70 MPa, respectively. Specimen designations according to the composition of the composites are listed in Table 1. The content of jute fibres was varied from 5 to 30 wt.% while the glass fibre content was kept constant at 10 wt.%. Jute/PP composites without glass fibres were also moulded for comparison purposes. Tensile tests were performed by using an Instron universal testing machine with a grip distance of 115 mm and crosshead speed of 10 mm/min. An extension meter with a 50 mm gauge length was used to measure the tensile modulus. Izod impact specimens were Table 1. Specimen designation Sample ID GF content (wt.%) Jute content (wt.%) PP content (wt.%) G G10J G10J G10J G10J J J J J Figure 2. Schematic of long fibre pellet pultrusion machine 488

3 obtained from the parallel part of the dumbbell specimens and tested with a 5.5 J impact energy hammer. Figure 3. Effect of jute fibre content on tensile modulus of monotonous jute/pp and hybrid composites RESULTS Figure 3 shows the relationship between tensile modulus and jute fibre contents in both monotonic and hybrid materials. With increasing jute fibre content in the monotonic materials, the elastic modulus increased linearly to about 4 GPa at 30 wt.% jute content. As for the hybrid composites, however, a similar stiffness of 4 GPa could be achieved even at 5 wt.% jute fibre content. The stiffness further increased linearly to 6 GPa as the jute fibre loading increases to 30 wt.%. These values indicate that there was an almost two fold increase in stiffness with the incorporation of only 10 wt.% glass fibres. Without the presence of jute fibre, the GF/PP composites only recorded a tensile modulus of 2.8 GPa, which indicates that there is a synergistic contribution from both the jute and glass fibres in enhancing the mechanical properties of the hybrid composite. Figure 4 shows the relationship between tensile strength and jute fibre content. The tensile strength of the monotonic jute/pp materials experienced a linear increment with increasing fibre content. This tendency is similar to that of tensile modulus. However, in the case of hybrid composites, the strength remained consistent at 58 MPa despite the increase in jute fibre loading. Above 20 wt.% jute content, a deterioration of strength was recorded. This indicates that the overloading of jute fibres could have affected the distribution of glass fibres, thus creating stress concentration points at parts of the specimens that are either rich in resin or jute fibres. Figure 4. Effect of jute fibre content on tensile strength of monotonous jute/pp and hybrid composites Figure 5. Effect of jute fibre content on un-notched Izod impact strength of monotonous jute/pp and hybrid composites Figure 5 shows the effect of jute fibre content on the Izod impact strength. At 5 to 10 wt.% fibre contents in 489

4 Tomoko Ohta, Yoshihiro Takai, Yew Wei Leong, and Hiroyuki Hamada monotonic jute/pp composites, the impact strength remained constant; thereafter a slight increase in toughness was noted as fibre content increased. On the other hand, the impact strength of the hybrid composites steadily decreased with jute fibre content. Perhaps one of the most interesting results is the sudden decrease in tensile strength of the hybrid composite only when the jute fibre loading reached 30 wt.%. In order to provide an explanation for this observation, the fracture surfaces of G10J30 and G10J20 specimens were observed by scanning electron microscopy (SEM) and the photographs are depicted in Figures 6a and b, respectively. The low magnification provides an overall view of the fibre distribution as well as fracture characteristics. The glass fibres are easily distinguishable by its fine diameter and clean surface while the thicker fibres with rough surfaces are jute fibre bundles. Normally, glass fibres are able to disperse well in PP. However, with the presence of jute fibres especially at high weight fractions, an anisotropic distribution could be observed whereby jute fibres appear to have remained in the form of fibre bundles at the core regions while glass fibres were mostly found near the surface of the mouldings. Furthermore, the orientation of jute fibres was mostly random or perpendicular to flow direction (90 direction) while glass fibres at the skin region were oriented parallel to flow direction (0 direction). When the jute fibre content was low, such as in the case of G10J20 specimens, the concentration of jute fibres at the core could not be observed. behind by the debonding between jute fibres and matrix were also detected, indicating weak interfacial interaction. It is worth mentioning again that there were significantly fewer glass fibres in this region than jute fibres. Figure 7b depicts high magnification SEM photographs of skin region. It can be seen that most of the skin region is dominated by glass fibres that are oriented in the 0 direction while some jute fibres can also be found with similar orientation. Figure 8 highlights the interphase region between the matrix and fibres. Figure 6. Fracture surface of tensile tested specimens: (a) G10J30; and (b) G10J20 Figure 7. SEM photograph of G10J30 specimen at: (a) the core; and (b) the skin (a) Figure 8. High magnification SEM photographs depicting the fibre/matrix interface in G10J30: (a) glass fibre; (b) jute fibre (b) Figure 7a shows high magnification SEM photograph at the core region of a fractured G10J30 specimen. At this region, a large presence of jute fibres that are mostly orientated perpendicular to the direction of flow could be seen, thus these fibres might not be able to fully contribute as a reinforcing agent. Holes left 490

5 Large gaps between the matrix and glass as well as jute fibres can be found. Figure 9. Marking of fibres to indicate the state of orientation of each fibre. Lines represent fibres oriented in the transverse (90 ) direction while those oriented in the flow direction (0 ) are marked with circles: (a) before marking; and (b) after marking) DISCUSSION According to SEM observations, jute fibres are highly concentrated at the core region and are mostly oriented in the 90 direction while the fibrematrix interphase characteristics are also found to be weak. These are the main factors contributing to the low tensile strength of G10J30 specimens. In order to quantify the distribution and orientation state of both fibres from the fracture surface in the G10J30 specimens, the fibres were marked as shown in Figure 9. The fibre orientation was roughly classified into longitudinal (0 ) direction and transverse (90 ) direction. Fibres oriented in the longitudinal direction were marked with a circle while those oriented in the transverse direction were marked with a line. Figure 10 shows a low magnification SEM photo with all the markings indicating longitudinally oriented glass fibres. The distribution of the longitudinally oriented glass fibres was quite uniform at most parts of the specimen except for the core region. The content of glass fibres at the core was far less than that at the skin. Figure 11 shows the preferential distribution of transversely oriented glass fibres that are mostly located at the core region of the specimen. The orientation and distribution of longitudinally oriented jute fibres are shown in Figure 12 and the number of markings is visibly smaller than those of glass fibres in Figure 10. Jute fibres oriented in the transverse direction are marked with thicker lines since they appear in the form of fibre bundles, as shown in Figure 13. It is clear that most of these fibres are concentrated at the core region. The reason for the anisotropic distribution of the glass and jute fibres is probably due to the distinct difference in density between these fibres. Figure 10. Markings of glass fibres oriented in the flow direction (0 ) in G10J30: (a) markings on actual photographs; (b) carbon copy of the markings Figure 11. Markings of glass fibres oriented in the transverse direction (90 ) in G10J30: (a) markings on actual photographs; (b) carbon copy of the markings 491

