Mechanical behavior of friction stir welded joints of aeronautic aluminum alloy AA2024-T351

Size: px
Start display at page:

Download "Mechanical behavior of friction stir welded joints of aeronautic aluminum alloy AA2024-T351"

Transcription

1 Mechanical behavior of friction stir welded joints of aeronautic aluminum alloy AA2024-T351 Abstract This investigation work focus in the analysis of Friction Stir weldability of the aluminum alloy AA2024-T351, a heat treated aluminum alloy, typically used in the aeronautical construction, due to its good mechanical properties and corrosion resistance. Therefore, FSW parameters have been developed and an evaluation of the influence of various characteristic defects of FSW in the mechanical resistance, under static tensile and bending loads, and fatigue tests. The mechanical efficiency of welded joints with various types of defects has been established and compared to the base material and welded joints without defects. It has been shown that the most critical defects in FSW are the root defects, both kissing-bond and intermittent flaws. Keywords Friction Stir Welding; AA2024-T351; Welded joints defects; Fatigue 1) Introduction FSW was invented by The Welding Institute in 1991, and since the first industrial application in 1995 that shows to be a superior welding method in the joining of many engineering materials, with emphasis to aluminum alloys. The FSW process uses a non-consumable rotating tool, consisting of a shoulder, generally normal to the axis of rotation and a smaller diameter profiled pin, rotating at high speed which plunges into butting edges of the workpieces to be joined. The movement of the tool over the work pieces results in friction and plastic deformation that generates heat. As the rotating tool translates along the joint line, plasticized material is stirred and forged behind the trailing face of the pin where it consolidates to form a solid state weld [1; 2]. The aluminum alloys, like 2XXX series are, extensively used in the aeronautic industry to produce airplane components such as frame parts, bulkhead, longeron and so forth. The fastening and riveting method along with adhesives have dominated this industry over the past decades, due to the low weldability of the most used aluminum alloys (2XXX and 7XXX series). The elimination of fasteners and riveters would not just only reduce the manufacturing cost, but would also provide a considerable weight reduction in the airplanes [3;4]. In the vast majority of engineering practice, most aluminum structures are welded and mainly subject to fatigue loading. The fatigue leads to damage of structural parts even if the stress applied to the part is quite low. The main factors that influence fatigue resistance of welded structures are type of loading, microstructure and weld defects. Although FSW joints have better quality over fusion welding techniques, there are some typical defects that can be found in FS welds when the used parameters are not correct, or when small variations of the correct parameters occurs [5].

2 The major aims of this investigation are to establish and assess the influence of this type of defects in the mechanical resistance under static and dynamic loads and find correct parameters to weld the aluminum alloy AA2024-T351. In order to know the relative importance of the 3 most typical defects in FSW, over the mechanical behavior of FSW structures, 4 types of specimens were welded. Specimens without FSW typical defects, two kinds of root defects and one internal defect were compared with base material specimens over static efforts of tensile and bending tests, and over dynamic efforts for fatigue. In the fatigue tests, S-N curves and metallographic analysis of fractures surfaces has been done. The joints characterization under the different conditions was complemented with non-destructive control techniques, such as visual analysis and x-rays, and destructive techniques such as metallographic analysis and hardness. The fracture surface observation using SEM have been done to investigate the cause of fatigue failure. FSW Typical Defects The typical defects that used to occur in FSW butt joint are represented in Figure 1. The defects that are going be studied are: 1) Lack of penetration (Kissing-bonds); 2) Root flaws (weak or intermittent linking); 3) Voids on the advancing side. Figure 1 - Typical defects on FSW butt joint These defects result from, e.g., lack of penetration of the pin and non uniform vertical force along the material thickness, imperfect stir of materials during the process and inadequate surface preparation. For each type of defect a code name was given. The characterization of the defect types is described in Table 1. Defect Type Code 0 I II III Description Not defective Root defect type I (particles alignment) Root defect type II (kissing-bond) Table 1 - Establishment of the 4 different Defect Types included in the FSW joints produced Internal defects (voids)

3 2) Experimental Details 2.1) Material The base material used in the present study was rolled sheets of AA2024-T351 with 4mm thickness. The material has been delivered in sheets with dimensions of 500mm x 250mm. All the welds were performed in a butt-joint arrangement. The chemical composition and mechanical properties are presented in table 1. Elements Cr Cu Fe Mg Mn Si Ti Zn Al Chemical composition Max Max Max 0.5 Max 0.15 Max 0.25 remain Tensile yield strength 324MPa Ultimate tensile strength 469MPa Elongation at break 20% Table 2 - Chemical composition and mechanical properties of AA2024-T ) Welding conditions The original rolled sheets have been divided in plates with dimensions of 250mm x 100mm, and were welded parallel to the rolling direction in a conventional milling machine. For all the welds the rotation speed was 710rpm, travel speed of 224mm.min -1 and a tilt angle of 0.5º. The used tool was modular dual tool allowing different combinations of shoulders, pins and different pin lengths. The different tools, with the different pin lengths, used to do the welds are schemed in Table 3. Shoulder Pin FSW tool assembled Pin length Defect type produced Tool 1 3.8mm 0 3.6mm I 3.3mm II Tool 2 3.9mm III Table 3 The different tools, with the different pin lengths, used to produce the 4 different Defect Types For purposes of fast analyses in situ, and to minimize the possibility of deviations from the steady state, 50mm at the beginning and about 30mm at the end of the welding plates, were removed. From each welded plate, one tensile specimen, one bending specimen and four fatigue specimens were cut out. 2.3) Metallographic Analysis The metallographic analysis allows to characterize the influence of the welding process in the microstructure in the base material. Distribution of the precipitates in the different zones of the weld and the changes of grain size resulting from the FSW process are investigated. Cross sections of the welds perpendicular to the welding direction were prepared using a sequence of grit paper of 240, 320, 600, 800, 1000, 2400 and 4000 mesh, and then polished on a microcloth using a diamond suspension of 6µm

4 diamond. The specimens were etched using Keller s reagent, and after were washed in distilled water. Finally the specimens were observed using an Olympus CK40M optic microscope. 2.4) Fatigue Testing The fatigue tests were carried out in a servo-hydraulic testing machine Instron, model 8874 equipped with a load cell of 25kN. The weld was transverse to the stress axis in the S-N specimen. A sinusoidal load time function was used, with the stress ratio R of 0.1. Oscillation was set between 4 14 Hz. 3) Results 3.1) Microstructure In Figure 2 is possible to see the macrostructure of the FS weld joint. The microstructure of a joint welded by the FSW process normally is divided in four distinct zones: a) the dynamically recrystallized zone, also known as nugget; b) the thermo-mechanically affected zone (TMAZ); c) heat affected zone (HAZ); d) base material (BM). Figure 2 Macrograph of the cross section perpendicular to the welding direction of an etched Defect Type 0 specimen The weld nugget (in the middle of Figure 3) is characterized by a fine grain structure due to dynamic recrystallization. The TMAZ, in Figure 3, is the zone in the transition between the weld nugget and the HAZ. This zone is characterized by a highly plastic deformed grain structure due to the FSW tool. In this zone the heat and the mechanical deformation were not enough to dynamically recrystalize the grain structure, originating elongated grains around the weld nugget. The HAZ, in Figure 4, extends approximately to the shoulder diameter for friction stir welds. The HAZ is similar to heat affected zone resulting from conventional fusion welding processes and is characterized by no material flow and relatively low temperatures as compared to the weld nugget during welding. Depending on the base material, its initial heat treatment, and the proximity to the centerline, precipitate coarsening, precipitate dissolution, recovery, recrystallization or grain growth can occur in the HAZ. Finally the BM shown in Figure 5 is the zone in which is contained the unaffected material that is remote from the weld and although it may have experienced a thermal cycle from the process, this has little effect on microstructure or mechanical properties. Figure 3 Microstructure of the TMAZ and weld nugget of the AA2024 T351 welds

