Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

Size: px
Start display at page:

Download "Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries"

Transcription

1 ARTICLE NUMBER: Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries Juliette Billaud 1+, Florian Bouville 2+, Tommaso Magrini 2, Claire Villevieille 1 *, André R. Studart 2 * + Authors have contributed equally to this work * Corresponding authors: claire.villevieille@psi.ch, andre.studart@mat.ethz.ch 1- Paul Scherrer Institut, Electrochemical Laboratory, 5232 Villigen PSI, Switzerland 2- Complex Materials, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland NATURE ENERGY 1

2 Supplementary Figures Supplementary Figure 1 Comparison of the aligned and non-aligned anodes of this study (in red and blue) with literature values for the areal capacity of anodes versus C-rate. 1 2,3 References: commercial graphite anodes, Graphite SFG6 and SFG44, 3D Li4Ti5O12 4 Supplementary Figure 2 Micrograph of graphite flakes (Alfa Aesar, Graphite flake, Natural, 325 Mesh, 99.8%, metals basis) after alignment in water under a rotating magnetic field 2 NATURE ENERGY

3 Supplementary Figure 3 Setup used for casting of graphite suspensions followed by magnetic alignment of flakes Supplementary Figure 4 Schematic drawing illustrating the effect of static and rotating magnetic fields on the orientation of flakes.generated by a 400 mt Neodymium magnet. The white arrow in the bottom left corner indicates the rotation plane of the magnet. NATURE ENERGY 3

4 Supplementary Figure 5 Effect of thickness reduction by calendering on the crystallographic texture of the initially aligned sample. a. Comparison of the diffractogram obtained at different thickness reductions on an electrode with aligned graphite platelets. The blue curve corresponds to the pristine aligned electrode, whereas the red indicates the reference sample. Peaks indexed with a * correspond to the copper current collector. b. Intensity of the (002) peak in the aligned electrode after calendering divided by the intensity of the peak for a reference electrode as a function of the relative decrease in thickness imposed by calendering. 4 NATURE ENERGY

5 Supplementary Figure 6 SEM micrograph of an aligned electrode after 50 lithiation/delithiation cycles. The current collector has been removed after cycling. Supplementary Figure 7 Galvanostatic cycle for high loading (9.1 mg/cm 2 ) electrodes at C/30 rate for the two first cycles and C rate for the remainder of the test. NATURE ENERGY 5

6 Supplementary Figure 8 Zeta potential of the graphite powder in water as a function of the ph (Alfa Aesar, Graphite flake, Natural, -325 Mesh, 99.8%, metals basis). 6 NATURE ENERGY

7 Supplementary Figure 9 Structural characterisation of electrodes. a. Pictures of the aligned and reference electrodes generated after processing data obtained from the Focused Ion Beam (FIB) / Scanning Electron Microscopy (SEM) images (structures are displayed at the same scale). b. Example of diffusivity calculation indicating the boundary conditions assumed. NATURE ENERGY 7

8 Supplementary Figure 10 Streamline of the diffusive flux for two different concentration gradient directions for the reference electrode and the aligned ones 8 NATURE ENERGY

9 Supplementary Table Supplementary Table 1 Data used to calculate the tortuosity factor tensor. Aligned Not aligned Flux Direction (mol.m 2 /s) C 0 (mol/m 3 ) L 1 (m) ε D eff (m 2 /s) D 0 (m 2 /s) τ x y z x y z NATURE ENERGY 9

10 Supplementary Notes 1. Comparison of the capacity of various anodes at different charging rates We calculated the areal capacities of our electrodes and compared them in Supplementary Fig. 1 with data reported in the literature. Several important aspects are illustrated in this graph. First and most importantly, it shows that the alignment of flakes alone leads to a remarkable increase in areal capacity, even if the graphite source used is not optimised for batteries. Second, graphite flakes have been previously shown to result in high areal capacities at high rate if the particles size is optimised for lithium insertion (see SFG6 compared to SFG44 grades). This implies that flake geometries (in addition to spherical mesocarbon microbeads, MCMB-type) can also provide higher capacities that can potentially rival commercial electrodes if the formulation is further optimised with current industrial knowhow. Finally, commercial graphite anodes exhibit the highest areal capacities, which reflects the continuous incremental optimisation of these materials in industry. However, these high capacities are only possible at low rate, as the highly-loaded electrodes (i.e. with an areal capacities superior to 2 mah/cm 2 ) could not be cycled above C/3 3. The comparison between the performance of experimental anodes with battery-grade graphite flakes (SFG6 and SFG44) with commercial electrodes indicates that formulations that have been continuously optimised in industry for decades can increase the area capacity by a factor of 3 as compared to values reported for standard recipes in the open, academic literature. Such comparison further emphasises the major breakthrough achieved in our study, since a similar 3-fold increase in performance was achieved by solely aligning flakes in an orientation that facilitates mass transport of Li ions through the electrode thickness. Although further work is still needed, our approach clearly shows the great potential of controlling the architecture of the electrode alone as a simple and effective means to significantly change the areal capacity of industrially-relevant graphite anodes. 2. Effect of calendering on platelet alignment Using X-ray diffraction, we followed the alignment of the platelets after calendering an aligned electrode at various thicknesses. Changes in alignment of the flakes can be monitored accurately by measuring the intensity of the (002) peak, as this peak intensity is representative of the fraction of horizontally aligned platelets. X-ray diffraction measurements were performed at room temperature with a PANalytical Empyrean diffractometer using Cu Kα-radiation. The results are summarised in Supplementary Fig. 5. The intensity of the peak does not increase until the thickness of the electrode has been decreased by 30%, with an electrode thickness reduction of 45 µm in this case. This means that the aligned structure can be compressed and densified by 30 % without any major misalignment of the platelets. The increase in intensity observed if the thickness is reduced further indicates a progressive reorganisation of the structure, while still preserving a preferred orientation. This is clearly noticed in Supplementary Fig. 5 b if the results obtained for the aligned sample are compared with those of a reference electrode as a function of thickness reduction. 10 NATURE ENERGY

