Parameter Estimation for the Exponential-Normal Convolution Model

Size: px
Start display at page:

Download "Parameter Estimation for the Exponential-Normal Convolution Model"

Transcription

1 Parameter Estimation for the Exponential-Normal Convolution Model Monnie McGee & Zhongxue Chen Department of Statistical Science Southern Methodist University ENAR Spring Meetings, March 26-29, 2006 p.1/19

2 The Affymetrix Chip Human Genome U133 Plus 2.0 Array Courtesy of Affymetrix Some Definitions Probes = 25 bp sequences Probe sets = 11 to 20 probes corresponding to a particular gene or EST Chip contains 54K probe sets ENAR Spring Meetings, March 26-29, 2006 p.2/19

3 Perfect Match vs. Mismatch PM Probe = 25 bp probe perfectly complementary to a specific region of a gene MM Probe = 25 bp probe agreeing with a PM apart from the middle base. The middle base is a transition (A G, C G) of that base ENAR Spring Meetings, March 26-29, 2006 p.3/19

4 Perfect Match vs. Mismatch PM Probe = 25 bp probe perfectly complementary to a specific region of a gene MM Probe = 25 bp probe agreeing with a PM apart from the middle base. The middle base is a transition (A G, C G) of that base Image Courtesy of Affymetrix ENAR Spring Meetings, March 26-29, 2006 p.3/19

5 Central Dogma of MA Analysis Computing Expression Values for each probe set requires three steps: Background correction Normalization Summarization ENAR Spring Meetings, March 26-29, 2006 p.4/19

6 Central Dogma of MA Analysis Computing Expression Values for each probe set requires three steps: Background correction Normalization Summarization Approaches: Microarray Analysis Suite 5.0 (MAS Affymetrix, 2001, 2003) Model Based Expression Index (MBEI - Li and Wong, 2001a,b) Robust Multichip Analysis (RMA - Irizarry et. al., 2003) GeneChip-RMA (Wu, et. al., 2004) Probe Logarithmic Intensity Error Estimation (PLIER - Affymetrix, 2004) ENAR Spring Meetings, March 26-29, 2006 p.4/19

7 The RMA Approach Background Correction under Exponential-Normal Convolution Model. Normalization via Quantile Normalization. Summarization with Median Polish (Tukey, 1977). Biconductor allows user to interchange methods at any step. ENAR Spring Meetings, March 26-29, 2006 p.5/19

8 Exp-Norm Convolution Model The Convolution Model is given by X = S + Y where X = observed probe level intensity S E(α) = true signal Y TN(µ,σ 2 ) = background noise The true signal can be estimated by E(S X = x) = a + b where a = x µ σ 2 α and b = σ. ( φ( a b ) φ( x a b ) ) Φ( a b ) + Φ(x a b ) 1, ENAR Spring Meetings, March 26-29, 2006 p.6/19

9 CM for the Right Brained... ENAR Spring Meetings, March 26-29, 2006 p.7/19

10 Parameter Estimation Background Corrected intensity is E ij = E(S ij X ij ), where i = 1...G, and j = 1,...,J. We need to estimate µ, σ, and α. ENAR Spring Meetings, March 26-29, 2006 p.8/19

11 Parameter Estimation Background Corrected intensity is E ij = E(S ij X ij ), where i = 1...G, and j = 1,...,J. We need to estimate µ, σ, and α. How does BioC estimate the parameters? µ = Mode of observations to the left of the overall mode σ = Sample standard deviation for observations to left of overall mode α = Mode of observations to the right of the overall mode Shown to perform better than most other approaches (Hein, et. al., 2005). ENAR Spring Meetings, March 26-29, 2006 p.8/19

12 Code for Parameter Estimates > bg.parameters function (pm, n.pts = 2ˆ14) { max.density <- function(x, n.pts) { aux <- density(x, kernel = "epanechnikov", n = n.pts, na.rm = TRUE) aux$x[order(-aux$y)[1]] } pmbg <- max.density(pm, n.pts) bg.data <- pm[pm < pmbg] pmbg <- max.density(bg.data, n.pts) bg.data <- pm[pm < pmbg] bg.data <- bg.data - pmbg bgsd <- sqrt(sum(bg.dataˆ2)/(length(bg.data) - 1)) * sqrt(2) sig.data <- pm[pm > pmbg] sig.data <- sig.data - pmbg expmean <- max.density(sig.data, n.pts) alpha <- 1/expmean mubg <- pmbg list(alpha = alpha, mu = mubg, sigma = bgsd) } ENAR Spring Meetings, March 26-29, 2006 p.9/19