5 Figure 4 Microstructure of the HAZ of the AA2024 T351 welds Figure 5 Microstructure of the BM zone of the AA2024 T351 welds In the figure 6 it can be seen micrographs of all the Defect Types studied in this work. In the Defect Type I, Figure 6.a), is possible to see some oxide layers (in a darker tone), as it was expected. The Defect Type II micrographs, Figure 6.a) and 6.b), show a weld nugget with a smaller height, not enclosing all the thickness of the plates, and are encircled by a similar granular structure to the TMAZ, due to plastic deformation that was induced to the material under the pin. The height of this defect has an average height of 0.4mm. In this Defect Type a zone is distinguished easily where the parts only are strongly leaned, with the surface of interface slightly deformed and another zone slightly deformed, where although already exists linking, the oxides have not been destroyed. The Defects Type III, Figure 6.d) and 6.e), appears in the advancing side, under the weld nugget, next to the border with the TMAZ. This zone has a clear influence of the pin in the stirred material. The nugget form is also different in this type of defect, because of the form of the pin that was different in this Defect type. Figure 6 Different types of defects studied: a) Defect Type I; b) Defect Type II; c) Defect Type II; d) Defect Type III; e) Defect Type III

6 3.2) Hardness Vickers hardness tests were performed in order to obtain important information about the mechanical properties along the welded zone. The measures were done with an indentation load of 0.5kg, in a specimen used for metallographic analysis, along the center of the welding, and 0.5mm from the top and the base of the welded specimen. The results are presented in Figure 7. Figure 7 Vickers hardness tests in the centre, top and base of the welds From the results obtained the following comments can be done: The BM hardness is higher in the base and top, with a medium value of 150HV, than in the centre with a medium value of 140 HV, due to the higher deformation induced by the rolling process, being higher than any welding zone; The lowest hardness is located in the retreating side, in the TMAZ to HAZ interface, because it is the hottest zone without dynamic recrystallization or grain deformation; The highest values of hardness, in the weld nugget, are found in the base and top. 3.3) Tensile and Bending Tests In order to analyze the results of tensile and bending tests, two analyses criteria s were used for each one of the tests. For the tensile tests EGRET (eficiência global de resistência estática à tracção) that means global efficiency to tensile static resistance, and EGREF (eficiência global de resistência estática á flexão) which means global efficiency to bending static resistance. For the tensile tests: Ei; σ 0,2i; σmáxi; Ai; Teni Mechanical properties of the welded joint i (respectively Young Modulus, Yield Strength, Ultimate strength, Elongation at break and Toughness ); EMB; σ 0,2MB; σmáxmb; AMB; TenMB Mechanical properties of the BM;

7 CE; Cσ 0,2; Cσ máx; CA; CTen Constants corresponding to the ponderation coeficients atributted to each one of the five mechanical properties in the EGRET factor with the values of respectively 0.05, 0.28,0.33, 0.11 and The results are schemed in Figure 8.a). For the bending tests: Fi; εi; Ei Mechanical properties of the welded joint I (respectively maximum load, dislocation at maximum load and Energy absorbed at break); FMB, εmb e EMB Mechanical properties of the BM; CF, Cε e CE Constants corresponding to the ponderation coeficients atributted to each one of the five mechanical properties in the EGREF factor with the values of respectively 0.25, 0.25 and 0.5. The results are schemed in Figure 8.b). 3.4) Fatigue Figure 8 EGRET and EGREF factors for tensile and bending tests respectively Figure 9 Fatigue resistance for BM and the 4 defect type conditions. a) S-N curve; b) Number of cycles efficiency relatively to the BM performance

8 From the analysis of the fatigue results, shown in Figure 9.a), is possible to see the good quality of the welds without defects, with a fatigue behavior near from the one of the BM. In the welded specimens with root defects, defect type I and defect type II, show a higher loss of fatigue resistance, being the defect type II, the one whose has worst fatigue properties. In the defect type III, the void defect, the gravity of this defect on the loss of properties over fatigue loading, is lesser than the root defects as it can be seen by the S-N curve. In the Figure 9.b) it is possible to see the efficiency in number of cycles relatively to the BM, and the performance of all the type of welds has bad results in high stress amplitudes. In all the welds the results get better when the stress amplitude became smaller. In the case of welds with defect type 0 the efficiency is higher than one in when the stress amplitudes has values smaller than 70MPa. 3.5) Fractography Analyzing the fracture zone of the welds, not all of them fractured in the same zone. The welds with defect type 0 fractured over the HAZ in the advancing side, the defect type I and II fractured in the weld root over the HAZ and the welds with defect type III fractured in the HAZ, in the defect, over the advancing side. The crack initiated, in the defective welds type 0, in multiple zones over the striates in the top of the weld, left by the tool and propagated over the HAZ. In the defective welds type I and II, the crack initiated in the weld root and propagated over the nugget. Finally, in the defective welds type III, the crack initiated over the defect in the advancing side and propagated over two directions (root and top) in the HAZ. In figure 10.a) is shown the typical cleavage plans in the vicinity of the top surface where the crack was initiated. It s possible to see to that there should be various nucleation sites over the fracture zone. In the Figure 10.b) is shown the zone of ductile fracture with typical dimple characteristic. There are no second phase particles visible in this zone, because the fracture happened in the HAZ, and in this zone might have happened precipitate coalescence due to high temperatures reached. Figure 10 SEM fractography of defect type 0: a) Localization of cleavage plans in the vicinity of the striates; b) Zone of final rupture In Figure 11.a) are shown the defect type I, and in Figure 12.a) the defect type II, in their crack initiation and propagation zone. It is possible to see the higher length of the root defect type II. In Figures 11.b) and 12.b) is shown the zone of ductile fracture.