11 Those preliminary results show that in our sub-optimised case, calendering can be performed to a certain extent without strongly affecting the electrode alignment Supplementary Methods 1. Calculation of the effective diffusivity tensor from FIB-Tomography data 1.1 Mesh production and optimisation The stacks obtained from FIB-Tomography were segmented using the open source software Fiji 5 as described in the main text. The plug-in statistical region merging 6 was used with a number of merged regions of 25. Then a simple threshold was applied (Supplementary Fig. 9 a). The open source plug-in BoneJ 7 was used to extract STL files from the binary stacks with the isosurface function. The STL files represent an unscaled meshed surface, but usually with a poorly controlled vertices quality and thus need to be cleaned, scaled and optimised before use. The open source software Meshlab was employed to first remove the unconnected regions by applying the function Remove isolated pieces (wt. diameter) with a diameter of 100 pixels. Then the function Select self-intersecting faces was used to clean the mesh further. A scaling function was also applied to change the mesh size; in our case one voxel equals to 60x60x60 nm 3. The surface mesh was then imported into the open source software Gmsh 8 to produce a 3D mesh. The software native mesh optimising tools was used before exporting them as NASTRAN files Effective diffusivity calculation The procedure described here has been adapted directly from an example available in the software COMSOL Multi-physics 5.2 library. The 3D meshes were imported directly as NASTRAN files. An automatic face detection function was used to select the different entry and exit faces (Supplementary Fig. 9 b). The material properties were selected to represent lithium hexafluorophosphate (LiPF 6 ) in 1:1 EC:DEC, which is the electrolyte composition we used in our experimental measurements. A bulk diffusion coefficient DD! = 3 10!!" mm! /ss of lithium in the electrolyte was assumed. A constant concentration of CC! = 10 mmmmmm/mm! was applied on one face and an external forced convection was applied on the other side, with a mass transfer coefficient of kk = 1 mm/ss and an external concentration equal to CC!"# = 0 mmmmmm/mm!. The steady state is reached when the outward flux and concentration reaches a constant level, named respectively jj! and cc!, as shown in Supplementary Fig. 9 b. Under such condition, Fick s first law can be written as: jj! = DD!"" cc (Eq. S1) NATURE ENERGY 11

12 where jj! is the outward flux (equal to jj! = kk cc! ), DD!"" is the effective diffusivity coefficient in the considered direction and cc is the concentration gradient. Thus, DD!"" is expressed as,: DD!"" = jj!!!!!!!! = kk cc!!!!!!!! (Eq. S2) where LL! is the thickness of the mesh in the considered direction. Finally, DD!"" can now be expressed as a function of the bulk diffusion coefficient DD! : DD!"" =!! DD! (Eq. S3) with εε being the electrode porosity calculated from the mesh volume in COMSOL, and ττ being the tortuosity factor, which in this case is an adjustable parameter representing the electrode morphology in the considered direction 9. The data resulting from the analysis of the two stacks shown in Supplementary Fig. 9 are summarised in Supplementary Table 1 and plotted in Fig. 3 of the main manuscript Streamline of the diffusive flux To further illustrate the modification of mass transport in our structure, we used the streamline option of the Comsol Software to plot a number of lines representing the mass flux direction for two cases, one where the concentration gradient was along the x direction, and one where it was along the z direction, for both electrodes (cf. Supplementary Fig. 10). Indeed, the lines are straight and parallel to each other when the tortuosity factor is low, and randomly oriented when the tortuosity factor is high. 12 NATURE ENERGY