6 Tomoko Ohta, Yoshihiro Takai, Yew Wei Leong, and Hiroyuki Hamada Figure 12. Markings of jute fibres oriented in the flow direction (0 ) in G10J30: (a) markings on actual photographs; (b) carbon copy of the markings Figure 13. Markings of jute fibres oriented in the transverse direction (90 ) in G10J30: (a) markings on actual photographs; (b) carbon copy of the markings Figure 14 shows a compound figure that was produced by overlapping Figures The most interesting observation is that most of the jute fibres are accumulated at the core region and are oriented 90 to the flow direction. On comparing the fibre distributions between G10J30 in Figure 14 and G10J00 (only incorporated with GF) in Figure 15, a much larger presence of GF may be observed in the core region of GF10J00. In order to quantify the microscopic observations of fibre orientation state, the ratio between 0 o and 90 o oriented fibres was obtained numerically by using image analysis software (COSMOS32 Library Corporation). The volume fractions of fibres in different orientation states can be obtained from the following equations: V 0 = A 0 A total (1) and V 90 = A 90 A total (2) whereby V 0 and V 90 is the volume fraction of 0 and 90 oriented fibres, respectively, while A 0 and A total are the cross-sectional areas of 0 and 90 oriented fibres, respectively. Figure 14. Superposition of all the markings indicating the distribution of jute fibres in different orientations The orientation ratios of 90 to 0 fibres for all specimens are tabulated in Table 2. The orientation ratio of glass fibres in the monotonic GF10J00 specimens was found to be around 2.2, while glass fibres in the hybrid GF10J30 specimens recorded a significantly lower orientation ratio of about 1.4. This indicates that more glass fibres in the hybrid composites are oriented in the direction of resin flow and this could be due to the preferential distribution of the glass fibres towards the skin regions, as observed from the SEM micrographs in Figure 7b. On the other hand, the jute fibre orientation ratio in the hybrid 492

7 Table 2. Fibre orientation ratio of glass and jute fibres in monotonic and hybrid composites Sample Fiber Orientation angle (degree) Total area of fiber (TAF) Total area of specimen (TAS) TAF/TAS Orientation ratio (90 /0 ) G10J100 Glass G10J30 Glass Jute Figure 15. Superposition of all the markings indicating the distribution of glass fibres in different orientations composite was found to be more than 5.0, which indicates that the jute fibres are highly oriented towards the transverse direction. This highly anisotropic fibre orientation in the hybrid composites could be the main reason for the lower tensile strength especially when high jute content is present. The weak jute-pp interfacial properties further compounds to the failure of the fibres to effectively act as reinforcements and stress dispersion agents. Therefore it is possible that crack initiation occurred at the core region during tensile testing, which is similar to a specimen that has been notched from the inside. CONCLUSION The hybridisation of natural fibre composites by the addition of glass fibres can be an effective solution to improve the mechanical properties as well as consistency of the material. It was found that the hybrid composites could attain similar tensile strength to that of GF/PP composites with the incorporation of up to 20 wt.% jute fibres. Furthermore, a significant improvement in toughness could be observed in the hybrid composites compared to monotonic jute/pp composites, although a gradual deterioration in impact resistance was imminent at high jute fibre contents. Microscopic observations revealed that the distribution and orientation of glass and jute fibres would be different with increasing jute fibre content. A preferential distribution of glass fibres towards the skin and jute fibres towards the core was found when the jute fibre content reached 30 wt.%. This distribution would thus affect fibre orientation as well, i.e. glass fibres would tend to orientate parallel to flow direction while jute fibres would exhibit a more random orientation. This could be the cause of the severe deterioration of strength in composites with high jute fibre loadings. REFERENCES Broz M.E., VanderHart D.L., and Washburn N.R., Biomaterials, 24 (2003) Sheth M., Ananda Kumar R., Dave V., Gross R.A., and McCarthy S.P., J. Appl. Polym. Sci., 66 (1997) George J., Sreekala M.S., and Thomas S., Polym. Eng. Sci., 41 (2001) Nabi Saheb D. and Jog J.P., Adv. Polym. Tech., 18 (1999) Jain S. and Kumar R., J. Mater. Sci., 27 (1992) Van de Weyenberg I., Ivens J., De Coster A., Kino B., Baetens E., and Verpoest I., Comp. Sci. Tech., 63 (2003) Gauthier R., Joly C., Coupas A.C., Gauthier H., and Escoubes M., Polym. Comp., 19 (1998) Gassan J. and Bledzki A.K., App. Comp. Mater., 7 (2000) Lafranche E., Krawczak P., Ciolczyk J.P., and Maugey J., Adv. Polym. Tech., 24 (2005) Denault J., Vu-Khanh T., and Foster B., Polym. Comp., 10 (2004) Bijsterbosch H. and Gaymans R.J., Polym. Comp., 16 (1995)

Tensile and Bending Properties of Jute Fabric/Mat Reinforced. Unsaturated Polyester Matrix Composites

Tensile and Bending Properties of Jute Fabric/Mat Reinforced. Unsaturated Polyester Matrix Composites Tensile and Bending Properties of Jute Fabric/Mat Reinforced Unsaturated Polyester Matrix Composites Elsayed A. Elbadry *, Mohamed S. Aly-Hassan, and Hiroyuki Hamada Depaetment of Advanced Fibro-Science,

More information

ADHESIVE PROPERTY OF INSERT-INJECTION MOLDED GLASS FIBER REINFORCED THERMOPLASTICS

ADHESIVE PROPERTY OF INSERT-INJECTION MOLDED GLASS FIBER REINFORCED THERMOPLASTICS ADHESIVE PROPERTY OF INSERT-INJECTION MOLDED GLASS FIBER REINFORCED THERMOPLASTICS C. Wang 1, Y. Nagao 2, Y. Yang 3*,and H. Hamada 1 1 Advanced Fibro Science, Kyoto Institute of Technology, Kyoto, Japan

More information

( 1 ) Tensile and bending properties of jute fiber mat reinforced unsaturated polyester matrix composites produced by a modified hand lay-up method