13 Simulation Experiment 100 replications for n = 100, 000. True parameter values of µ = 50, 100, σ = 10, 20, and α = 50, 250. Four methods for estimating α: Mean, Median, 75 th percentile, and th percentile of PM values larger than overall mode Five methods of estimating µ Estimate σ using SD of intensities smaller than ˆµ. ENAR Spring Meetings, March 26-29, 2006 p.10/19

14 Estimating µ Estimate µ with 1. Original method programmed in Bioconductor 2. Overall mode (s) of PM intensities 3. Mode of data to the left of 2s 4. Either of 2 or 3 plus a one-step correction, defined by the formula: ( ) [ ( )] s µ s µ φ ασ = ασ Φ ασ σ σ ENAR Spring Meetings, March 26-29, 2006 p.11/19

15 Results MSE for α, when µ = 50, σ = 10, α = 50 Using BioC 1754 ENAR Spring Meetings, March 26-29, 2006 p.12/19

16 Results MSE for α, when µ = 50, σ = 10, α = 50 Using BioC 1754 ˆµ ˆα Given By Mean Median 75% 99.95% s s s s ENAR Spring Meetings, March 26-29, 2006 p.12/19

17 Performance on Cell Line Data PM intensities compared to original curve for ˆµ = 2s + 1 and various estimates of α. Data: SW 480 Colon Cancer cell line with short term freezing of cells. ENAR Spring Meetings, March 26-29, 2006 p.13/19

18 Performance on Spike-In Data ENAR Spring Meetings, March 26-29, 2006 p.14/19

19 Ongoing and Future Work Distribution-Free Convolution Model Find smallest q 1 % of PM intensities Obtain q 2 % of corresponding MM intensities MM intensities are an estimate of background noise ENAR Spring Meetings, March 26-29, 2006 p.15/19

20 Ongoing and Future Work Distribution-Free Convolution Model Find smallest q 1 % of PM intensities Obtain q 2 % of corresponding MM intensities MM intensities are an estimate of background noise Obtain corrected PM intensities (PM ) using a given number k and PM ˆµ if PM > ˆµ + kˆσ PM = min(pm) = l, PM = ˆµ + kˆσ kˆσ otherwise. ENAR Spring Meetings, March 26-29, 2006 p.15/19

21 Some Preliminary Results DFBC with q 1 = 0.30 and q 2 = 0.90 vs. RMA, GCRMA, MAS 5.0, dchip, and PLIER True Positive Rate RMA RMA 75 Nonpar C GCRMA MAS 5.0 RMA nobg Li Wong PLIER False Positive Rate (FPR) ENAR Spring Meetings, March 26-29, 2006 p.16/19

22 Acknowledgments SMU - UTSW Microarray Analysis Group (SMUT-MAG) Faculty Jennifer Cai Jing Cao Tony Ng Richard Scheuermann William Schucany Jyoti Shaw Burke Squires Xinlei Wang Students Zhongxue Chen Kinfe Gedif Drew Hardin Jobayer Hossain Julia Kozlitina Feng Luo ENAR Spring Meetings, March 26-29, 2006 p.17/19

23 References 1. Affymetrix, Inc (2001). "Statistical Algorithms Reference". Data Analysis Fundamentals Technical Manual, Chapter Affymetrix Technical Note: Design and Performance of the GeneChip Human Genome U133 Plus 2.0 and Human Genome U133A Plus 2.0 Arrays (2003) Affymetrix, Inc (2002). Statistical Algorithms Description Document Affymetrix, Inc (2005). Guide to Probe Logarithmic Intensity Error (PLIER) Estimation. 5. Bolstad BM (2004). Low Level Analysis of High-density Oligonucleotide Array Data: Background, Normalization and Summarization. Dissertation. University of California, Berkeley. 6. Hein AK, Richardson S, Causton H, Ambler GK, and Green PJ (2005). BGX: a fully Bayesian integrated approach to the analysis of Affymetrix GeneChip data. Biostatistics, 6, Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, and Speed TP (2003). Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Research, 31 (4) e15. ENAR Spring Meetings, March 26-29, 2006 p.18/19

24 References Continued 8. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, and Speed TP (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics, 4, Li C and Wong HW (2001). Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection. Proceedings of the National Academy of Sciences, 98 (1): Li C and Wong HW (2001). Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology, 8 (8): research Naef F and Magnasco MO (2003). Solving the riddle of the bright mismatches: Labeling and effective binding in oligonucleotide arrays. Physical Review, Wu Z, Irizarry RA, Gentleman R, Martinez Murillo F, Spencer F (2004) A Model Based Background Adjustement for Oligonucleotide Expression Arrays. Journal of the American Statistical Association, 99, ENAR Spring Meetings, March 26-29, 2006 p.19/19