13 Supplementary References 1. Gallagher, K. G. et al. Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes. J. Electrochem. Soc. 163, A138 A149 (2016). 2. Buqa, H., Goers, D., Holzapfel, M., Spahr, M. E. & Novák, P. High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 152, A474 (2005). 3. Heß, M. & Novák, P. Shrinking annuli mechanism and stage-dependent rate capability of thin-layer graphite electrodes for lithium-ion batteries. Electrochim. Acta 106, (2013). 4. Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, (2013). 5. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, (2012). 6. Nock, R. & Nielsen, F. Statistical region merging. IEEE Trans. Pattern Anal. Mach. Intell. 26, (2004). 7. Doube, M. et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, (2010). 8. Geuzaine, C. & Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with builtin pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, (2009). 9. Doyle, M., Newman, J., Gozdz, A. S., Schmutz, C. N. & Tarascon, J.-M. Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells. J. Electrochem. Soc. 143, 1890 (1996). NATURE ENERGY 13

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018. Supporting Information for Adv. Mater., DOI: 10.1002/adma.201704947 Bioinspired, Spine-Like, Flexible, Rechargeable Lithium-Ion

More information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information

Lithium Batteries with Nearly Maximum Metal. Storage Supporting Information Lithium Batteries with Nearly Maximum Metal Storage Supporting Information Abdul-Rahman O. Raji,, Rodrigo Villegas Salvatierra,, Nam Dong Kim, Xiujun Fan, Yilun Li, Gladys A. L. Silva, Junwei Sha and James

More information

Supplementary Materials for

Supplementary Materials for www.sciencemag.org/cgi/content/full/336/6084/1007/dc1 Supplementary Materials for Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Copper Hsiang-Yao Hsiao, Chien-Min Liu, Han-wen Lin,

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO 4 /Graphite Electrodes in High Capacity Lithium-ion Batteries

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO 4 /Graphite Electrodes in High Capacity Lithium-ion Batteries Model Prediction and Experiments for the Electrode Design Optimization Bull. Korean Chem. Soc. 2013, Vol. 34, No. 1 79 http://dx.doi.org/10.5012/bkcs.2013.34.1.79 Model Prediction and Experiments for the

More information

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress

The influence of aluminium alloy quench sensitivity on the magnitude of heat treatment induced residual stress Materials Science Forum Vols. 524-525 (26) pp. 35-31 online at http://www.scientific.net (26) Trans Tech Publications, Switzerland The influence of aluminium alloy quench sensitivity on the magnitude of

More information

Soft silicon anodes for lithium ion batteries

Soft silicon anodes for lithium ion batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Soft silicon anodes for lithium ion batteries Qizhen

More information

STRUCTURE EVOLUTION OF AlCr5.5Fe2Ti1 ALLOY DURING ITS COMPACTIZATION

STRUCTURE EVOLUTION OF AlCr5.5Fe2Ti1 ALLOY DURING ITS COMPACTIZATION STRUCTURE EVOLUTION OF AlCr5.5Fe2Ti1 ALLOY DURING ITS COMPACTIZATION Alena MICHALCOVÁ a,b, Dalibor VOJTĚCH a, Pavel NOVÁK a, Jan DRAHOKOUPIL c, Kamil KOLAŘÍK d a Institute of Chemical Technology, Prague,

More information

Selective deposition and stable encapsulation of

Selective deposition and stable encapsulation of ARTICLE NUMBER: 16010 Selective deposition and stable encapsulation of lithium through Deposition heterogeneous and Stable Encapsulation seeded growth Kai Yan 1, Zhenda Lu 1, Hyun-wook Lee 1, Feng Xiong

More information

All-solid-state Batteries with Thick Electrode Configurations

All-solid-state Batteries with Thick Electrode Configurations All-solid-state Batteries with Thick Electrode Configurations Yuki Kato, * Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno Toyota Motor Europe NV/SA, Hoge Wei 33, 1930 Zaventem,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Title: Identification and Characterisation of High

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery

Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery JFE TECHNICAL REPORT No. 22 (Mar. 2017) Microscopic Structural Analysis of Advanced Anode Material for Lithium Battery SIMAUCHI Yutaka *1 OHMORI Shigekazu *2 IKEMOTO Sachi *3 Abstract: analyzed the microstructure

More information

Investigations on Fatigue of Li-ion batteries

Investigations on Fatigue of Li-ion batteries Investigations on Fatigue of Li-ion batteries HELMUT EHRENBERG INSTITUTE FOR APPLIED MATERIALS ENERGY STORAGE SYSTEMS (IAM-ESS) KIT University of the State of Baden-Wuerttemberg and National Research Center

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) 3D interconnected SnO 2 -coated Cu foam as a high-performance

More information

XCT to assess defects in titanium ALM parts

XCT to assess defects in titanium ALM parts XCT to assess defects in titanium ALM parts Effects of geometry and build direction Fabien Léonard 1, Samuel Tammas-Williams 1, Philip Prangnell 1, Iain Todd 2, Philip J. Withers 1 1 Henry Moseley X-ray

More information

PHYSICAL REVIEW LETTERS 107,

PHYSICAL REVIEW LETTERS 107, Real-time Measurement of Stress and Damage Evolution During Initial Lithiation of Crystalline Silicon M. J. Chon, 1 V.A. Sethuraman, 1 A. McCormick, 1 V. Srinivasan, 2 P. R. Guduru 1,* 1 School of Engineering,