( 1 ) Tensile and bending properties of jute fiber mat reinforced unsaturated polyester matrix composites produced by a modified hand lay-up method ( 1 ) Tensile and bending properties of jute fiber mat reinforced unsaturated polyester matrix composites produced by a modified hand lay-up method Elsayed A. Elbadry, Mohamed S. Aly-Hassan, and Hiroyuki

More information

Available online at ScienceDirect. Energy Procedia 89 (2016 )

Available online at   ScienceDirect. Energy Procedia 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 89 (2016 ) 307 312 CoE on Sustainable Energy System (Thai-Japan), Faculty of Engineering, Rajamangala University of Technology Thanyaburi

More information

PROCESSING AND MECHANICAL PROPERTIES OF BIODEGRADABLE COMPOSITES

PROCESSING AND MECHANICAL PROPERTIES OF BIODEGRADABLE COMPOSITES FPCM-9 (28) The 9 th International Conference on Flow Processes in Composite Materials Montréal (Québec), Canada 8 ~ 1 July 28 PROCESSING AND MECHANICAL PROPERTIES OF BIODEGRADABLE COMPOSITES Naoyuki Shikamoto

More information

UTILIZING OF B CLASS CARBON FIBER IN COMPOSITE MATERIALS

UTILIZING OF B CLASS CARBON FIBER IN COMPOSITE MATERIALS UTILIZING OF B CLASS CARBON FIBER IN COMPOSITE MATERIALS Hiromishi So, Taiei Kusuhara SJJ Co., Ltd., Osaka, Japan Hiroyuki Inoya, Supaphorn Thumsorn, Hiroyuki Hamada Kyoto Institute of Technology, Kyoto,

More information

Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites

Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites Bull. Mater. Sci., Vol. 32, No. 1, February 2009, pp. 77 81. Indian Academy of Sciences. Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer

More information

Effect of Fiber Orientation and Loading on the Tensile Properties of Hardwickia Binata Fiber Reinforced Epoxy Composites

Effect of Fiber Orientation and Loading on the Tensile Properties of Hardwickia Binata Fiber Reinforced Epoxy Composites Volume 117 No. 10 2017, 57-61 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v117i10.11 ijpam.eu Effect of Fiber Orientation and Loading

More information

SPECIMEN SIZE EFFECT ON THE IN-PLANE SHEAR PROPERTIES OF SILICON CARBIDE/SILICON CARBIDE COMPOSITES

SPECIMEN SIZE EFFECT ON THE IN-PLANE SHEAR PROPERTIES OF SILICON CARBIDE/SILICON CARBIDE COMPOSITES 5 SPECIMEN SIZE EFFECT ON THE IN-PLANE SHEAR PROPERTIES OF SILICON CARBIDE/SILICON CARBIDE COMPOSITES T. Nozawa 1, E. Lara-Curzio 2, Y. Katoh 1,, L.L. Snead 2 and A. Kohyama 1, 1 Institute of Advanced

More information

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites High Performance Structure and Materials VI 379 Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites H. Takagi1, A. N. Nakagaito1 & K. Uchida2 1 2 Institute of Technology

More information

A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process

A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process High Performance Structures and Materials IV 231 A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process T. Fujiura 1, K. Sakamoto

More information

Hot Water Degradation of Natural Fiber Reinforced SMC

Hot Water Degradation of Natural Fiber Reinforced SMC Hot Water Degradation of Natural Fiber Reinforced SMC Masaharu Nishiura *1, Makoto Sarata *2, Masanori Okano *1, Asami Nakai *1 and Hiroyuki Hamada *1 *1 Advanced Software Technology & Mechatronics Research

More information

Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite

Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite High Performance Structures and Materials V 167 Effect of surface and heat treatment on tensile properties of jute fiber reinforced composite K. Takemura Department of Mechanical Engineering, Kanagawa

More information

Static tensile properties for jute fiber reinforced composite

Static tensile properties for jute fiber reinforced composite High Performance Structures and Materials IV 195 Static tensile properties for jute fiber reinforced composite K. Takemura Department of Mechanical Engineering, Kanagawa University, Japan Abstract In fiber

More information

Experimental investigation on flexure and impact properties of injection molded polypropylene-nylon 6-glass fiber polymer composites

Experimental investigation on flexure and impact properties of injection molded polypropylene-nylon 6-glass fiber polymer composites Experimental investigation on flexure and impact properties of injection molded polypropylene-nylon 6-glass fiber polymer composites D M Nuruzzaman 1, N M Kusaseh 2, M A Chowdhury 3, N A N A Rahman 2,

More information

Available online at ScienceDirect. Energy Procedia 89 (2016 )

Available online at   ScienceDirect. Energy Procedia 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 89 (2016 ) 255 263 CoE on Sustainable Energy System (Thai-Japan), Faculty of Engineering, Rajamangala University of Technology Thanyaburi

More information

A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process

A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process Composites: Advances in Manufacture and Characterisation 109 A study on preparation and mechanical properties of long jute fiber reinforced polylactic acid by the injection molding process T. Fujiura 1,

More information

PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING

PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING T.Behzad and M. Sain a Centre for Biocomposites and Biomaterials Processing and Department of Chemical Engineering

More information

EFFECT OF FLEXIBLE INTERPHASE ON DYNAMIC CAHRASTERISTICS OF CFRP

EFFECT OF FLEXIBLE INTERPHASE ON DYNAMIC CAHRASTERISTICS OF CFRP THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF FLEXIBLE INTERPHASE ON DYNAMIC CAHRASTERISTICS OF CFRP T. Fukuda 1 *, A. Ohtani 1, A. Nakai 1 1 Department of mechanical and systems

More information

BENDING MECHANICAL BEHAVIOR OF EPOXY MATRIX REINFORCED WITH MALVA FIBER

BENDING MECHANICAL BEHAVIOR OF EPOXY MATRIX REINFORCED WITH MALVA FIBER BENDING MECHANICAL BEHAVIOR OF EPOXY MATRIX REINFORCED WITH MALVA FIBER Margem, J.I. (1) ; Gomes,V. A. (1) ; Margem, F. M. (1) ; Ribeiro, C.G. (1) ; Margem, M. R. (1) ; Monteiro, S. N. (2) (1) UENF - State

More information

Compatibilized PP/EPDM-Kenaf Fibre Composite using Melt Blending Method

Compatibilized PP/EPDM-Kenaf Fibre Composite using Melt Blending Method Advanced Materials Research Vols. 264-265 (2011) pp 743-747 Online available since 2011/Jun/30 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.264-265.743