9 In figure 13.a) is shown the nucleation site, which is the internal void. Figure 13.a) also shows the deformation pattern in the vicinity of the internal void of the specimens with defect type III. The ductile fracture zone, shown in Figure 13.b) is similar to the one of defect type 0. Figure 11 SEM fractography of defect type I illustrating: a) Localization of cleavage plans in the vicinity of the defect; b) Zone of final rupture Figure 12 - SEM fractography of defect type II illustrating: a) Localization of cleavage plans in the vicinity of the defect; b) Zone of final rupture Figure 13 SEM fractography of defect type III illustrating: a) Localization of cleavage plans in the vicinity of the defect; b) detail of a); c) Zone of final rupture

10 4) Conclusions The fatigue and mechanical properties of the friction stir welded joints, with and without defects and base material AA2024-T351 alloy were investigated. The following conclusions can be drawn: The several defects have a considerable effect in the mechanical properties of the welds, affecting the performance of those, in tensile and bending tests. This effect was higher in root defects (defect type I and II), than in defect type III. This defect seems not to play a major role in static tests; The welds have hardness values smaller than the BM (135 HV 155HV). The smaller value is found in the interface between the TMAZ and HAZ (123HV) in the retreating side. This is the zone where the specimens break in the tensile and bending tests, in welds with defect type 0 (no defects). The weld nugget has values smaller than the BM but higher than the TMAZ and HAZ (130HV 144HV); Over fatigue loading all the defect types play a major role in the weld performance. The BM has the better fatigue resistance, followed by defect type 0. The other types of defects lead to a decrease of resistance. In the end all the different material and defective conditions are ordered in decrescendo order of the level obtained for all the mechanical properties that were studied: 1. Base material 2. Welded joints without defects 3. Welded joints with internal defects (voids) 4. Weld joints with root defect of particles and oxides alignment 5. Welded joints with root defect (kissing-bond) 5) References [1] Vasco Godinho, Rudolf Zettler, Silvia Lomolino, Friction stir weld zone evaluation by image analysing techniques, Outubro de 2003; [2] VILAÇA, P.; Fundamentos do Processos de Soldadura por Fricção Linear: Análise Experimental e Modelação Analítica, PhD Thesis, IST, 2003; [3] Shusheng Di, Xinqi Yang, Guohong Luanb, Bo Jian; Comparative study on fatigue properties between AA2024-T4 friction stir welds and base materials; China;2006; [4] M. Ericsson, R. Sandstro m; Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG; Department of Materials Science and Engineering and Brinell Centre, Royal Institute of Technology (KTH), Sweden; 2002; [5] Caizhi Zhou, Xinqi Yang, Guohong Luan; Effect of oxide array on the fatigue property of friction stir welds; School of Materials Science and Engineering, Tianjin University, China; 2005; [6] Santos, Telmo; Vilaça, P; Quintino L. ; Freitas M. ; Advances in NDT techniques for friction stir welding; IDMEC, IST, Technical University of Lisbon, Lisboa, Portugal; [7] Vilaça, P; Pépe, Nuno; Quintino L. ; Metallurgical and corrosion features of friction stir welding of AA5083-H111; IST, Technical University of Lisbon, Lisboa, Portugal;

11

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

Evolution of Microstructure and Hardness of Aluminium 6061 after Friction Stir Welding

Evolution of Microstructure and Hardness of Aluminium 6061 after Friction Stir Welding International Journal of Theoretical and Applied Mechanics. ISSN 0973-6085 Volume 12, Number 3 (2017) pp. 405-410 Research India Publications http://www.ripublication.com Evolution of Microstructure and

More information

The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints

The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints Surface Effects and Contact Mechanics IX 183 The effect of Friction Stir Processing on the fatigue life of MIG-Laser hybrid welded joints as compared to conventional FSW 6082-T6 aluminium joints A. Els-Botes,

More information

Microstructure and Mechanical properties of friction stir welded joints in 7A60-T6 super high-strength aluminum alloy

Microstructure and Mechanical properties of friction stir welded joints in 7A60-T6 super high-strength aluminum alloy Microstructure and Mechanical properties of friction stir welded joints in 7A60-T6 super high-strength aluminum alloy DONG Jihong, DONGchunlin, MENG Qiang, LUAN Guohong China FSW center, Bei Jing,China

More information

Evaluation of Mechanical Behaviour of Friction Stir Processing of AA6061

Evaluation of Mechanical Behaviour of Friction Stir Processing of AA6061 Evaluation of Mechanical Behaviour of Friction Stir Processing of AA6061 Ranjeet Singh Yadav 1, Mr. Rajesh 2, Narender Kaushik 3 1 M.Tech Research Scholar, (M&A), UIET, MDU, Rohtak 2 Assistant Professor,

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Vidal, Catarina; Infante, Virgínia;

More information

Friction Stir Welding of AA2024-T3 plate the influence of different pin types

Friction Stir Welding of AA2024-T3 plate the influence of different pin types Mech. Sci., 6, 5155, 2015 doi:10.5194/ms-6-51-2015 Author(s) 2015. CC Attribution 3.0 License. Friction Stir Welding of AA2024-T3 plate the influence of different pin types D. Trimble, H. Mitrogiannopoulos,

More information

MICROSTRUCTURE AND PROPERTIES OF FRICTION STIR WELDED ALUMINIUM ALLOYS. Vladvoj Očenášek a, Margarita Slámová a Jorge F. dos Santos b Pedro Vilaça c

MICROSTRUCTURE AND PROPERTIES OF FRICTION STIR WELDED ALUMINIUM ALLOYS. Vladvoj Očenášek a, Margarita Slámová a Jorge F. dos Santos b Pedro Vilaça c MICROSTRUCTURE AND PROPERTIES OF FRICTION STIR WELDED ALUMINIUM ALLOYS Vladvoj Očenášek a, Margarita Slámová a Jorge F. dos Santos b Pedro Vilaça c a VÚK Panenské Břežany,s.r.o., Panenské Břežany 50, 250

More information

Impact Toughness of Weldments in Al Mg Si Alloys

Impact Toughness of Weldments in Al Mg Si Alloys Materials Transactions, Vol. 43, No. 6 (2002) pp. 1381 to 1389 c 2002 The Japan Institute of Metals Impact Toughness of Weldments in Al Mg Si Alloys Victor Alexandru Mosneaga, Tohru Mizutani, Toshiro Kobayashi

More information

EFFECT OF PROCESS PARAMETERS IN FRICTION STIR WELDING OF DISSIMILAR ALUMINIUM ALLOYS

EFFECT OF PROCESS PARAMETERS IN FRICTION STIR WELDING OF DISSIMILAR ALUMINIUM ALLOYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 1078 1089, Article ID: IJMET_09_12_108 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=12

More information

The influence of small voids on the fatigue strength of friction stir welds in the aluminium alloy AA6061-T6

The influence of small voids on the fatigue strength of friction stir welds in the aluminium alloy AA6061-T6 The influence of small voids on the fatigue strength of friction stir welds in the aluminium alloy AA6061-T6 S. Kahl Sapa Technology, Finspong, Sweden Flat rectangular profiles of the aluminium alloy AA6061-T6