More information

MODELING CHLORIDE TRANSPORT IN CRACKED CONCRETE --- A 3-D IMAGE

MODELING CHLORIDE TRANSPORT IN CRACKED CONCRETE --- A 3-D IMAGE MODELING CHLORIDE TRANSPORT IN CRACKED CONCRETE --- A 3-D IMAGE BASED MICROSTRUCTURE SIMULATION Yang Lu¹ Edward Garboczi¹ Dale Bentz¹ Jeffrey Davis² 1 1 Engineering Laboratory 2 Materials Measurement Laboratory

More information

Novel Materials for Lithium-Ion Batteries

Novel Materials for Lithium-Ion Batteries Novel Materials for Lithium-Ion Batteries John Bradley May 18th 2012 Project Supervisors: Prof. West & Chaou Tan Abstract The effect of carbon coating on two novel battery cathode materials LiMnP 2 O 7

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea

Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea Supporting Information Self-Passivation of LiNiO 2 Cathode for Lithium-Ion Battery through Zr Doping Chong S. Yoon, Un-Hyuck Kim, Geon-Tae Park, Suk Jun Kim, Kwang-Ho Kim, Jaekook Kim, and Yang-Kook Sun*

More information

factured pillars, even though the strength is significantly higher than in the bulk. These yield stress values, y

factured pillars, even though the strength is significantly higher than in the bulk. These yield stress values, y Abstract The size effect in body-centered cubic (bcc) metals was comprehensively investigated through microcompression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

Factors Governing Life of High-Energy Lithium-Ion Cells

Factors Governing Life of High-Energy Lithium-Ion Cells Factors Governing Life of High-Energy Lithium-Ion Cells D.P. Abraham IBA 2013 March 11, 2013 Barcelona, Spain Research sponsors are both Government and Private Sector 2 Diagnostics Overview Use of characterization

More information

Modeling of SOFC Anodes Based on the Stochastic Reconstruction Scheme. Yoshinori Suzue, Naoki Shikazono and Nobuhide Kasagi

Modeling of SOFC Anodes Based on the Stochastic Reconstruction Scheme. Yoshinori Suzue, Naoki Shikazono and Nobuhide Kasagi Modeling of SOFC Anodes Based on the Stochastic Reconstruction Scheme Yoshinori Suzue, Naoki Shikazono and Nobuhide Kasagi Department of Mechanical Engineering, The University of Tokyo Hongo 7-3-1, Bunkyo-ku,

More information

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes

Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes Zheng Liang, Guangyuan Zheng, Chong Liu, Nian Liu, Weiyang Li, Kai Yan, Hongbin Yao, Po-Chun Hsu, Steven Chu, and Yi Cui *,, Department

More information

Supporting Information. Carbon Welding by Ultrafast Joule Heating

Supporting Information. Carbon Welding by Ultrafast Joule Heating Supporting Information Carbon Welding by Ultrafast Joule Heating Yonggang Yao, 1,(a) Kun Fu, 1,(a) Shuze Zhu, 2 Jiaqi Dai, 1 Yanbin Wang, 1 Glenn Pastel, 1 Yanan Chen, 1 Tian Li, 1 Chengwei Wang, 1 Teng

More information

Great Lakes Graphite Full Graphite Flake Analysis

Great Lakes Graphite Full Graphite Flake Analysis Great Lakes Graphite Full Graphite Flake Analysis Prepared by: Stephen Klein Coulometrics, LLC. Prepared for: Great Lakes Graphite Date: November 30, 2016 Great Lakes Graphite Flake Analysis FLAKE ANALYSIS

More information

Three-Dimensional Microstructure Reconstruction Using FIB-OIM

Three-Dimensional Microstructure Reconstruction Using FIB-OIM Materials Science Forum Vols. 558-559 (2007) pp. 915-920 online at http://www.scientific.net (2007) Trans Tech Publications, Switzerland Three-Dimensional Microstructure Reconstruction Using FIB-OIM S.-B.

More information

Cycle life performance of lithium-ion pouch cells

Cycle life performance of lithium-ion pouch cells Journal of Power Sources 158 (2006) 679 688 Cycle life performance of lithium-ion pouch cells Karthikeyan Kumaresan, Qingzhi Guo, Premanand Ramadass, Ralph E. White Department of Chemical Engineering,

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO 3 Yifan Dong, Tyler Slade, Matthew J. Stolt, Linsen Li, Steven N. Girard, Liqiang

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Funct. Mater., DOI: 10.1002/adfm.201302405 Self-Assembly Mechanism of Spiky Magnetoplasmonic Supraparticles

More information

FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE POROSITY EVOLUTION MODEL

FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE POROSITY EVOLUTION MODEL Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary data for : FAILURE MECHANISMS OF NANO SILICON ANODES: AN ELECTRODE

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION High Electrochemical Activity of the Oxide Phase in Model Ceria- and Ceria-Ni Composite Anodes William C. Chueh 1,, Yong Hao, WooChul Jung, Sossina M. Haile Materials Science, California Institute of Technology,