More information

SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES

SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES M. Durante, C. Leone, M. Ussorio, I. Crivelli Visconti 1 Department of Materials and Production Engineering, University of Naples "Federico

More information

FATIGUE PROPERTIES OF HEMP FIBRE COMPOSITES

FATIGUE PROPERTIES OF HEMP FIBRE COMPOSITES FATIGUE PROPERTIES OF HEMP FIBRE COMPOSITES A. Shahzad, D.H. Isaac Swansea University Materials Research Centre, School of Engineering, Swansea SA2 8PP, UK 37212@swansea.ac.uk SUMMARY Fatigue lifetime

More information

Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process

Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene

More information

IMPACT PROPERTIES OF JUTE AND JUTE HYBRID REINFORCED COMPOSITES

IMPACT PROPERTIES OF JUTE AND JUTE HYBRID REINFORCED COMPOSITES IMPACT PROPERTIES OF JUTE AND JUTE HYBRID REINFORCED COMPOSITES Ying YU 1 *, Yuqiu YANG 1, H. Hamada 1 1 Division of Advanced Fibro-Science, Kyoto Institute of Technology, Kyoto, Japan, * Corresponding

More information

FABRICATION OF CF/AF FIBER HYBRID THERMOPLASTICS COMPOSITE

FABRICATION OF CF/AF FIBER HYBRID THERMOPLASTICS COMPOSITE FPCM-9 (28) The 9 th International Conference on Flow Processes in Composite Materials Montréal (Québec), Canada 8 ~ 1 July 28 FABRICATION OF CF/ FIBER HYBRID THERMOPLASTICS COMPOSITE Asami Nakai 1, 4,

More information

IMPROVEMENT OF IMPREGNATION AND MECHANICAL PROPERTIES OF CFRTP COMPOSITES BY MICRO-BRAIDED YARNS

IMPROVEMENT OF IMPREGNATION AND MECHANICAL PROPERTIES OF CFRTP COMPOSITES BY MICRO-BRAIDED YARNS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPROVEMENT OF IMPREGNATION AND MECHANICAL PROPERTIES OF CFRTP COMPOSITES BY MICRO-BRAIDED YARNS P. Wongsriraksa 1 *, A. Nakai 2, K. Uzawa 1 and

More information

Structural Designing for Sheet Molding Compound

Structural Designing for Sheet Molding Compound Structural Designing for Sheet Molding Compound Naoshi Yamada *1, Akihiro Fujita *1, Etsuko Tanigaki *2, Masanori Okano *2, Asami Nakai *2, Hiroyuki Hamada *2 *1 Advanced Technology R&D Center/Mitsubishi

More information

EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES

EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES Nicole M. Stark Chemical Engineer U.S. Department of Agriculture Forest Service Forest Products Laboratory

More information

Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite

Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite From the SelectedWorks of Innovative Research Publications IRP India Summer August 1, 2015 Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite

More information

CHAPTER 3 STUDY OF MECHANICAL PROPERTIES OF CAST RESIN WITH FLYASH AND CEMENT

CHAPTER 3 STUDY OF MECHANICAL PROPERTIES OF CAST RESIN WITH FLYASH AND CEMENT 38 CHAPTER 3 STUDY OF MECHANICAL PROPERTIES OF CAST RESIN WITH FLYASH AND CEMENT 3.1 INTRODUCTION Mechanical properties are those properties of a material that are associated with elastic and inelastic

More information

Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test

Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test Natural Filler and Fibre Composites: Development and Characterisation 63 Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test A. Maki, A. Sakuratani,

More information

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose

Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Natural Filler and Fibre Composites: Development and Characterisation 95 Improvement in the mechanical properties of light curing epoxy resin with micro-fibrillated cellulose Y. Ohnishi, T. Fujii & K.

More information

MEASUREMENT OF PERMEABILITY OF WOVEN JUTE FABRICS AND EVALUATION OF MECHANICAL PROPERTIES OF JUTE FABRIC-REINFORCED COMPOSITES

MEASUREMENT OF PERMEABILITY OF WOVEN JUTE FABRICS AND EVALUATION OF MECHANICAL PROPERTIES OF JUTE FABRIC-REINFORCED COMPOSITES FPCM-9 (2008) The 9 th International Conference on Flow Processes in Composite Materials Montréal (Québec), Canada 8 ~ 10 July 2008 MEASUREMENT OF PERMEABILITY OF WOVEN JUTE FABRICS AND EVALUATION OF MECHANICAL

More information

Improvement of strength of bamboo fiber reinforced composites by freezing filamentization

Improvement of strength of bamboo fiber reinforced composites by freezing filamentization Improvement of strength of bamboo fiber reinforced composites by freezing filamentization T. Katayama & M. Ashimori Department of Mechanical Engineering, Doshisha University, Japan Abstract The application

More information

Effects of Melt Temperature and Hold Pressure on the Tensile and Fatigue Properties of an Injection Molded Talc-Filled Polypropylene

Effects of Melt Temperature and Hold Pressure on the Tensile and Fatigue Properties of an Injection Molded Talc-Filled Polypropylene Effects of Melt Temperature and Hold Pressure on the Tensile and Fatigue Properties of an Injection Molded Talc-Filled Polypropylene Yuanxin Zhou, P.K. Mallick Center for Lightweighting Automotive Materials

More information

Effect of water absorption on the mechanical properties of continuous carbon fibre reinforced polycarbonate composites

Effect of water absorption on the mechanical properties of continuous carbon fibre reinforced polycarbonate composites High Performance Structures and Materials V 153 Effect of water absorption on the mechanical properties of continuous carbon fibre reinforced polycarbonate composites K. Tanaka 1, Y. Fukushima 1, K. Kashihara

More information

Glass Fiber and Blast Furnace Slag Particles Reinforced Epoxy-based Hybrid Composites

Glass Fiber and Blast Furnace Slag Particles Reinforced Epoxy-based Hybrid Composites Glass Fiber and Blast Furnace Slag Particles Reinforced Epoxy-based Hybrid Composites Glass Fiber and Blast Furnace Slag Particles Reinforced Epoxy-based Hybrid Composites Prasanta Kumar Padhi * and Alok

More information

THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES. Introduction

THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES. Introduction THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES Badin Pinpathomrat, Akihiko Imajo, Supaphorn Thumsorn, Hiroyuki Hamada Kyoto Institute of Technology, Kyoto,