More information

INVESTIGATION OF LAZY S FEATURE IN SELF-REACTING TOOL FRICTION STIR WELDS

INVESTIGATION OF LAZY S FEATURE IN SELF-REACTING TOOL FRICTION STIR WELDS INVESTIGATION OF LAZY S FEATURE IN SELF-REACTING TOOL FRICTION STIR WELDS Karl Warsinski 1, Michael West 2, Jim Freeman 3, Todd Curtis 2 1 Department of Materials Science and Engineering Michigan Technological

More information

Research on the FSW of Thick Aluminium

Research on the FSW of Thick Aluminium Research on the FSW of Thick Aluminium Peng Chai, Guohong Luan, Xiaojuan Guo, Shan Wang China FSW Center Beijing FSW Technology Co., Ltd Tel: +86-10-85702230, Fax: +86-10-85702187 Email: chaipeng@cfswt.com,

More information

Effects of Laser Peening, and Shot Peening on Friction Stir Welding

Effects of Laser Peening, and Shot Peening on Friction Stir Welding Effects of Laser Peening, and Shot Peening on Friction Stir Welding Omar Hatamleh, PhD omar.hatamleh1@.hatamleh1@jsc.nasa.gov Structural Engineering Division NASA Johnson Space Center Lloyd Hackel, Jon

More information

Metallurgy and Friction Stir Welding. Anne Denquin Onera, Châtillon, France Department of Metallic Structures and Materials

Metallurgy and Friction Stir Welding. Anne Denquin Onera, Châtillon, France Department of Metallic Structures and Materials Metallurgy and Friction Stir Welding Anne Denquin Onera, Châtillon, France Department of Metallic Structures and Materials Basics of the FSW Process Typical temperature domain for Al alloys : 200 C ()

More information

L.V. Kamble 1, S.N. Soman 2, P.K. Brahmankar 3

L.V. Kamble 1, S.N. Soman 2, P.K. Brahmankar 3 IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN(e) : 2278-1684, ISSN(p) : 2320 334X, PP : 30-35 www.iosrjournals.org Effect of Tool Design and Process Variables on Mechanical Properties

More information

Microstructural And Mechanical Properties Of Friction Stir Welded Aluminium Alloy

Microstructural And Mechanical Properties Of Friction Stir Welded Aluminium Alloy Microstructural And Mechanical Properties Of Friction Stir ed Aluminium Alloy International Journal of Engineering Research & Technology (IJERT) 1 Rohit Kumar*, 2 Ratnesh Kumar Raj Singh, 3 Dr. A K Bajpai

More information

Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain

Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain Characterization of Titanium Alloy Friction Stir Butt-Welds TIMET 54M, ATI 425 and BOATI Standard Grain A. Cantrell, K. Gangwar, and M. Ramulu University of Washington Dan Sanders The Boeing Company 7th

More information

Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy

Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy 614 J. Mater. Sci. Technol., Vol.23 No.5, 2007 Effect of Low Feed Rate FSP on Microstructure and Mechanical Properties of Extruded Cast 2285 Aluminum Alloy L.Karthikeyan 1), V.S.Senthilkumar 2), D.Viswanathan

More information

*Corresponding author. Keywords: Aluminum alloy, Friction stir welding, Mechanical properties, Heat treatment.

*Corresponding author. Keywords: Aluminum alloy, Friction stir welding, Mechanical properties, Heat treatment. 2017 International Conference on Applied Mechanics and Mechanical Automation (AMMA 2017) ISBN: 978-1-60595-471-4 Microstructure and Mechanical Properties of 2219-T Aluminum Alloy Welded by Friction Stir

More information

STUDY OF PROCESS PARAMETERS IN FRICTION STIR WELDING OF DISSIMILAR ALUMINIUM ALLOYS

STUDY OF PROCESS PARAMETERS IN FRICTION STIR WELDING OF DISSIMILAR ALUMINIUM ALLOYS Proceedings of the 2011 International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia, January 22 24, 2011 STUDY OF PROCESS PARAMETERS IN FRICTION STIR WELDING OF

More information

Effect of process parameters on friction stir welding of dissimilar Aluminium Alloy

Effect of process parameters on friction stir welding of dissimilar Aluminium Alloy Effect of process parameters on friction stir welding of dissimilar Aluminium Alloy K.Satheesh kumar 1 G.Rajamurugan 2 P.Manikkavasagan 3 1,2,3 Mechanical, Bannari Amman Institute Of Technology/Anna University,India

More information

THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY

THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY Journal of KONES Powertrain and Transport, Vol. 24, No. 2 2017 THE APPLICATION OF FRICTION STIR WELDING (FSW) OF ALUMINIUM ALLOYS IN SHIPBUILDING AND RAILWAY INDUSTRY Grzegorz Gesella, Mirosław Czechowski

More information

Microstructure of Friction Stir Welded 6061 Aluminum Alloy

Microstructure of Friction Stir Welded 6061 Aluminum Alloy Proceedings of the 9 th International Conference on Aluminium Alloys (2004) Edited by J.F. Nie, A.J. Morton and B.C. Muddle Institute of Materials Engineering Australasia Ltd 878 Microstructure of Friction

More information

Available online at Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010

Available online at  Fatigue Received 4 March 2010; revised 9 March 2010; accepted 15 March 2010 Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 2 (2010) 00 (2009) 697 705 000 000 Procedia Engineering www.elsevier.com/locate/procedia Fatigue 2010 Fatigue behaviour

More information

Friction Stir Welding on Dissimilar Metals Aluminum 6061 & Pure Copper

Friction Stir Welding on Dissimilar Metals Aluminum 6061 & Pure Copper IJSRD National Conference on Recent Trends & Innovations in Mechanical Engineering April 2016 ISSN(online): 2321-0613 Friction Stir Welding on Dissimilar Metals Aluminum 6061 & Pure Copper Balram Yelamasetti

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 04, April -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 LOW CYCLE

More information

ELK Asia Pacific Journals Special Issue ISBN: Gaurav Kumar Dhuria. D.A.V.I.E.T. Jalandhar

ELK Asia Pacific Journals Special Issue ISBN: Gaurav Kumar Dhuria. D.A.V.I.E.T. Jalandhar INVESTIGATION OF EFFECT OF PROCE PARAMETERS ON MICROHARDNE IN FRICTION STIR WELDED DIIMILAR ALUMINIUM ALLOYS AA2014- AND AA7075- Sarpreet Singh* Department of Mechanical Engineering, D.A.V.I.E.T. Jalandhar

More information

Investigation of the Effect of Friction Stir Spot Welding of BH Galvanized Steel Plates on Process Parameters and Weld Mechanical Properties

Investigation of the Effect of Friction Stir Spot Welding of BH Galvanized Steel Plates on Process Parameters and Weld Mechanical Properties Engineering, Technology & Applied Science Research Vol., No. 5, 0, -5 Investigation of the Effect of Friction Stir Spot Welding of BH Galvanized Steel Plates on Process Parameters and Weld Mechanical Properties

More information

Effect of Rotational Speed on Joint Integrity of Friction Stir Lap Welded Aluminium