More information

INITIAL STUDY OF THE MICROSTRUCTURE OF CARBON FIBRES ACTING AS NEGATIVE ELECTRODES IN STRUCTURAL BATTERY COMPOSITES

INITIAL STUDY OF THE MICROSTRUCTURE OF CARBON FIBRES ACTING AS NEGATIVE ELECTRODES IN STRUCTURAL BATTERY COMPOSITES Munich, Germany, 26-30 th June 2016 1 INITIAL STUDY OF THE MICROSTRUCTURE OF CARBON FIBRES ACTING AS NEGATIVE ELECTRODES IN STRUCTURAL BATTERY COMPOSITES Fang Liu 1, Masoud Rashidi 2 and Leif E. Asp 3

More information

Supporting Information

Supporting Information Supporting Information Structure and Solution Dynamics of Lithium Methyl Carbonate as a Protective Layer For Lithium Metal Haodong Liu, Xuefeng Wang, Hongyao Zhou, Hee-Dae Lim, Xing Xing, Qizhang Yan,

More information

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets

High Rate and Durable, Binder Free Anode Based on Silicon Loaded MoO 3 Nanoplatelets Supplementary Information High Rate and Durable, Binder Free Anode Based on Silicon Loaded O 3 Nanoplatelets Alejandro Martinez-Garcia, Arjun Kumar Thapa,Ruvini Dharmadasa,, Tu Q. Nguyen, Jacek Jasinski,

More information

Investigation of anode materials for lithium-ion batteries

Investigation of anode materials for lithium-ion batteries University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2006 Investigation of anode materials for lithium-ion batteries Ling Yuan University

More information

Supporting Information

Supporting Information Supporting Information A Lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism Yonggang Wang Haoshen Zhou* Energy Technology Research Institute, National Institute

More information

Preparation of porous manganese hydroxide film and its application in supercapacitors

Preparation of porous manganese hydroxide film and its application in supercapacitors Indian Journal of Chemistry Vol. 46A, May 2007, pp. 736-741 Preparation of porous manganese hydroxide film and its application in supercapacitors Zhen Fan, Jinhua Chen*, Feng Sun, Lei Yang, Yan Xu & Yafei

More information

In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal

In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal Supplementary Information for In Situ Observation of Dislocation Nucleation and Escape in a Submicron Al Single Crystal Sang Ho Oh*, Marc Legros, Daniel Kiener and Gerhard Dehm *To whom correspondence

More information

Accumulation (%) Amount (%) Particle Size 0.1

Accumulation (%) Amount (%) Particle Size 0.1 100 10 Amount (%) 5 50 Accumulation (%) 0 0.1 1 Particle Size (µm) 10 0 Supplementary Figure 1. The particle size distribution of W-15 at% Cr after 20 hours milling. Supplementary Figure 2. a,b, X-ray

More information

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells

Supporting Information. Oxidation State of Cross-over Manganese Species on the Graphite Electrode of Lithium-ion Cells Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is The Royal Society of Chemistry 2014 Supporting Information Oxidation State of Cross-over Manganese Species

More information

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Supporting Information Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Yu Lei,, Lei Qin,, Ruliang Liu,, Kah Chun Lau, Yiying Wu, Dengyun Zhai, *, Baohua Li, and Feiyu Kang *,

More information

Fabrication of Textured β-si 3 N 4 and β-sialon by Slip Casting in A Strong Magnetic Field and Reaction-Sintering

Fabrication of Textured β-si 3 N 4 and β-sialon by Slip Casting in A Strong Magnetic Field and Reaction-Sintering Key Engineering Materials Online: 2010-03-29 ISSN: 1662-9795, Vols. 434-435, pp 5-8 doi:10.4028/www.scientific.net/kem.434-435.5 2010 Trans Tech Publications, Switzerland Fabrication of Textured β-si 3

More information

ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency

ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency ALD TiO 2 coated Silicon Nanowires for Lithium Ion Battery Anodes with enhanced Cycling Stability and Coulombic Efficiency Elmira Memarzadeh Lotfabad a, Peter Kalisvaart a,*, Kai Cui b, Alireza Kohandehghan

More information

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling

More information

In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li 0.35 TiO 3 Ceramic at Different Li Insertion Levels

In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li 0.35 TiO 3 Ceramic at Different Li Insertion Levels A1196 Journal of The Electrochemical Society, 151 8 A1196-A1201 2004 0013-4651/2004/151 8 /A1196/6/$7.00 The Electrochemical Society, Inc. In Situ IonicÕElectric Conductivity Measurement of La 0.55 Li

More information

Layered TiS 2 Positive Electrode for Mg Batteries

Layered TiS 2 Positive Electrode for Mg Batteries Supporting Information: Layered TiS 2 Positive Electrode for Mg Batteries Xiaoqi Sun, Patrick Bonnick and Linda F. Nazar* Department of Chemistry and the Waterloo Institute of Nanotechnology, University

More information

Supporting Information. Ultrathin and Large-Sized Vanadium Oxide Nanosheets Mildly. Prepared at Room Temperature for High Performance Fiber-Based

Supporting Information. Ultrathin and Large-Sized Vanadium Oxide Nanosheets Mildly. Prepared at Room Temperature for High Performance Fiber-Based Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Ultrathin and Large-Sized Vanadium Oxide Nanosheets

More information

Dense Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials

Dense Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials Supporting Information for Dense Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials Michael T. Barako, 1,2* Scott G. Isaacson, 2 Feifei Lian, 1,2 Eric Pop, 2 Reinhold H.