More information

Fracture behaviour of natural fibre reinforced composites

Fracture behaviour of natural fibre reinforced composites High Performance Structures and Materials V 221 Fracture behaviour of natural fibre reinforced composites H. Takagi 1 & Y. Hagiwara 2 1 Institute of Technology and Science, The University of Tokushima,

More information

EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS

EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS D.K.Verma 1*, M. A. Siddiqui 2,S.C.Srivastava 3 1* M.Tech, Department of Mechanical Engineering, Aligarh Muslim University deepak.vermag@gmail.com

More information

Effect of water absorption on static and creep properties for jute fiber reinforced composite

Effect of water absorption on static and creep properties for jute fiber reinforced composite Effect of water absorption on static and creep properties for jute fiber reinforced composite K. Takemura Department of Mechanical Engineering, Kanagawa University, Japan Abstract Natural fiber reinforced

More information

Highly Filled Formaldehyde-Free Natural Fiber Polypropylene. Composites 1

Highly Filled Formaldehyde-Free Natural Fiber Polypropylene. Composites 1 Highly Filled Formaldehyde-Free Natural Fiber Polypropylene Composites 1 Anand R. Sanadi 2, Biological Systems Engineering, 460 Henry Mall, University of Wisconsin-Madison, WI, 53706, USA and Daniel F.

More information

STUDY ON CHEMICAL TREATMENT OF CELLULOSE FIBER TO IMPROVE HEAT RESISTANCE AND THE MECHANICAL PROPERTY OF COMPOSITE MATERIALS USING TREATED FIBER

STUDY ON CHEMICAL TREATMENT OF CELLULOSE FIBER TO IMPROVE HEAT RESISTANCE AND THE MECHANICAL PROPERTY OF COMPOSITE MATERIALS USING TREATED FIBER THE 19TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS STUDY ON CHEMICAL TREATMENT OF CELLULOSE FIBER TO IMPROVE HEAT RESISTANCE AND THE MECHANICAL PROPERTY OF COMPOSITE MATERIALS USING TREATED FIBER

More information

CHAPTER 4 WATER ABSORPTION BEHAVIOR AND ACCELERATED AGING EFFECTS

CHAPTER 4 WATER ABSORPTION BEHAVIOR AND ACCELERATED AGING EFFECTS 1 CHAPTER WATER ABSORPTION BEHAVIOR AND ACCELERATED AGING EFFECTS.1 INTRODUCTION The mechanical properties of the polymer matrix composites depend on the properties of their constituents and their interaction

More information

Fabrication of Press-molded Products Using Bamboo Powder

Fabrication of Press-molded Products Using Bamboo Powder Fabrication of Press-molded Products Using Bamboo Powder Shinji Ochi AssociateProfessor, Niihama National College of Technology 7-1 Yagumo-choNiihama, Ehime, Japan Tel: 81-897-377-742 E-mail: s_ochi@mec.niihama-nct.ac.jp

More information

MECHANICAL AND ADHESIVE PROPERTIES OF ARAMID/NYLON INSERT INJECTION MOLDING COMPOSITES

MECHANICAL AND ADHESIVE PROPERTIES OF ARAMID/NYLON INSERT INJECTION MOLDING COMPOSITES MECHANICAL AND ADHESIVE PROPERTIES OF ARAMID/NYLON INSERT INJECTION MOLDING COMPOSITES Badin Pinpathomrat, Hiroyuki Hamada Kyoto Institute of Technology, Kyoto, Japan Abstract A new joining method called

More information

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber KEYWORDS: Thermoplastic starch, Mechanical & physical properties, Reinforcements The increasing

More information

Comparison of strength of 3D printing objects using short fiber and continuous long fiber

Comparison of strength of 3D printing objects using short fiber and continuous long fiber IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Comparison of strength of 3D printing objects using short fiber and continuous long fiber To cite this article: T Isobe et al

More information

Available online at ScienceDirect. Energy Procedia 89 (2016 )

Available online at  ScienceDirect. Energy Procedia 89 (2016 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 89 (216 ) 328 334 CoE on Sustainable Energy System (Thai-Japan), Faculty of Engineering, Rajamangala University of Technology Thanyaburi

More information

EFFECT OF UNIFORMITY OF FIBER ARRANGEMENT ON TENSILE FRACTURE BEHAVIOR OF UNIDIRECTIONAL MODEL COMPOSITES

EFFECT OF UNIFORMITY OF FIBER ARRANGEMENT ON TENSILE FRACTURE BEHAVIOR OF UNIDIRECTIONAL MODEL COMPOSITES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF UNIFORMITY OF FIBER ARRANGEMENT ON TENSILE FRACTURE BEHAVIOR OF UNIDIRECTIONAL MODEL COMPOSITES Mototsugu TANAKA*, Masaki HOJO**, Shojiro

More information

Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres

Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres Sudarisman, I. J. Davies, and H. Hamada, Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres, Compos. Part A, 38(3) pp. 1070-1074

More information

Effect of Rubber Particle Size and Graft Ratio on the Morphology and Tensile Properties of ABS Resins

Effect of Rubber Particle Size and Graft Ratio on the Morphology and Tensile Properties of ABS Resins Materials Science Research International, Vol.6, No.2 pp. 104-109 (2000) General paper Effect of Rubber Particle Size and Graft Ratio on the Morphology and Tensile Properties of ABS Resins Hideki YAMANE*,

More information

DEVELOPMENT OF THERMOPLASTIC RESIN IMPREGNATED YARN AND ITS COMPOSITE PROPERTIES

DEVELOPMENT OF THERMOPLASTIC RESIN IMPREGNATED YARN AND ITS COMPOSITE PROPERTIES DEVELOPMENT OF THERMOPLASTIC RESIN IMPREGNATED YARN AND ITS COMPOSITE PROPERTIES Akio Ohtani 1, Mitsuro Takagi 2, Jun Takashima 3, Kouji Nakajima 4, Takayuki Imai 4, Tadashi Uozumi 1, Asami Nakai 1, Hiroyuki

More information

Experimental Investigation on the Mechanical Properties of Jute/Sisal/Glass and Jute/Banana/Glass Hybrid Composite Materials

Experimental Investigation on the Mechanical Properties of Jute/Sisal/Glass and Jute/Banana/Glass Hybrid Composite Materials European Journal of Applied Sciences 7 (3): 138-144, 015 ISSN 079-077 IDOSI Publications, 015 DOI: 10.589/idosi.ejas.015.7.3.5 Experimental Investigation on the Mechanical Properties of Jute/Sisal/Glass