Improvements to the RMA Algorithm for Gene Expression Microarray Background Correction

Improvements to the RMA Algorithm for Gene Expression Microarray Background Correction Improvements to the RMA Algorithm for Gene Expression Microarray Background Correction Monnie McGee & Zhongxue Chen Department of Statistical Science Southern Methodist University MSU Seminar November

More information

Background and Normalization:

Background and Normalization: Background and Normalization: Investigating the effects of preprocessing on gene expression estimates Ben Bolstad Group in Biostatistics University of California, Berkeley bolstad@stat.berkeley.edu http://www.stat.berkeley.edu/~bolstad

More information

A Distribution Free Summarization Method for Affymetrix GeneChip Arrays

A Distribution Free Summarization Method for Affymetrix GeneChip Arrays A Distribution Free Summarization Method for Affymetrix GeneChip Arrays Zhongxue Chen 1,2, Monnie McGee 1,*, Qingzhong Liu 3, and Richard Scheuermann 2 1 Department of Statistical Science, Southern Methodist

More information

Introduction to Bioinformatics! Giri Narasimhan. ECS 254; Phone: x3748

Introduction to Bioinformatics! Giri Narasimhan. ECS 254; Phone: x3748 Introduction to Bioinformatics! Giri Narasimhan ECS 254; Phone: x3748 giri@cs.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs11.html Reading! The following slides come from a series of talks by Rafael Irizzary

More information

Introduction to gene expression microarray data analysis

Introduction to gene expression microarray data analysis Introduction to gene expression microarray data analysis Outline Brief introduction: Technology and data. Statistical challenges in data analysis. Preprocessing data normalization and transformation. Useful

More information

Expression summarization

Expression summarization Expression Quantification: Affy Affymetrix Genechip is an oligonucleotide array consisting of a several perfect match (PM) and their corresponding mismatch (MM) probes that interrogate for a single gene.

More information

Normalization. Getting the numbers comparable. DNA Microarray Bioinformatics - #27612

Normalization. Getting the numbers comparable. DNA Microarray Bioinformatics - #27612 Normalization Getting the numbers comparable The DNA Array Analysis Pipeline Question Experimental Design Array design Probe design Sample Preparation Hybridization Buy Chip/Array Image analysis Expression

More information

From CEL files to lists of interesting genes. Rafael A. Irizarry Department of Biostatistics Johns Hopkins University

From CEL files to lists of interesting genes. Rafael A. Irizarry Department of Biostatistics Johns Hopkins University From CEL files to lists of interesting genes Rafael A. Irizarry Department of Biostatistics Johns Hopkins University Contact Information e-mail Personal webpage Department webpage Bioinformatics Program

More information

Preprocessing Affymetrix GeneChip Data. Affymetrix GeneChip Design. Terminology TGTGATGGTGGGGAATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT

Preprocessing Affymetrix GeneChip Data. Affymetrix GeneChip Design. Terminology TGTGATGGTGGGGAATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT Preprocessing Affymetrix GeneChip Data Credit for some of today s materials: Ben Bolstad, Leslie Cope, Laurent Gautier, Terry Speed and Zhijin Wu Affymetrix GeneChip Design 5 3 Reference sequence TGTGATGGTGGGGAATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT

More information

2007/04/21.

2007/04/21. 2007/04/21 hmwu@stat.sinica.edu.tw http://idv.sinica.edu.tw/hmwu 1 GeneChip Expression Array Design Assay and Analysis Flow Chart Quality Assessment Low Level Analysis (from probe level data to expression

More information

A note on oligonucleotide expression values not being normally distributed

A note on oligonucleotide expression values not being normally distributed Biostatistics (2009), 10, 3, pp. 446 450 doi:10.1093/biostatistics/kxp003 Advance Access publication on March 10, 2009 A note on oligonucleotide expression values not being normally distributed JOHANNA

More information

Affymetrix GeneChip Arrays. Lecture 3 (continued) Computational and Statistical Aspects of Microarray Analysis June 21, 2005 Bressanone, Italy

Affymetrix GeneChip Arrays. Lecture 3 (continued) Computational and Statistical Aspects of Microarray Analysis June 21, 2005 Bressanone, Italy Affymetrix GeneChip Arrays Lecture 3 (continued) Computational and Statistical Aspects of Microarray Analysis June 21, 2005 Bressanone, Italy Affymetrix GeneChip Design 5 3 Reference sequence TGTGATGGTGGGGAATGGGTCAGAAGGCCTCCGATGCGCCGATTGAGAAT

More information

What does PLIER really do?