More information

A New Nafion Actuator

A New Nafion Actuator A New Nafion Actuator Static ion flux Dynamic ion flux No current With current We developed a new Nafion actuator with enhanced deformation. This actuator is based on a double layer Platinum Copper electrode

More information

Philips Analytical, Lelyweg 1, 7602 EA Almelo, The Netherlands

Philips Analytical, Lelyweg 1, 7602 EA Almelo, The Netherlands Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 284 MICRO-DIFFRACTION WITH MONO-CAPILLARIES M.J. Fransen, J.H.A. Vasterink and J. te Nijenhuis Philips

More information

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes Supplementary Information Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes Nian Liu 1, Kaifu Huo 2,3, Matthew T. McDowell 2, Jie Zhao 2 & Yi Cui 2,4

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

State of Lithium Ion Battery Research

State of Lithium Ion Battery Research State of Lithium Ion Battery Research Professor Vanessa Wood Department of Information Technology and Electrical Engineering ETH Zürich 2/5/2018 1 Lithium ion batteries can be used for many applications

More information

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive Electronic Supplementary Information (ESI) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization Xiaoru Wen, a Dengsong

More information

Fundamentals of X-ray diffraction and scattering

Fundamentals of X-ray diffraction and scattering Fundamentals of X-ray diffraction and scattering Don Savage dsavage@wisc.edu 1231 Engineering Research Building (608) 263-0831 X-ray diffraction and X-ray scattering Involves the elastic scattering of

More information

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression

Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression Supporting Information Directional Amorphization of Boron Carbide Subjected to Laser Shock Compression This PDF file contains: Figures S1 to S4 Supplementary Text : 1. Materials and initial characterization

More information

Electronic supplementary information for. Anisotropic electronic conduction in stacked. two-dimensional titanium carbide

Electronic supplementary information for. Anisotropic electronic conduction in stacked. two-dimensional titanium carbide Electronic supplementary information for Anisotropic electronic conduction in stacked two-dimensional titanium carbide Tao Hu 1,2, Hui Zhang 1,2, Jiemin Wang 1, Zhaojin Li 1,2, Minmin Hu 1,2, Jun Tan 1,

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supporting Information Copyright Royal Society of Chemistry, London,

More information

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode Supporting Information Towards High-Safety Potassium-Sulfur Battery Using Potassium Polysulfide Catholyte and Metal-Free Anode Jang-Yeon Hwang, Hee Min Kim, Chong S. Yoon, Yang-Kook Sun* Department of

More information

Determination of Local GDL Saturation on the Pore Level by in-situ Synchrotron based X-Ray Tomographic Microscopy. CH-8092 Zürich, Switzerland

Determination of Local GDL Saturation on the Pore Level by in-situ Synchrotron based X-Ray Tomographic Microscopy. CH-8092 Zürich, Switzerland 1397 10.1149/1.3484631 The Electrochemical Society Determination of Local GDL Saturation on the Pore Level by in-situ Synchrotron based X-Ray Tomographic Microscopy F.N. Büchi a, J. Eller a, F. Marone

More information

Application Note. 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy

Application Note. 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy 4D Study of Silicon Anode Volumetric Changes in a Coin Cell Battery using X-ray Microscopy Authors: Dr. Claus

More information

Preparation and Characterization of Sn-mesocarbon Composite Microbeads

Preparation and Characterization of Sn-mesocarbon Composite Microbeads Preparation and Characterization of Sn-mesocarbon Composite Microbeads Ruisheng Xue Zengmin Shen Beijing university of chemical technology, Beijing 100029, China Corresponding author e-mail address: xuersh@mail.buct.edu.cn

More information

Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime

Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime AABC Europe Volume Change from Materials to Cell Level and Its Influence on Battery Lifetime 31.01.2017 Mainz Prof. Dr.-Ing. Andreas Jossen, Bernhard Rieger Institute for Electrical Energy Storage Technology

More information

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle

Self-Healing Wide and Thin Li Metal Anodes Prepared. Using Calendared Li Metal Powder for Improving Cycle Supporting Information Self-Healing Wide and Thin Li Metal Anodes Prepared Using Calendared Li Metal Powder for Improving Cycle Life and Rate Capability Dahee Jin, Jeonghun Oh, Alex Friesen, Kyuman Kim,

More information

Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from

Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from Supplementary Figure 1: Sketch of XRD-EIS pouch cell design with Titanium current collectors serving as XRD windows, parafilm, kapton tape made from polyimide used to seal Titanium (Ti) current collectors