More information

Evaluation of Tensile Strength of Jute Fiber Reinforced Polypropylene Composite

Evaluation of Tensile Strength of Jute Fiber Reinforced Polypropylene Composite Advances in Materials 2017; 6(6): 149-153 http://www.sciencepublishinggroup.com/j/am doi: 10.11648/j.am.20170606.15 ISSN: 2327-2503 (Print); ISSN: 2327-252X (Online) Evaluation of Tensile Strength of Jute

More information

POLYPROPYLENE REINFORCED WITH RECYCLE POLYETHYLENE TEREPHTHALATE AS AN ALTERNATIVE MATERIAL FOR NEW PLASTIC PRODUCT

POLYPROPYLENE REINFORCED WITH RECYCLE POLYETHYLENE TEREPHTHALATE AS AN ALTERNATIVE MATERIAL FOR NEW PLASTIC PRODUCT ISBN 98-98-888--. POLYPROPYLENE REINFORCED WITH RECYCLE POLYETHYLENE TEREPHTHALATE AS AN ALTERNATIVE MATERIAL FOR NEW PLASTIC PRODUCT A.N.M. Rose, M. M. Noor, M.M. Rahman, M.R.M. Rejab, M.S. Reza, M. Khairof

More information

IMPREGNATION PROCESS FOR FIBER HYBRID BRAIDED THERMOPLASTIC COMPOSITES

IMPREGNATION PROCESS FOR FIBER HYBRID BRAIDED THERMOPLASTIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPREGNATION PROCESS FOR FIBER HYBRID BRAIDED THERMOPLASTIC COMPOSITES T. Motochika 1*, K. Nakazawa 2, A. Ohtani 1, A. Nakai 1 1 Faculty of Engineering,

More information

Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose)

Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose) High Performance Structures and Materials IV 139 Improvement in the mechanical properties of light curing epoxy resin with MFC (Micro-Fibrillated Cellulose) Y. Ohnishi 1, T. Fujii 2 & K. Okubo 2 1 Graduate

More information

Cellulose Nanofiber-reinforced Unsaturated Polyester as a Potential Substitute for Glass Fiber-reinforced Plastics.

Cellulose Nanofiber-reinforced Unsaturated Polyester as a Potential Substitute for Glass Fiber-reinforced Plastics. Cellulose Nanofiber-reinforced Unsaturated Polyester as a Potential Substitute for Glass Fiber-reinforced Plastics. A. N. Nakagaito a,b, S. Sato a,c, A. Sato a,d and H. Yano a a Research Institute for

More information

SURFACE TREATMENT OF CONTINUOUS FIBER FOR IMPREGNATION AND MECHANICAL PROPERTIES OF THERMOPLASTIC COMPOSITES

SURFACE TREATMENT OF CONTINUOUS FIBER FOR IMPREGNATION AND MECHANICAL PROPERTIES OF THERMOPLASTIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS SURFACE TREATMENT OF CONTINUOUS FIBER FOR IMPREGNATION AND MECHANICAL PROPERTIES OF THERMOPLASTIC COMPOSITES A.Fudauchi 1, K. Bun 1, J. Hirai 2,

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 7, No. 3, pp. 261~265 (2006) J O U R N A L O F Ceramic Processing Research Tensile strength and fracture toughness of two magnesium metal matrix composites

More information

EFFECT OF BOTH TALC FINENESS AND TALC LOADING ON HETEROGENEOUS NUCLEATION OF BLOCK COPOLYMER POLYPROPYLENE

EFFECT OF BOTH TALC FINENESS AND TALC LOADING ON HETEROGENEOUS NUCLEATION OF BLOCK COPOLYMER POLYPROPYLENE EFFECT OF BOTH TALC FINENESS AND TALC LOADING ON HETEROGENEOUS NUCLEATION OF BLOCK COPOLYMER POLYPROPYLENE Piergiovanni Ercoli Malacari, IMIFabi Spa, Milano, Italy Abstract The heterogeneous nucleation

More information

CHAPTER 5 INVESTIGATION ON DRILLING CHARACTERISTICS OF HYBRID COMPOSITES

CHAPTER 5 INVESTIGATION ON DRILLING CHARACTERISTICS OF HYBRID COMPOSITES CHAPTER 5 INVESTIGATION ON DRILLING CHARACTERISTICS OF HYBRID COMPOSITES 5.1 Introduction This chapter presents the experimental work carried out with different cutting parameters in drilling to evaluate

More information

Effect of fiber length on tensile strength of jute-fiber-reinforced polypropylene with several kinds of interfacial treatment

Effect of fiber length on tensile strength of jute-fiber-reinforced polypropylene with several kinds of interfacial treatment Effect of fiber length on tensile strength of jute-fiber-reinforced polypropylene with several kinds of interfacial treatment K. Shima, K. Okubo & T. Fujii Department of Mechanical Engineering, Doshisha

More information

INFLUENCE OF STRUCTURAL ANISOTROPY ON COMPRESSIVE FRACTURE PROPERTIES OF HYDROSTATIC-PRESSURE-EXTRUSION-MOLDED HAP/PLLA COMPOSITE

INFLUENCE OF STRUCTURAL ANISOTROPY ON COMPRESSIVE FRACTURE PROPERTIES OF HYDROSTATIC-PRESSURE-EXTRUSION-MOLDED HAP/PLLA COMPOSITE 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS INFLUENCE OF STRUCTURAL ANISOTROPY ON COMPRESSIVE FRACTURE PROPERTIES OF HYDROSTATIC-PRESSURE-EXTRUSION-MOLDED HAP/PLLA COMPOSITE M. Tanaka 1 *, Y.