What does PLIER really do? What does PLIER really do? Terry M. Therneau Karla V. Ballman Technical Report #75 November 2005 Copyright 2005 Mayo Foundation 1 Abstract Motivation: Our goal was to understand why the PLIER algorithm

More information

affy: Built-in Processing Methods

affy: Built-in Processing Methods affy: Built-in Processing Methods Ben Bolstad October 30, 2017 Contents 1 Introduction 2 2 Background methods 2 2.1 none...................................... 2 2.2 rma/rma2...................................

More information

Exploration, Normalization, Summaries, and Software for Affymetrix Probe Level Data

Exploration, Normalization, Summaries, and Software for Affymetrix Probe Level Data Exploration, Normalization, Summaries, and Software for Affymetrix Probe Level Data Rafael A. Irizarry Department of Biostatistics, JHU March 12, 2003 Outline Review of technology Why study probe level

More information

Probe-Level Data Normalisation: RMA and GC-RMA Sam Robson Images courtesy of Neil Ward, European Application Engineer, Agilent Technologies.

Probe-Level Data Normalisation: RMA and GC-RMA Sam Robson Images courtesy of Neil Ward, European Application Engineer, Agilent Technologies. Probe-Level Data Normalisation: RMA and GC-RMA Sam Robson Images courtesy of Neil Ward, European Application Engineer, Agilent Technologies. References Summaries of Affymetrix Genechip Probe Level Data,

More information

Rafael A Irizarry, Department of Biostatistics JHU

Rafael A Irizarry, Department of Biostatistics JHU Getting Usable Data from Microarrays it s not as easy as you think Rafael A Irizarry, Department of Biostatistics JHU rafa@jhu.edu http://www.biostat.jhsph.edu/~ririzarr http://www.bioconductor.org Acknowledgements

More information

DNA Microarray Data Oligonucleotide Arrays

DNA Microarray Data Oligonucleotide Arrays DNA Microarray Data Oligonucleotide Arrays Sandrine Dudoit, Robert Gentleman, Rafael Irizarry, and Yee Hwa Yang Bioconductor Short Course 2003 Copyright 2002, all rights reserved Biological question Experimental

More information

Oligonucleotide microarray data are not normally distributed

Oligonucleotide microarray data are not normally distributed Oligonucleotide microarray data are not normally distributed Johanna Hardin Jason Wilson John Kloke Abstract Novel techniques for analyzing microarray data are constantly being developed. Though many of

More information

Outline. Analysis of Microarray Data. Most important design question. General experimental issues

Outline. Analysis of Microarray Data. Most important design question. General experimental issues Outline Analysis of Microarray Data Lecture 1: Experimental Design and Data Normalization Introduction to microarrays Experimental design Data normalization Other data transformation Exercises George Bell,

More information

Analysis of Microarray Data

Analysis of Microarray Data Analysis of Microarray Data Lecture 1: Experimental Design and Data Normalization George Bell, Ph.D. Senior Bioinformatics Scientist Bioinformatics and Research Computing Whitehead Institute Outline Introduction

More information

Mixed effects model for assessing RNA degradation in Affymetrix GeneChip experiments

Mixed effects model for assessing RNA degradation in Affymetrix GeneChip experiments Mixed effects model for assessing RNA degradation in Affymetrix GeneChip experiments Kellie J. Archer, Ph.D. Suresh E. Joel Viswanathan Ramakrishnan,, Ph.D. Department of Biostatistics Virginia Commonwealth

More information

Bioinformatics Advance Access published February 10, A New Summarization Method for Affymetrix Probe Level Data

Bioinformatics Advance Access published February 10, A New Summarization Method for Affymetrix Probe Level Data Bioinformatics Advance Access published February 10, 2006 BIOINFORMATICS A New Summarization Method for Affymetrix Probe Level Data Sepp Hochreiter, Djork-Arné Clevert, and Klaus Obermayer Department of

More information

Image Analysis. Based on Information from Terry Speed s Group, UC Berkeley. Lecture 3 Pre-Processing of Affymetrix Arrays. Affymetrix Terminology

Image Analysis. Based on Information from Terry Speed s Group, UC Berkeley. Lecture 3 Pre-Processing of Affymetrix Arrays. Affymetrix Terminology Image Analysis Lecture 3 Pre-Processing of Affymetrix Arrays Stat 697K, CS 691K, Microbio 690K 2 Affymetrix Terminology Probe: an oligonucleotide of 25 base-pairs ( 25-mer ). Based on Information from

More information

Microarray Data Analysis Workshop. Preprocessing and normalization A trailer show of the rest of the microarray world.