More information

CARBON CONDUCTIVE ADDITIVES FOR ELECTRODES IN ELECTROCHEMICAL ENERGY STORAGE DEVICES

CARBON CONDUCTIVE ADDITIVES FOR ELECTRODES IN ELECTROCHEMICAL ENERGY STORAGE DEVICES CARBON CONDUCTIVE ADDITIVES FOR ELECTRODES IN ELECTROCHEMICAL ENERGY STORAGE DEVICES 15.03.2013 Flavio F. C. Mornaghini, Dario Cericola, Pirmin Ulmann, Thomas Hucke and Michael E. Spahr CARBON CONDUCTIVE

More information

Kinetics of low temperature plasma carburizing of austenitic stainless steels

Kinetics of low temperature plasma carburizing of austenitic stainless steels Journal of Materials Processing Technology 168 (2005) 189 194 Kinetics of low temperature plasma carburizing of austenitic stainless steels Y. Sun School of Materials Engineering, Nanyang Technological

More information

Fused-Salt Electrodeposition of Thin-Layer Silicon

Fused-Salt Electrodeposition of Thin-Layer Silicon NREL/CP-450-22928 UC Category: 1250 Fused-Salt Electrodeposition of Thin-Layer Silicon J.T. Moore, T.H. Wang, M.J. Heben, K. Douglas, and T.F. Ciszek Presented at the 26th IEEE Photovoltaic Specialists

More information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Operando Electron Magnetic Measurements in Li-ion Batteries Gregory Gershinsky, Elad Bar, Laure Monconduit,

More information

Optimization of porous current collectors for PEM water electrolysers

Optimization of porous current collectors for PEM water electrolysers Optimization of porous current collectors for PEM water electrolysers S. Grigoriev a, I. Baranov a, P. Millet b, Z. Li c, V. Fateev a a Hydrogen Energy and Plasma Technology Institute of Russian Research

More information

Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

Optimal design of a beam stop for Indus-2 using finite element heat transfer studies Sādhan ā Vol. 26, Part 6, December 2001, pp. 591 602. Printed in India Optimal design of a beam stop for Indus-2 using finite element heat transfer studies A K SINHA, KJSSAWHNEY andrvnandedkar Synchrotron

More information

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries

Supplementary Information. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Capacity fade in high energy silicon-graphite electrodes for lithium-ion

More information

Crystal structure analysis of spherical silicon using X-ray pole figure

Crystal structure analysis of spherical silicon using X-ray pole figure Solid State Phenomena Vol. 9 (00) pp 9-56 (00) Trans Tech Publications, Switzerland doi:0.08/www.scientific.net/ssp.9.9 Tel.No.:+8-77-56-98 FaxNo.:+8-77-56-98 e-mail: ro00986@se.ritsumei.ac.jp Crystal

More information

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal

Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal Next Generation Anodes for Li-Ion Cells: How to Achieve Both High Capacity and Cycle Stability When Using Silicon Metal introduction Jeff Norris CEO +1.803.528.0941 JNorris@ParacleteEnergy.com Michigan

More information

LIMITATIONS IN THE REFINEMENT BY SEVERE PLASTIC DEFORMATION: THE EFFECT OF PROCESSING

LIMITATIONS IN THE REFINEMENT BY SEVERE PLASTIC DEFORMATION: THE EFFECT OF PROCESSING 16 Rev.Adv.Mater.Sci. 25 (2010) 16-22 A. Bachmaier, M. Hafok, R. Schuster and R. Pippan LIMITATIONS IN THE REFINEMENT BY SEVERE PLASTIC DEFORMATION: THE EFFECT OF PROCESSING A. Bachmaier 1, M. Hafok 1,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2012.35 Stable Cycling of Double-Walled Silicon Nanotube Battery Anodes through Solid-Electrolyte Interphase Control Hui Wu, 1* Gerentt Chan, 2* Jang Wook Choi,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Supplementary Information for Chemical Science, DOI: 10.1039/ ((please add manuscript

More information

Supplementary Figure 1:

Supplementary Figure 1: b a c Supplementary Figure 1: Calibration of the Cs + sputtering rate on composite LiNi 0.7 Mn 0.15 Co 0.15 O 2 electrodes (500 ev ion energy, ~40 na measured sample current): (a) Optical profilometry

More information

measurements. The spectra show electrolyte in contact with the carbon fibre based gas diffusion layer

measurements. The spectra show electrolyte in contact with the carbon fibre based gas diffusion layer Supplementary Figure 1. 7 Li NMR spectra of electrolyte in contact with potential substrates for in-situ NMR measurements. The spectra show electrolyte in contact with the carbon fibre based gas diffusion

More information

Supporting Information Spray-coated Multi-walled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells

Supporting Information Spray-coated Multi-walled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells Supporting Information Spray-coated Multi-walled Carbon Nanotube Composite Electrodes for Thermal Energy Scavenging Electrochemical Cells Nicolas E. Holubowitch, James Landon, Cameron A. Lippert, John