More information

Study on the Durability of E-Glass Fiber/Vinylester resin Composites in Various Environment. Seung Yul Lee, Byung Hyun Ahn and Chang Kwon Moon a

Study on the Durability of E-Glass Fiber/Vinylester resin Composites in Various Environment. Seung Yul Lee, Byung Hyun Ahn and Chang Kwon Moon a Solid State Phenomena Vols. 124-126 (2007) pp 835-838 Online: 2007-06-15 (2007) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.124-126.835 Study on the Durability of E-Glass Fiber/Vinylester

More information

EFFECT OF CHEMICAL PRE-TREATMENT ON THE CURE, MECHANICAL AND ABRASION PROPERTIES OF KENAF/NATURAL RUBBER GREEN COMPOSITES

EFFECT OF CHEMICAL PRE-TREATMENT ON THE CURE, MECHANICAL AND ABRASION PROPERTIES OF KENAF/NATURAL RUBBER GREEN COMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF CHEMICAL PRE-TREATMENT ON THE CURE, MECHANICAL AND ABRASION PROPERTIES OF KENAF/NATURAL RUBBER GREEN COMPOSITES Y. S. Cho 1, H. S. Lee 2,

More information

Evaluation of Tensile Behavior of Sea Shell- Jute Fabric Reinforced Composite

Evaluation of Tensile Behavior of Sea Shell- Jute Fabric Reinforced Composite Evaluation of Tensile Behavior of Sea Shell- Jute Fabric Reinforced Composite V. Manohara 1, C. G. Sreenivasa 2, K. N. Bharath 3, Lecturer, Dept. of Mechanical Engineering, G. M. Institute of Technology,

More information

Size Effect of Tensile Property and in-situ Observation of Fracture Behavior of Bamboo Fiber

Size Effect of Tensile Property and in-situ Observation of Fracture Behavior of Bamboo Fiber Size Effect of Tensile Property and in-situ Observation of Fracture Behavior of Bamboo Fiber Akihiro Takahashi Department of Mechanical Engineering National Institute of Technology, Miyakonojo College,

More information

Surface Modification to Improve the Impact Performance of Natural Fibre Composites

Surface Modification to Improve the Impact Performance of Natural Fibre Composites Surface Modification to Improve the Impact Performance of Natural Fibre Composites J. George, J. Ivens and I. Verpoest Department MTM, Katholieke Universiteit Leuven De Croylaan 2, B-3001 Heverlee, Leuven,

More information

Effect of Water Absorption on Interface and Tensile Properties of Jute Fiber Reinforced Modified Polyethylene Composites Developed by Palsule Process

Effect of Water Absorption on Interface and Tensile Properties of Jute Fiber Reinforced Modified Polyethylene Composites Developed by Palsule Process Effect of Water Absorption on Interface and Tensile Properties of Jute Fiber Reinforced Modified Polyethylene Composites Developed by Palsule Process Effect of Water Absorption on Interface and Tensile

More information

MECHANICAL PROPERTIES OF NATURAL FIBERS REINFORCED POLY(LACTIC ACID) BASED BIOCOMPOSITES

MECHANICAL PROPERTIES OF NATURAL FIBERS REINFORCED POLY(LACTIC ACID) BASED BIOCOMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MECHANICAL PROPERTIES OF NATURAL FIBERS REINFORCED POLY(LACTIC ACID) BASED BIOCOMPOSITES P. Uawongsuwan 1*, N. OCharoen 2, H. Hamada 1 1 Department

More information

THE DEVELOPMENT OF NOVEL CARBON-FIBER-REINFORCED STAMPABLE THERMOPLASTIC SHEETS

THE DEVELOPMENT OF NOVEL CARBON-FIBER-REINFORCED STAMPABLE THERMOPLASTIC SHEETS ECCM15-15 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 212 THE DEVELOPMENT OF NOVEL CARBON-FIBER-REINFORCED STAMPABLE THERMOPLASTIC SHEETS N. Hirano 1, A. Tsuchiya 1, M. Honma

More information

NEW GMT MATERIAL SUITABLE FOR VARIOUS POLYMERS AND HIGH GLASS FIBER CONTENT

NEW GMT MATERIAL SUITABLE FOR VARIOUS POLYMERS AND HIGH GLASS FIBER CONTENT NEW GMT MATERIAL SUITABLE FOR VARIOUS POLYMERS AND HIGH GLASS FIBER CONTENT G. Jung a*, P. Mitschang a, C. Park b a Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str. 58, 67663 Kaiserslautern,

More information

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction High Performance Structures and Materials IV 211 Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction K. Tanaka 1, T. Katsura 1,

More information

Size Effects on Tensile Strength of Lotus-Type Porous Copper

Size Effects on Tensile Strength of Lotus-Type Porous Copper Materials Transactions, Vol. 47, No. 9 () pp. 3 to 7 Special Issue on Porous and Foamed Metals Fabrication, Characterization, Properties and Applications # The Japan Institute of Metals Size Effects on

More information

Mechanical Behaviour of Short Bamboo Fiber Reinforced Epoxy Composites Filled with Alumina Particulate

Mechanical Behaviour of Short Bamboo Fiber Reinforced Epoxy Composites Filled with Alumina Particulate Mechanical Behaviour of Short Bamboo Fiber Reinforced Epoxy Composites Filled with Alumina Particulate Sandhyarani Biswas 1* Kishore Debnath 2 Amar Patnaik 3 * 1 Department of Mechanical Engineering, National

More information

High Modulus Carbon Fibres in Super-Structural Compounds

High Modulus Carbon Fibres in Super-Structural Compounds High Modulus Carbon Fibres in Super-Structural Compounds As a matter of fact, even if composite properties guarantee the best answer to the most severe project requirements, many industrial products can

More information

Influence of Curing Temperature and Fiber Volume Fraction on the Mechanical Properties of Sisal Fiber Reinforced Polyester Composites

Influence of Curing Temperature and Fiber Volume Fraction on the Mechanical Properties of Sisal Fiber Reinforced Polyester Composites Influence of Curing Temperature and Fiber Volume Fraction on the Mechanical Properties of Sisal Fiber Reinforced Polyester Composites C.Boopathi* 1, S.Kalyana Sundaram 2, S.Jayabal 3, S.Karthikeyan 4 P.G.