Microarray Data Analysis Workshop. Preprocessing and normalization A trailer show of the rest of the microarray world. Microarray Data Analysis Workshop MedVetNet Workshop, DTU 2008 Preprocessing and normalization A trailer show of the rest of the microarray world Carsten Friis Media glna tnra GlnA TnrA C2 glnr C3 C5 C6

More information

Microarray Data Analysis. Normalization

Microarray Data Analysis. Normalization Microarray Data Analysis Normalization Outline General issues Normalization for two colour microarrays Normalization and other stuff for one color microarrays 2 Preprocessing: normalization The word normalization

More information

Probe-Level Data Analysis of Affymetrix GeneChip Expression Data using Open-source Software Ben Bolstad

Probe-Level Data Analysis of Affymetrix GeneChip Expression Data using Open-source Software Ben Bolstad Probe-Level Data Analysis of Affymetrix GeneChip Expression Data using Open-source Software Ben Bolstad bmb@bmbolstad.com http://bmbolstad.com August 7, 2006 1 Outline Introduction to probe-level data

More information

Analysis of Microarray Data

Analysis of Microarray Data Analysis of Microarray Data Lecture 1: Experimental Design and Data Normalization George Bell, Ph.D. Senior Bioinformatics Scientist Bioinformatics and Research Computing Whitehead Institute Outline Introduction

More information

Stochastic Models Inspired by Hybridization Theory for Short Oligonucleotide Arrays

Stochastic Models Inspired by Hybridization Theory for Short Oligonucleotide Arrays Stochastic Models Inspired by Hybridization Theory for Short Oligonucleotide Arrays Zhijin Wu Department of Biostatistics Johns Hopkins Bloomberg School of Public Health North Wolfe Street Baltimore, MD

More information

Comparison of Affymetrix GeneChip Expression Measures

Comparison of Affymetrix GeneChip Expression Measures Johns Hopkins University, Dept. of Biostatistics Working Papers 9-1-2005 Comparison of Affymetrix GeneChip Expression Measures Rafael A. Irizarry Johns Hopkins Bloomberg School of Public Health, Department

More information

Probe-Level Analysis of Affymetrix GeneChip Microarray Data

Probe-Level Analysis of Affymetrix GeneChip Microarray Data Probe-Level Analysis of Affymetrix GeneChip Microarray Data Ben Bolstad http://www.stat.berkeley.edu/~bolstad Michigan State University February 15, 2005 Outline for Today's Talk A brief introduction to

More information

Pre-processing DNA Microarray Data

Pre-processing DNA Microarray Data Pre-processing DNA Microarray Data Sandrine Dudoit, Robert Gentleman, Rafael Irizarry, and Yee Hwa Yang Bioconductor Short Course Winter 2002 Copyright 2002, all rights reserved Biological question Experimental

More information

AFFYMETRIX c Technology and Preprocessing Methods

AFFYMETRIX c Technology and Preprocessing Methods Analysis of Genomic and Proteomic Data AFFYMETRIX c Technology and Preprocessing Methods bhaibeka@ulb.ac.be Université Libre de Bruxelles Institut Jules Bordet Table of Contents AFFYMETRIX c Technology

More information

Supplementary Material to A note on oligonucleotide expression values not being normally distributed

Supplementary Material to A note on oligonucleotide expression values not being normally distributed Supplementary Material to A note on oligonucleotide expression values not being normally distributed JOHANNA HARDIN JASON WILSON Dept. of Mathematics, Dept. of Mathematics, Pomona College, Biola University,

More information

New Spiked-In Probe Sets for the Affymetrix HGU-133A Latin Square Experiment

New Spiked-In Probe Sets for the Affymetrix HGU-133A Latin Square Experiment COBRA Preprint Series Year 2006 Paper 5 New Spiked-In Probe Sets for the Affymetrix HGU-133A Latin Square Experiment Monnie McGee Zhongxue Chen Southern Methodist University, mmcgee@smu.edu University

More information

Exploration, normalization, and summaries of high density oligonucleotide array probe level data

Exploration, normalization, and summaries of high density oligonucleotide array probe level data Biostatistics (2003), 4, 2,pp. 249 264 Printed in Great Britain Exploration, normalization, and summaries of high density oligonucleotide array probe level data RAFAEL A. IRIZARRY Department of Biostatistics,