Effect of Rotational Speed on Joint Integrity of Friction Stir Lap Welded Aluminium , June 29 - July 1, 2016, London, U.K. Effect of Rotational Speed on Joint Integrity of Friction Stir Lap Welded Aluminium Esther T. Akinlabi, Member, IAENG and Stephen A. Akinlabi, Member, IAENG Abstract

More information

Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082 AA6061 in T 6 condition produced by FSW

Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082 AA6061 in T 6 condition produced by FSW H.S. Patil et alii, Frattura ed Integrità Strutturale, 24 (2013) 151-160; DOI: 10.3221/IGF-ESIS.24.16 Effect of weld parameter on mechanical and metallurgical properties of dissimilar joints AA6082 AA6061

More information

Comparison of Resistance Spot Welding and Refill Friction Stir Welding of Al 7075 Sheets. Jeff Hou

Comparison of Resistance Spot Welding and Refill Friction Stir Welding of Al 7075 Sheets. Jeff Hou Comparison of Resistance Spot Welding and Refill Friction Stir Welding of Al 7075 Sheets Jeff Hou Z.Shen, Y. Chen, N. Zhou, M. Worswick, A. Gerlich, K. Chan, N. Scotchmer 1 Friction Stir Welding (FSW)

More information

Kamarapu Santhosh and Aruri Devaraju Department of Mechanical Engineering, S R Engineering College, Warangal, Telangana State, India

Kamarapu Santhosh and Aruri Devaraju Department of Mechanical Engineering, S R Engineering College, Warangal, Telangana State, India International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 165 172, Article ID: IJMET_08_11_019 Available online at http:// http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

The Effect of the Cutting Depth of the Tool Friction Stir Process on the Mechanical Properties and Microstructures of Aluminium Alloy 6061-T6

The Effect of the Cutting Depth of the Tool Friction Stir Process on the Mechanical Properties and Microstructures of Aluminium Alloy 6061-T6 American Journal of Mechanics and Applications 2015; 3(5): 33-41 Published online January 25, 2016 (http://www.sciencepublishinggroup.com/j/ajma) doi: 10.11648/j.ajma.20150305.11 ISSN: 2376-6115 (Print);

More information

Cavitation in Friction Stir Processing of Al-ZnMg-Cu Alloy

Cavitation in Friction Stir Processing of Al-ZnMg-Cu Alloy International Journal of Mechanical Engineering and Robotics Research Vol. 5, No. 4, October 2016 Cavitation in Friction Stir Processing of Al-ZnMg-Cu Alloy Vivek V. Patel, Vishvesh J. Badheka, and Abhishek

More information

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Materials Transactions, Vol. 50, No. 7 (2009) pp. 1832 to 1837 #2009 The Japan Institute of Metals Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600 Kuk Hyun

More information

IMPACT OF COOLING PROCESS ON FSWED OF 6061 T6 ALUMINUM ALLOYS WITH CHANGING TOOL GEOMETRY

IMPACT OF COOLING PROCESS ON FSWED OF 6061 T6 ALUMINUM ALLOYS WITH CHANGING TOOL GEOMETRY International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 1600 1607, Article ID: IJMET_09_11_165 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

The Influences of the Friction Stir Welding on the Microstructure and Hardness of Aluminum 6063 and 7075

The Influences of the Friction Stir Welding on the Microstructure and Hardness of Aluminum 6063 and 7075 2011 International Conference on Advanced Materials Engineering IPCSIT vol.15 (2011) (2011) IACSIT Press, Singapore The Influences of the Friction Stir Welding on the Microstructure and Hardness of Aluminum

More information

Friction Stir Processing of Aluminum alloys for Defense Applications

Friction Stir Processing of Aluminum alloys for Defense Applications Friction Stir Processing of Aluminum alloys for Defense Applications V. Jeganathan Arulmoni, R. S. Mishra Department of Mechanical & Production Engineering, Delhi Technological University, New Delhi, India

More information

Mechanical and Microstructure properties analysis of Friction Stir Welded Similar and Dissimilar Mg alloy joints

Mechanical and Microstructure properties analysis of Friction Stir Welded Similar and Dissimilar Mg alloy joints International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2018 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Mechanical

More information

PROPERTIES OF AW 5059 ALUMINIUM ALLOY JOINTS WELDED BY MIG AND FRICTION STIR WELDING (FSW)

PROPERTIES OF AW 5059 ALUMINIUM ALLOY JOINTS WELDED BY MIG AND FRICTION STIR WELDING (FSW) Journal of KONES Powertrain and Transport, Vol. 20, No. 3 2013 PROPERTIES OF AW 5059 ALUMINIUM ALLOY JOINTS WELDED BY MIG AND FRICTION STIR WELDING (FSW) Miros aw Czechowski Gdynia Maritime University

More information

EFFECTS OF FILLER WIRE AND CURRENT ON THE JOINING CHARACTERISTICS OF Al Li Cu ALLOY USING TIG WELDING

EFFECTS OF FILLER WIRE AND CURRENT ON THE JOINING CHARACTERISTICS OF Al Li Cu ALLOY USING TIG WELDING EFFECTS OF FILLER WIRE AND CURRENT ON THE JOINING CHARACTERISTICS OF Al Li Cu ALLOY USING TIG WELDING A. Chennakesava Reddy Professor & Head Department of Mechanical Engineering, JNTU College of Engineering

More information

Microstructure Evolution During Friction Stir Processing of Aluminum Cast Alloys

Microstructure Evolution During Friction Stir Processing of Aluminum Cast Alloys Microstructure Evolution During Friction Stir Processing of Aluminum Cast Alloys Research Team: Ning Sun Diran Apelian INTRODUCTION Friction Stir Processing (FSP) is a recent outgrowth of the Friction

More information

Ageing Behavior of Friction Stir Welding AA7075-T6 Aluminum Alloy

Ageing Behavior of Friction Stir Welding AA7075-T6 Aluminum Alloy Ageing Behavior of Friction Stir Welding AA7075-T6 Aluminum Alloy T. AZIMZADEGAN*, GH.KHALAJ*, M.M. KAYKHA**, A.R.HEIDARI*** *Department of Materials Science and Engineering, Saveh branch, Islamic Azad

More information

FRICTION STIR WELDING PROCESS PARAMETERS FOR JOINING DISSIMILAR ALUMINUM ALLOYS

FRICTION STIR WELDING PROCESS PARAMETERS FOR JOINING DISSIMILAR ALUMINUM ALLOYS International Journal Journal of Mechanical of Mechanical Engineering Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online)

More information

ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS. Stefano ARGENTERO

ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS. Stefano ARGENTERO Abstract ACCUMULATIVE ROLL BONDING TECHNOLOGY OF ALUMINUM ALLOYS Stefano ARGENTERO Centro Sviluppo Materiali S.p.A., Via di Castel Romano 100, s.argentero@c-s-m.it The Accumulative Roll Bonding (ARB) is

More information

MICROSTRUCTURAL BEHAVIOUR AND MECHANICAL PROPERTIES OF WALKING FRICTION STIR SPOT WELDING OF COMMERCIAL PURE MAGNESIUM

MICROSTRUCTURAL BEHAVIOUR AND MECHANICAL PROPERTIES OF WALKING FRICTION STIR SPOT WELDING OF COMMERCIAL PURE MAGNESIUM International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 8, August 2017, pp. 1238 1246, Article ID: IJMET_08_08_124 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=8

More information

Available online at ScienceDirect. Procedia Engineering 81 (2014 )

Available online at   ScienceDirect. Procedia Engineering 81 (2014 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 598 603 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

Influence of Friction Stir Welding Parameters on Mechanical Properties of T6 Aluminum Alloy.