More information

OPTIMIZATION OF THE DEVOLATILIZATION PROCESS IN THE INJECTION MOLDING CYLINDER

OPTIMIZATION OF THE DEVOLATILIZATION PROCESS IN THE INJECTION MOLDING CYLINDER OPTIMIZATION OF THE DEVOLATILIZATION PROCESS IN THE INJECTION MOLDING CYLINDER Hisakura Yuuki, Kawakubo Mitsuhiro, Kitahara Kenichi, Sugihara Makoto, Konica Minolta Inc., Aichi, Japan Hamada Hiroyuki,

More information

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK

ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES. Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK ADHESION ADDITIVE INFLUENCE ON PA6 NANO POLYMER COMPOSITES PROPERTIES Jiří HABR, Petr LENFELD, Jiří BOBEK, Luboš BĚHÁLEK Technical University of Liberec, Liberec, Czech Republic, EU jiri.habr@tul.cz, petr.lenfeld@tul.cz,

More information

Mechanical Properties of CFRP/EVA Composites According to Lamination Ratio

Mechanical Properties of CFRP/EVA Composites According to Lamination Ratio Mechanical Properties of CFRP/EVA Composites According to Lamination Ratio SUN-HO GO 1, SEONG-MIN YUN 1, HEE-JAE SHIN 2, JANG-HO LEE 3, LEE-KU KWAC 4 # HONG-GUN KIM 4 1 Graduate School, Department of Mechanical

More information

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS M. Oishi et al. Nano Studies, 2015, 11, 69-74. DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS M. Oishi 1, 2, Ch. Dal Castel 1, R. Park 1, B. Wolff 1, 3, L. Simon 1 1 University of

More information

Research Article Development of Glass/Jute Fibers Reinforced Polyester Composite

Research Article Development of Glass/Jute Fibers Reinforced Polyester Composite Indian Materials Science Volume 2013, Article ID 675264, 6 pages http://dx.doi.org/10.1155/2013/675264 Research Article Development of / Fibers Reinforced Polyester Composite Amit Bindal, 1 Satnam Singh,

More information

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite

Influence of Angle Ply Orientation on Tensile Properties of Carbon/Glass Hybrid Composite Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 231-235 http://dx.doi.org/10.4236/jmmce.2013.15036 Published Online September 2013 (http://www.scirp.org/journal/jmmce) Influence

More information

LONG-TERM EXPOSURE OF POLYCYANATE COMPOSITES TO HIGH TEMPERATURE ATMOSPHERE

LONG-TERM EXPOSURE OF POLYCYANATE COMPOSITES TO HIGH TEMPERATURE ATMOSPHERE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS LONG-TERM EXPOSURE OF POLYCYANATE COMPOSITES TO HIGH TEMPERATURE ATMOSPHERE Y. Kobayashi* 1, 2, S. Kobayashi 3 1 Graduate Student, Department of

More information

DIRECT MEASUREMENT ON FRACTURE TOUGHNESS OF CARBON FIBER ABSTRACT

DIRECT MEASUREMENT ON FRACTURE TOUGHNESS OF CARBON FIBER ABSTRACT DIRECT MEASUREMENT ON FRACTURE TOUGHNESS OF CARBON FIBER Yasuo Kogo 1, Yuta Imafuku 2, and Shinji Ogihara 3 1 Dept. of Materials Science, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510,

More information

Wood and Mineral Fillers for Injection Molding Grade Polypropylene

Wood and Mineral Fillers for Injection Molding Grade Polypropylene Wood and Mineral Fillers for Injection Molding Grade Polypropylene Brent English, Industrial Specialist Nicole Stark, Chemical Engineer Craig Clemens, Chemical Engineer, USDA Forest Service Forest Products

More information

PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS

PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS R. Forstner, W. Stadlbauer Transfercenter für Kunststofftechnik GmbH Franz-Fritsch-Straße 11, A-4600 Wels, Austria reinhard.forstner@tckt.at

More information

Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites

Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites Bull. Mater. Sci., Vol. 37, No. 5, August 2014, pp. 1059 1064. Indian Academy of Sciences. Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites B STANLY

More information

INTERFACIAL SHEAR STRENGTH OF SINGLE FILAMENT CARBON FIBER REINFORCED COMPOSITES.

INTERFACIAL SHEAR STRENGTH OF SINGLE FILAMENT CARBON FIBER REINFORCED COMPOSITES. m INTERFACIAL SHEAR STRENGTH OF SINGLE FILAMENT CARBON FIBER REINFORCED COMPOSITES. : 16 7 : 4.1 INTRODUCTION It is widely accepted that bonding between fiber and matrix plays an important role in stress

More information

PREPARATION AND CHARACTERIZATION OF EPOXY COMPOSITE REINFORCED WITH WALNUT SHELL POWDER

PREPARATION AND CHARACTERIZATION OF EPOXY COMPOSITE REINFORCED WITH WALNUT SHELL POWDER PREPARATION AND CHARACTERIZATION OF EPOXY COMPOSITE REINFORCED WITH WALNUT SHELL POWDER C.B.Talikoti 1, T.T.Hawal 2, P.P.Kakkamari 3, Dr. M.S.Patil 4 1.M.Tech scholar, Dept. of Mechanical Engineering,

More information

Characteristic values of pultruded fibre composite sections for structural design

Characteristic values of pultruded fibre composite sections for structural design Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Characteristic values of pultruded fibre composite sections for structural design

More information

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains Introduction In the previous lecture we have introduced the needs, background and societies for mechanical testing of composites. In this lecture and subsequent lectures we will see principles for the

More information

American International Journal of Research in Science, Technology, Engineering & Mathematics

American International Journal of Research in Science, Technology, Engineering & Mathematics American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Simulation of ball impact on composite plate with PP+30% LGF

Simulation of ball impact on composite plate with PP+30% LGF 12 th International LS-DYNA Users Conference Blast/Impact(1) Simulation of ball impact on composite plate with PP+30% LGF Dr. T. Sakakibara 1, Dr. R. Akita 1, Dr. Y. Ohnishi 1 S. Kijima 2, Y. Kanki 2 Dr.

More information

FAILURE OF SINGLE-LAP SINGLE-BOLT TENSION JOINTS IN PULTRUDED GLASS FIBRE REINFORCED PLATE

FAILURE OF SINGLE-LAP SINGLE-BOLT TENSION JOINTS IN PULTRUDED GLASS FIBRE REINFORCED PLATE FAILURE OF SINGLE-LAP SINGLE-BOLT TENSION JOINTS IN PULTRUDED GLASS FIBRE REINFORCED PLATE Geoffrey TURVEY Senior Lecturer Lancaster University Bailrigg, Lancaster, LA1 4YR, UK g.turvey@lancaster.ac.uk*

More information

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction

Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction Natural Filler and Fibre Composites: Development and Characterisation 115 Mechanical properties of jute fabric reinforced thermoplastic moulded by high-speed processing using electromagnetic induction

More information

Study on mechanical properties of PEEK composites

Study on mechanical properties of PEEK composites Advanced Materials Research Online: 2012-02-27 ISSN: 1662-8985, Vols. 476-478, pp 519-525 doi:10.4028/www.scientific.net/amr.476-478.519 2012 Trans Tech Publications, Switzerland Study on mechanical properties

More information