More information

From hybridization theory to microarray data analysis: performance evaluation

From hybridization theory to microarray data analysis: performance evaluation RESEARCH ARTICLE Open Access From hybridization theory to microarray data analysis: performance evaluation Fabrice Berger * and Enrico Carlon * Abstract Background: Several preprocessing methods are available

More information

Pre-processing DNA Microarray Data

Pre-processing DNA Microarray Data Pre-processing DNA Microarray Data Short course: Practical Analysis of DNA Microarray Data Instructors: Vince Carey & Sandrine Dudoit KolleKolle, Denmark October 26-28, 2003 1 Slides from Short Courses

More information

Identification of spatial biases in Affymetrix oligonucleotide microarrays

Identification of spatial biases in Affymetrix oligonucleotide microarrays Identification of spatial biases in Affymetrix oligonucleotide microarrays Jose Manuel Arteaga-Salas, Graham J. G. Upton, William B. Langdon and Andrew P. Harrison University of Essex, U. K. Agenda 1.

More information

Microarray probe expression measures, data normalization and statistical validation

Microarray probe expression measures, data normalization and statistical validation Comparative and Functional Genomics Comp Funct Genom 2003; 4: 442 446. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.312 Conference Review Microarray probe expression

More information

Lecture 2: March 8, 2007

Lecture 2: March 8, 2007 Analysis of DNA Chips and Gene Networks Spring Semester, 2007 Lecture 2: March 8, 2007 Lecturer: Rani Elkon Scribe: Yuri Solodkin and Andrey Stolyarenko 1 2.1 Low Level Analysis of Microarrays 2.1.1 Introduction

More information

Detection and Restoration of Hybridization Problems in Affymetrix GeneChip Data by Parametric Scanning

Detection and Restoration of Hybridization Problems in Affymetrix GeneChip Data by Parametric Scanning 100 Genome Informatics 17(2): 100-109 (2006) Detection and Restoration of Hybridization Problems in Affymetrix GeneChip Data by Parametric Scanning Tomokazu Konishi konishi@akita-pu.ac.jp Faculty of Bioresource

More information

A GENOTYPE CALLING ALGORITHM FOR AFFYMETRIX SNP ARRAYS

A GENOTYPE CALLING ALGORITHM FOR AFFYMETRIX SNP ARRAYS Bioinformatics Advance Access published November 2, 2005 The Author (2005). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

More information

The Affymetrix platform for gene expression analysis Affymetrix recommended QA procedures The RMA model for probe intensity data Application of the

The Affymetrix platform for gene expression analysis Affymetrix recommended QA procedures The RMA model for probe intensity data Application of the 1 The Affymetrix platform for gene expression analysis Affymetrix recommended QA procedures The RMA model for probe intensity data Application of the fitted RMA model to quality assessment 2 3 Probes are

More information

Preprocessing Methods for Two-Color Microarray Data

Preprocessing Methods for Two-Color Microarray Data Preprocessing Methods for Two-Color Microarray Data 1/15/2011 Copyright 2011 Dan Nettleton Preprocessing Steps Background correction Transformation Normalization Summarization 1 2 What is background correction?

More information

An Exploration of Affymetrix Probe-Set Intensities in Spike-In Experiments

An Exploration of Affymetrix Probe-Set Intensities in Spike-In Experiments An Exploration of Affymetrix Probe-Set Intensities in Spike-In Experiments Karla V. Ballman Terry M. Therneau Technical Report #74 July 2005 Copyright 2005 Mayo Foundation 1 Introduction Yogi Berra once

More information

Bioinformatics III Structural Bioinformatics and Genome Analysis. PART II: Genome Analysis. Chapter 7. DNA Microarrays

Bioinformatics III Structural Bioinformatics and Genome Analysis. PART II: Genome Analysis. Chapter 7. DNA Microarrays Bioinformatics III Structural Bioinformatics and Genome Analysis PART II: Genome Analysis Chapter 7. DNA Microarrays 7.1 Motivation 7.2 DNA Microarray History and current states 7.3 DNA Microarray Techniques

More information

Comparison of Microarray Pre-Processing Methods

Comparison of Microarray Pre-Processing Methods Comparison of Microarray Pre-Processing Methods K. Shakya, H. J. Ruskin, G. Kerr, M. Crane, J. Becker Dublin City University, Dublin 9, Ireland Abstract Data pre-processing in microarray technology is

More information

Gene Signal Estimates from Exon Arrays

Gene Signal Estimates from Exon Arrays Gene Signal Estimates from Exon Arrays I. Introduction: With exon arrays like the GeneChip Human Exon 1.0 ST Array, researchers can examine the transcriptional profile of an entire gene (Figure 1). Being