Influence of Friction Stir Welding Parameters on Mechanical Properties of T6 Aluminum Alloy. RESEARCH AND REVIEWS: JOURNAL OF ENGINEERING AND TECHNOLOGY Influence of Friction Stir Welding Parameters on Mechanical Properties of 661- T6 Aluminum Alloy. S Ugender *, A Kumar 1, and A Somi Reddy 2.

More information

Evaluation of microstructure and mechanical properties of friction stir welded copper / 316L stainless steel dissimilar metals

Evaluation of microstructure and mechanical properties of friction stir welded copper / 316L stainless steel dissimilar metals , pp.21-25 research note Evaluation of microstructure and mechanical properties of friction stir welded copper / 316L stainless steel dissimilar metals A. Najafkhani 1 *, K. Zangeneh-Madar 2 and H. Abbaszadeh

More information

The Effect of Arc Voltage and Welding Current on Mechanical and Microstructure Properties of 5083-Aluminium Alloy Joints used in Marine Applications

The Effect of Arc Voltage and Welding Current on Mechanical and Microstructure Properties of 5083-Aluminium Alloy Joints used in Marine Applications EP11 The Effect of Arc Voltage and Welding Current on Mechanical and Microstructure Properties of 5083-Aluminium Alloy Joints used in Marine Applications C.W. Mohd Noor 1, Khalid Samo 2, Nurazilla 3, M.

More information

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding

The effect of ER4043 and ER5356 filler metal on welded Al 7075 by metal inert gas welding This paper is part of the Proceedings of the 2 International Conference on nd High Performance and Optimum Design of Structures and Materials (HPSM 2016) www.witconferences.com The effect of ER4043 and

More information

STUDY ON DISSIMILAR ALUMINIUM ALLOYS OF AA7075 AND AA6061 USING FRICTION STIR WELDING

STUDY ON DISSIMILAR ALUMINIUM ALLOYS OF AA7075 AND AA6061 USING FRICTION STIR WELDING STUDY ON DISSIMILAR ALUMINIUM ALLOYS OF AA7075 AND AA6061 USING FRICTION STIR WELDING N. A. A. Satharil,*a, A. R. Raza1il*b, M. Ishakl*c and L.H. Shahl*d 'Faculty of Mechanical Engineering, Universiti

More information

CHAPTER 4 MECHANICAL TESTING AND METALLURGICAL CHARACTERIZATION OF THE FRICTION WELDED JOINTS

CHAPTER 4 MECHANICAL TESTING AND METALLURGICAL CHARACTERIZATION OF THE FRICTION WELDED JOINTS 91 CHAPTER 4 MECHANICAL TESTING AND METALLURGICAL CHARACTERIZATION OF THE FRICTION WELDED JOINTS 4.1 INTRODUCTION As the welded joints find applications in critical components (whose failure results could

More information

Metallurigical and Materials Engineering Department, National Institute of Technology, Tiruchirappalli, India

Metallurigical and Materials Engineering Department, National Institute of Technology, Tiruchirappalli, India More Info at Open Access Database www.ndt.net/?id=15212 Non-Destructive Evaluation Of Aluminum A6061-T6 Welds Produced by Friction Stir spot Welding Y.V.V.M. Mohana Rao 1, V.Kalyanavalli 1, D.Sastikumar

More information

Mechanical Behavior of Silicon Carbide Reinforced Friction Stir Welded Joint of Aluminium Alloy 6061

Mechanical Behavior of Silicon Carbide Reinforced Friction Stir Welded Joint of Aluminium Alloy 6061 Mechanical Behavior of Silicon Carbide Reinforced Friction Stir Welded Joint of Aluminium Alloy 661 Md. Aleem Pasha *1, Ph. D Scholar, Mechanical Engineering Department, Osmania University, Hyderabad,

More information

Microstructure Characterization of Friction Stir Welded Aluminum Alloy 7050

Microstructure Characterization of Friction Stir Welded Aluminum Alloy 7050 Microstructure Characterization of Friction Stir Welded Aluminum Alloy 7050 T. W. Nelson 1, J.Q. Su 1, R.J. Steel 1 M.W. Mahoney 2 R.S. Mishra 3 1 Department of Mechanical Engineering, Brigham Young University,

More information

Numerical Modeling of Microstructure of Heat Affected Zone in Friction Stir Welded AA7075

Numerical Modeling of Microstructure of Heat Affected Zone in Friction Stir Welded AA7075 SCIREA Journal of Materials Science http://www.scirea.org/journal/materials October 17, 201 Volume 1, Issue1, October 2016 Numerical Modeling of Microstructure of Heat Affected Zone in Friction Stir Welded

More information

Tensile Strength and Microhardness Behavior of Friction Stir Welded Joints of Magnesium AZ31B-O Alloy

Tensile Strength and Microhardness Behavior of Friction Stir Welded Joints of Magnesium AZ31B-O Alloy Volume7, Issue2, MarchApril 2017 International Journal of Engineering and Management Research Page Number: 328332 Tensile Strength and Microhardness Behavior of Friction Stir Welded Joints of Magnesium

More information

INFLUENCE OF SPINDLE SPEED AND WELDING SPEED ON MECHANICAL PROPERTIES OF FRICTION STIR WELDING

INFLUENCE OF SPINDLE SPEED AND WELDING SPEED ON MECHANICAL PROPERTIES OF FRICTION STIR WELDING International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 11, November 2018, pp. 802 809, Article ID: IJMET_09_11_081 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=11

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ALUMINIUM ALLOYS Aluminium and its alloys offer an extremely wide range of capability and applicability, with a unique combination of advantages that make the material of choice

More information

Macro and Micro Structural Characteristics of Dissimilar Friction Stir Welded AA7075 T651- AA6061 T651 Butt Joint

Macro and Micro Structural Characteristics of Dissimilar Friction Stir Welded AA7075 T651- AA6061 T651 Butt Joint , July 3-5, 2013, London, U.K. Macro and Micro Structural Characteristics of Dissimilar Friction Stir Welded AA7075 T651- AA6061 T651 Butt Joint S.Ravikumar, Member, IAENG, V.Seshagiri Rao, R.V.Pranesh,