More information

NUMERICAL SIMULATION OF ELECTROCHEMICAL REACTION IN RECONSTRUCTED THREE-DIMENSIONAL LSM/YSZ COMPOSITE CATHODE

NUMERICAL SIMULATION OF ELECTROCHEMICAL REACTION IN RECONSTRUCTED THREE-DIMENSIONAL LSM/YSZ COMPOSITE CATHODE Proceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference June 16-18, 2008, Denver, Colorado, USA FUELCELL2008-65027 NUMERICAL SIMULATION OF ELECTROCHEMICAL

More information

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Unlocking the Potential of Amorphous Red Phosphorus

More information

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD

FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD FORMING OF FULLERENE-DISPERSED ALUMINUM COMPOSITE BY THE COMPRESSION SHEARING METHOD Noboru NAKAYAMA Akita Prefectural University, 84-4 Tsuchiya-Ebinokuti, Yurihonjyo, Akita/ 15-55, JAPAN nakayama@akita-pu.ac.jp

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating Quan Pang, Laidong Zhou, Linda F. Nazar* Department of Chemistry and the Waterloo Institute for

More information

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Intercalation of Bi nanoparticles into

More information

CELL FOR IN-SITU X-RAY CHARACTERIZATION. Mark A. Rodriguez, David Ingersoll, and Daniel H. Doughty

CELL FOR IN-SITU X-RAY CHARACTERIZATION. Mark A. Rodriguez, David Ingersoll, and Daniel H. Doughty 267 267 AN ELECTROCHEMICAL CELL FOR IN-SITU X-RAY CHARACTERIZATION Mark A. Rodriguez, David Ingersoll, and Daniel H. Doughty Sandia National Laboratories, Albuquerque, NM 871851405 ABSTRACT An electrochemical

More information

Making a Good Li-ion Cell on Bench Scale Equipment

Making a Good Li-ion Cell on Bench Scale Equipment Making a Good Li-ion Cell on Bench Scale Equipment Vince Battaglia LBNL German American Chamber of Commerce Hotel Shattuck Plaza, 2086 Allston Way, Berkley, CA January 23, 2013 The BATT Program Focus on

More information

A Desalination Battery

A Desalination Battery SUPPORTING INFORMATION A Desalination Battery Mauro Pasta 1, Colin D. Wessells 2, Yi Cui 2,3 and Fabio La Mantia 1, 1 Analytische Chemie Zentrum für Elektrochemie, Ruhr-Universität Bochum, Universitätsstr.

More information

Supplementary information. performance Li-ion battery

Supplementary information. performance Li-ion battery Supplementary information The investigation of Ni(OH) 2 /Ni as anode for high performance Li-ion battery Shibing Ni a, Xiaohu Lv a, Tao Li a, Xuelin Yang a,and Lulu Zhang a College of Mechanical and Material

More information

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition

Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition Materials Chemistry and Physics 90 (2005) 373 377 Microwave dielectric properties and microstructures of MgTa 2 O 6 ceramics with CuO addition Cheng-Liang Huang a,, Kuo-Hau Chiang a, Chi-Yuen Huang b a

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 27, 7, 1-15 Full Paper sensors ISSN 1424-822 27 by MDPI http://www.mdpi.org/sensors Determination of Critical Conditions for the Formation of Electrodeposited Copper Structures Suitable for Electrodes

More information

The object of this experiment is to test the de Broglie relationship for matter waves,

The object of this experiment is to test the de Broglie relationship for matter waves, Experiment #58 Electron Diffraction References Most first year texts discuss optical diffraction from gratings, Bragg s law for x-rays and electrons and the de Broglie relation. There are many appropriate

More information

QUANTIFICATION OF PORE STRUCTURE CHARACTERISTICS FOR DETERIORATED MORTAR DUE TO CALCIUM LEACHING BY SYNCHROTRON MICROTOMOGRAPHY

QUANTIFICATION OF PORE STRUCTURE CHARACTERISTICS FOR DETERIORATED MORTAR DUE TO CALCIUM LEACHING BY SYNCHROTRON MICROTOMOGRAPHY QUANTIFICATION OF PORE STRUCTURE CHARACTERISTICS FOR DETERIORATED MORTAR DUE TO CALCIUM LEACHING BY SYNCHROTRON MICROTOMOGRAPHY Takafumi SUGIYAMA (Hokkaido Univ.) Michael A. B. PROMENTILLA (Hokkaido Univ.)

More information

Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints

Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Microstructural characterisation of interfaces in magnetic pulse welded aluminum/aluminum joints To cite this article: S Sharafiev

More information

Crystallographic Orientation Relationship between Discontinuous Precipitates and Matrix in Commercial AZ91 Mg Alloy

Crystallographic Orientation Relationship between Discontinuous Precipitates and Matrix in Commercial AZ91 Mg Alloy Materials Transactions, Vol. 52, No. 3 (2011) pp. 340 to 344 Special Issue on New Trends for Micro- and Nano Analyses by Transmission Electron Microscopy #2011 The Japan Institute of Metals Crystallographic

More information