More information

ADVANCED STATISTICAL METHODS FOR GENE EXPRESSION DATA

ADVANCED STATISTICAL METHODS FOR GENE EXPRESSION DATA ADVANCED STATISTICAL METHODS FOR GENE EXPRESSION DATA Veera Baladandayuthapani & Kim-Anh Do University of Texas M.D. Anderson Cancer Center Houston, Texas, USA veera@mdanderson.org Course Website: http://odin.mdacc.tmc.edu/

More information

CS-E5870 High-Throughput Bioinformatics Microarray data analysis

CS-E5870 High-Throughput Bioinformatics Microarray data analysis CS-E5870 High-Throughput Bioinformatics Microarray data analysis Harri Lähdesmäki Department of Computer Science Aalto University September 20, 2016 Acknowledgement for J Salojärvi and E Czeizler for the

More information

MAOSA: A new procedure for detection of differential gene expression

MAOSA: A new procedure for detection of differential gene expression Statistical Methodology 3 (2006) 42 54 www.elsevier.com/locate/stamet MAOSA: A new procedure for detection of differential gene expression Greg Dyson a,,c.f.jeffwu b a Department of Human Genetics, University

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Kevin Coombes Section of Bioinformatics Department of Biostatistics and Applied Mathematics UT M. D. Anderson Cancer Center kabagg@mdanderson.org

More information

Measuring gene expression (Microarrays) Ulf Leser

Measuring gene expression (Microarrays) Ulf Leser Measuring gene expression (Microarrays) Ulf Leser This Lecture Gene expression Microarrays Idea Technologies Problems Quality control Normalization Analysis next week! 2 http://learn.genetics.utah.edu/content/molecules/transcribe/

More information

Comparison of Normalization Methods in Microarray Analysis

Comparison of Normalization Methods in Microarray Analysis Comparison of Normalization Methods in Microarray Analysis Comparison of Normalization Methods in Micro array Analysis By Rong Yang, B.S. A Project Submitted to the School of Graduate Studies in Partial

More information

A learned comparative expression measure for Affymetrix GeneChip DNA microarrays

A learned comparative expression measure for Affymetrix GeneChip DNA microarrays Proceedings of the Computational Systems Bioinformatics Conference, August 8-11, 2005, Stanford, CA. pp. 144-154. A learned comparative expression measure for Affymetrix GeneChip DNA microarrays Will Sheffler

More information

Background Correction and Normalization. Lecture 3 Computational and Statistical Aspects of Microarray Analysis June 21, 2005 Bressanone, Italy

Background Correction and Normalization. Lecture 3 Computational and Statistical Aspects of Microarray Analysis June 21, 2005 Bressanone, Italy Background Correction and Normalization Lecture 3 Computational and Statistical Aspects of Microarray Analysis June 21, 2005 Bressanone, Italy Feature Level Data Outline Affymetrix GeneChip arrays Two

More information

Identifying Candidate Informative Genes for Biomarker Prediction of Liver Cancer

Identifying Candidate Informative Genes for Biomarker Prediction of Liver Cancer Identifying Candidate Informative Genes for Biomarker Prediction of Liver Cancer Nagwan M. Abdel Samee 1, Nahed H. Solouma 2, Mahmoud Elhefnawy 3, Abdalla S. Ahmed 4, Yasser M. Kadah 5 1 Computer Engineering

More information

Introduction to Bioinformatics and Gene Expression Technology

Introduction to Bioinformatics and Gene Expression Technology Vocabulary Introduction to Bioinformatics and Gene Expression Technology Utah State University Spring 2014 STAT 5570: Statistical Bioinformatics Notes 1.1 Gene: Genetics: Genome: Genomics: hereditary DNA

More information

Lecture #1. Introduction to microarray technology

Lecture #1. Introduction to microarray technology Lecture #1 Introduction to microarray technology Outline General purpose Microarray assay concept Basic microarray experimental process cdna/two channel arrays Oligonucleotide arrays Exon arrays Comparing

More information

HELP Microarray Analytical Tools

HELP Microarray Analytical Tools HELP Microarray Analytical Tools Reid F. Thompson October 30, 2017 Contents 1 Introduction 2 2 Changes for HELP in current BioC release 3 3 Data import and Design information 4 3.1 Pair files and probe-level

More information

HELP Microarray Analytical Tools

HELP Microarray Analytical Tools HELP Microarray Analytical Tools Reid F. Thompson October 30, 2017 Contents 1 Introduction 2 2 Changes for HELP in current BioC release 3 3 Data import and Design information 4 3.1 Pair files and probe-level