More information

OPTIMIZATION OF PROCESS PARAMETERS OF FRICTION STIR WELDED JOINT BY USING TAGUCHI METHOD

OPTIMIZATION OF PROCESS PARAMETERS OF FRICTION STIR WELDED JOINT BY USING TAGUCHI METHOD OPTIMIZATION OF PROCESS PARAMETERS OF FRICTION STIR WELDED JOINT BY USING TAGUCHI METHOD Vanita S.Thete Department o Mechanical Engg,, S.V.I.T COE,Nashik Prakash. N. Wakchaure Department o Mechanical Engg,,

More information

Effect of tool pin offset on the Mechanical properties of dissimilar materials based on Friction Stir Welding (FSW)

Effect of tool pin offset on the Mechanical properties of dissimilar materials based on Friction Stir Welding (FSW) Effect of tool pin offset on the Mechanical properties of dissimilar materials based on Friction Stir Welding (FSW) SATYAVEER SINGH 1 And MOHD MAHMEEN 2 1,2 Assistant Professor Department of Mechanical

More information

Effect of cooling and its lack on hardness and tensile strength in 2024 aluminum alloy FSW welding process

Effect of cooling and its lack on hardness and tensile strength in 2024 aluminum alloy FSW welding process Bulletin of Environment, Pharmacology and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 2015: 324-331 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2017 June 11(8): pages 239-249 Open Access Journal Statistical study

More information

Influence of Friction Stir Welding Parameter on Mechanical Properties in Dissimilar (AA6063-AA8011) Aluminium Alloys

Influence of Friction Stir Welding Parameter on Mechanical Properties in Dissimilar (AA6063-AA8011) Aluminium Alloys Influence of Friction Stir Welding Parameter on Mechanical Properties in Dissimilar (AA6063-AA8011) Aluminium Alloys S.Kailainathan* 1, S.Kalyana Sundaram 2, K.Nijanthan 3 1,3 Assistant Professor, Department

More information

MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS

MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS 109 Chapter 5 MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS 5.1 INTRODUCTION The microstructural studies of friction welding helps in understanding microstructural changes occurred during friction

More information

A Study of Influence of Parameters of Dissimilar Materials Joining on Friction Stir Welding Process by Design of Experimental

A Study of Influence of Parameters of Dissimilar Materials Joining on Friction Stir Welding Process by Design of Experimental Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer, Thermal Engineering and Environment, Athens, Greece, August 25-27, 2007 129 A Study of Influence of Parameters of Dissimilar Materials

More information

Mechanical Properties Of Friction Stir Welded 6061 Aluminium Alloy

Mechanical Properties Of Friction Stir Welded 6061 Aluminium Alloy Mechanical Properties Of Friction Stir Welded 661 Aluminium Alloy Rohit Kumar, Ratnesh Kumar Raj Singh, Dr. A K Bajpai 1 M.Tech Student, Department Of Mechanical Engineering, Madan Mohan Malaviya Engineering

More information

EFFECT OF WELD PARAMETERS ON MECHANICAL PROPERTIES OF THE FRICTION STIR WELDING AA6063-T5

EFFECT OF WELD PARAMETERS ON MECHANICAL PROPERTIES OF THE FRICTION STIR WELDING AA6063-T5 EFFECT OF WELD PARAMETERS ON MECHANICAL PROPERTIES OF THE FRICTION STIR WELDING AA6063-T5 Tran Hung Tra Lecturer, Materials science Dept., Nha Trang University,Vietnam, Tel(+84) 935272168, Fax: (+84) 58

More information

Influence of the Tunnel Defect in Al 6061-T651 welded by FS on the Bending, Tensile, and Stress Concentration Factor

Influence of the Tunnel Defect in Al 6061-T651 welded by FS on the Bending, Tensile, and Stress Concentration Factor International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Influence

More information

THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG)

THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG) THE EFFECT OF FILLER ON WELD METAL STRUCTURE OF AA6061 ALUMINUM ALLOY BY TUNGSTEN INERT GAS (TIG) M. Ishak 1,2, A.S.K Razali 1, N.F.M Noordin 1, L.H.A Shah 1,2 and F.R.M Romlay 1,2 1 Manufacturing Focus

More information

FRICTION STIR OVERLAP WELDING OF 2124 ALUMINIUM PLATE

FRICTION STIR OVERLAP WELDING OF 2124 ALUMINIUM PLATE FRICTION STIR OVERLAP WELDING OF 2124 ALUMINIUM PLATE W. Van Haver 1, A. Geurten 2, B. de Meester 3 and J. Defrancq 4 1 Belgian Welding Institute, Belgium 2 CEWAC, Belgium 3 UCL-PRM, Belgium 4 Ghent University,

More information

Tensile Behaviour of Welded and Un-welded AA 6061 Alloy Sheet Comparing with Prediction Results

Tensile Behaviour of Welded and Un-welded AA 6061 Alloy Sheet Comparing with Prediction Results Research Article International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347-5161 214 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Tensile

More information

Investigation and Analysis of Metallurgical and Mechanical Properties of AA1100 using FSW

Investigation and Analysis of Metallurgical and Mechanical Properties of AA1100 using FSW Investigation and Analysis of Metallurgical and Mechanical Properties of using FSW P.Vijayasarathi 1 D.Christopher Selvam 2 1.Mechanical Department, Anna university Research scholar, Chennai, India 2.Asst.

More information

(Received December 6, 2006)

(Received December 6, 2006) 研究論文 Mechanical Properties of Aluminum-Based Dissimilar Alloy Joints by Power Beams, Arc and Processes Michinori OKUBO*, Tomokuni KON** and Nobuyuki ABE*** (Received December 6, 6) Dissimilar smart joints

More information

Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding

Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding Materials Transactions, Vol. 46, No. 4 (2005) pp. 835 to 841 #2005 The Japan Institute of Metals Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding Kittipong Kimapong* and Takehiko

More information

IMPROVEMENT OF FRICTION SPOT WELDING PROCESS

IMPROVEMENT OF FRICTION SPOT WELDING PROCESS 192 Chapter-9 IMPROVEMENT OF FRICTION SPOT WELDING PROCESS 9.1 INTRODUCTION The aerospace and automotive are continuously exploring opportunities to reduce the weight by replacing conventional materials

More information

Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum

Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure Aluminum INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 12, DECEMBER 2013 ISSN 2277-8616 Effect Of Friction Stir Processing On Mechanical Properties And Microstructure Of The Cast Pure

More information

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment.

Keywords: Haynes 214, Nickel based super alloy, Gas tungsten arc welding, Post-weld heat treatment. Advanced Materials Research Vol. 585 (2012) pp 435-439 Online available since 2012/Nov/12 at www.scientific.net (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.585.435 Effect

More information

Experimental Analysis, Defect Evaluation and Computational Developments of FSW

Experimental Analysis, Defect Evaluation and Computational Developments of FSW Experimental Analysis, Defect Evaluation and Computational Developments of FSW by Pedro Vilaça*, Telmo Santos**, Luísa Quintino*** pedro.vilaca@ist.utl.pt lquintino@ist.utl.pt *Assistant Professor, **PhD

More information

Mechanical Properties Related to Microstructural Variation of 6061 Al Alloy Joints by Friction Stir Welding

Mechanical Properties Related to Microstructural Variation of 6061 Al Alloy Joints by Friction Stir Welding Materials Transactions, Vol. 45, No. 5 (2004) pp. 1700 to 1705 #2004 The Japan Institute of Metals Mechanical Properties Related to Microstructural Variation of 6061 Al Alloy Joints by Friction Stir Welding

More information

Microstructure and Mechanical Properties of Multi Pass Friction Stirred Processed Aluminium Silicon Carbide Metal Matrix

Microstructure and Mechanical Properties of Multi Pass Friction Stirred Processed Aluminium Silicon Carbide Metal Matrix 2015 IJSRSET Volume 1 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Microstructure and Mechanical Properties of Multi Pass Friction Stirred Processed

More information

JOINING THE DIFFERENT MATERIALS USING FRICTION WELDING A REVIEW

JOINING THE DIFFERENT MATERIALS USING FRICTION WELDING A REVIEW Int. J. Mech. Eng. & Rob. Res. 2015 S R Divagar and M Muthu Kumaran, 2015 Review Article ISSN 2278 0149 www.ijmerr.com Vol. 4, No. 1, January 2015 2015 IJMERR. All Rights Reserved JOINING THE DIFFERENT

More information

Friction Stir Welding of Ferritic Steel

Friction Stir Welding of Ferritic Steel Friction Stir Welding of Ferritic Steel T.W. Nelson and J.Q. Su Department of Mechanical Engineering Brigham Young University Provo, UT R.J. Steel MegaStir Technologies Provo, UT Acknowledgements The authors

More information

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT A. Approved for public release; distribution unlimited. 2018 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM MATERIALS & ADVANCE MANUFACTURING (M&AM) TECHNICAL SESSION AUGUST 7-9, 2018 - NOVI, MICHIGAN DISSIMILAR FRICTION STIR WELDING OF A

More information

Friction stir welding of automotive aluminium alloys

Friction stir welding of automotive aluminium alloys Página Web 1 de 3 http://www.scopus.com.scopeesprx.elsevier.com/scopus/record/display.url?view=basic&... 12/07/2008 Register Login Live Chat Help Scopus Labs Quick Search Welding in the World Volume 51,

More information

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS CHAPTER-4 EXPERIMENTAL DETAILS 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS Hot rolled plates of 90/10 and 70/30 Cu-Ni alloys of 5 mm thickness were selected as test

More information

Microstructural and mechanical properties of aluminium alloys joint fabricated by friction stir welding

Microstructural and mechanical properties of aluminium alloys joint fabricated by friction stir welding Microstructural and mechanical properties of aluminium alloys joint fabricated by friction stir welding Celina Ziejewska 1, Przemysław Nosal 2, Marek Hebda 1 * 1 Institute of Materials Engineering, Faculty

More information

Enhancements of mechanical properties of friction stir welding for 6061 aluminum alloy by Friction Stir Processing (FSP) method.

Enhancements of mechanical properties of friction stir welding for 6061 aluminum alloy by Friction Stir Processing (FSP) method. 62 Enhancements of mechanical properties of friction stir welding for 6061 aluminum alloy by Friction Stir Processing (FSP) method. Ali A. Salman (Msc student ) 1Asst.Prof.Dr. Ayad M. Takak As. Prof. Dr.

More information

Effect of FSW Parameters on Hook formation, Microstructure and Fracture Strength of Al, Mg alloys

Effect of FSW Parameters on Hook formation, Microstructure and Fracture Strength of Al, Mg alloys Effect of FSW Parameters on Hook formation, Microstructure and Fracture Strength of Al, Mg alloys 1 Shubhavardhan R N, 2 M.M Rahman Department of Mechanical Engineering 1 University of Saskatchewan, Saskatoon,

More information

FSW TIG Welding of Cu 99 Copper

FSW TIG Welding of Cu 99 Copper FSW TIG Welding of Cu 99 Copper R. Cojocaru, C. Ciucă, L. Boţilă, V. Verbiţchi National Research & Development Institute for Welding and Material Testing ISIM Timişoara, Romania E-mail: rcojocaru@isim.ro

More information

Mechanical Properties of Friction Surfaced 5052 Aluminum Alloy* 1

Mechanical Properties of Friction Surfaced 5052 Aluminum Alloy* 1 Materials Transactions, Vol. 44, No. 12 (2003) pp. 2688 to 2694 #2003 The Japan Institute of Light Metals Mechanical Properties of Friction Surfaced 5052 Aluminum Alloy* 1 Hidekazu Sakihama* 2, Hiroshi

More information

FSW Welding of Aluminium Casting Alloys

FSW Welding of Aluminium Casting Alloys ARCHIVES of FOUNDRY ENGINEERING DOI: 10.1515/afe-2016-0038 Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (2299-2944) Volume 16 Issue 2/2016 119 124 FSW

More information

Microstructure and Mechanical Properties of Friction Stir Welded Pure Cu Plates

Microstructure and Mechanical Properties of Friction Stir Welded Pure Cu Plates Transactions of JWRI, Vol.41 (2012), No. 1 Microstructure and Mechanical Properties of Friction Stir Welded Pure Cu Plates SUN Yufeng*, XU Nan**, MORISADA Yoshiaki***, FUJII Hidetoshi*** Abstract The process

More information

Thin Products < 75 mm 7055-T7751. Strength (MPa) 500. Thick Products mm Year First Used in Aircraft

Thin Products < 75 mm 7055-T7751. Strength (MPa) 500. Thick Products mm Year First Used in Aircraft Strength and (Extrinsic) Corrosion Resistance Improvements in New 7XXX-Series Alloys - Relative to 7075-T651 All Alloys Still Need Corrosion Protection Schemes 700 650 600 Corrosion Resistance Low Medium

More information

Research Article Efficiency of Butt-Welded Joints of Low-Carbon Steel for Different Types of the Cooling Rate and Annealing Time

Research Article Efficiency of Butt-Welded Joints of Low-Carbon Steel for Different Types of the Cooling Rate and Annealing Time Cronicon OPEN ACCESS Mustafa A Rijab 1, Ali I Al-Mosawi 2 *, Muhannad A Al-Najar 1 1 Department of Mechanics, Technical Institute of Baquba, Iraq 2 Free Consultation, Babylon, Hilla, Iraq CHEMISTRY Research

More information

Friction Stir Processing of 304L Stainless Steel for Crack Repair

Friction Stir Processing of 304L Stainless Steel for Crack Repair Friction Stir Processing of 304L Stainless Steel for Crack Repair M.P. Miles, C. Gunter, F. Liu and T.W. Nelson Abstract Friction stir processing (FSP) was investigated as a method for repairing cracks

More information

Materials and Design 26 (2005) Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel

Materials and Design 26 (2005) Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel Materials and Design 26 (2005) 41 46 Materials & Design www.elsevier.com/locate/matdes Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel Huseyin Uzun a, *,1, Claudio Dalle Donne

More information