More information

HELP Microarray Analytical Tools

HELP Microarray Analytical Tools HELP Microarray Analytical Tools Reid F. Thompson October 30, 2018 Contents 1 Introduction 2 2 Changes for HELP in current BioC release 3 3 Data import and Design information 4 3.1 Pair files and probe-level

More information

Description of Logit-t: Detecting Differentially Expressed Genes Using Probe-Level Data

Description of Logit-t: Detecting Differentially Expressed Genes Using Probe-Level Data Description of Logit-t: Detecting Differentially Expressed Genes Using Probe-Level Data Tobias Guennel October 22, 2008 Contents 1 Introduction 2 2 What s new in this version 3 3 Preparing data for use

More information

Ning Tang ALL RIGHTS RESERVED

Ning Tang ALL RIGHTS RESERVED 2014 Ning Tang ALL RIGHTS RESERVED ROBUST GENE SET ANALYSIS AND ROBUST GENE EXPRESSION By NING TANG A dissertation submitted to the Graduate School New Brunswick Rutgers, The State University of New Jersey

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Measure of the linear correlation (dependence) between two variables X and Y Takes a value between +1 and 1 inclusive 1 = total positive correlation 0 = no correlation 1 = total negative correlation. When

More information

New Statistical Algorithms for Monitoring Gene Expression on GeneChip Probe Arrays

New Statistical Algorithms for Monitoring Gene Expression on GeneChip Probe Arrays GENE EXPRESSION MONITORING TECHNICAL NOTE New Statistical Algorithms for Monitoring Gene Expression on GeneChip Probe Arrays Introduction Affymetrix has designed new algorithms for monitoring GeneChip

More information

STATC 141 Spring 2005, April 5 th Lecture notes on Affymetrix arrays. Materials are from

STATC 141 Spring 2005, April 5 th Lecture notes on Affymetrix arrays. Materials are from STATC 141 Spring 2005, April 5 th Lecture notes on Affymetrix arrays Materials are from http://www.ohsu.edu/gmsr/amc/amc_technology.html The GeneChip high-density oligonucleotide arrays are fabricated

More information

Exercise on Microarray data analysis

Exercise on Microarray data analysis Exercise on Microarray data analysis Aim The aim of this exercise is to introduce basic data analysis of transcriptome data using the statistical software R. The exercise is divided in two parts. First,

More information

Analysis of a Proposed Universal Fingerprint Microarray

Analysis of a Proposed Universal Fingerprint Microarray Analysis of a Proposed Universal Fingerprint Microarray Michael Doran, Raffaella Settimi, Daniela Raicu, Jacob Furst School of CTI, DePaul University, Chicago, IL Mathew Schipma, Darrell Chandler Bio-detection

More information

Humboldt Universität zu Berlin. Grundlagen der Bioinformatik SS Microarrays. Lecture

Humboldt Universität zu Berlin. Grundlagen der Bioinformatik SS Microarrays. Lecture Humboldt Universität zu Berlin Microarrays Grundlagen der Bioinformatik SS 2017 Lecture 6 09.06.2017 Agenda 1.mRNA: Genomic background 2.Overview: Microarray 3.Data-analysis: Quality control & normalization

More information

Joint Estimation of Calibration and Expression for High-Density Oligonucleotide Arrays

Joint Estimation of Calibration and Expression for High-Density Oligonucleotide Arrays Joint Estimation of Calibration and Expression for High-Density Oligonucleotide Arrays Ann L. Oberg, Douglas W. Mahoney, Karla V. Ballman, Terry M. Therneau Department of Health Sciences Research, Division

More information

Package bgx. R topics documented: March 9, Title Bayesian Gene expression Version

Package bgx. R topics documented: March 9, Title Bayesian Gene expression Version Title Bayesian Gene expression Version 1.48.1 Package bgx March 9, 2019 Author Ernest Turro, Graeme Ambler, Anne-Mette K Hein Maintainer Ernest Turro Description Bayesian integrated analysis

More information

Mouse expression data were normalized using the robust multiarray algorithm (1) using

Mouse expression data were normalized using the robust multiarray algorithm (1) using Supplementary Information Bioinformatics statistical analysis of microarray data Mouse expression data were normalized using the robust multiarray algorithm (1) using a custom probe set definition that

More information

Pre- Processing Methodologies for Microarray Gene Data for Cancer Detection

Pre- Processing Methodologies for Microarray Gene Data for Cancer Detection IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 205 ISSN (online): 232-063 Pre- Processing Methodologies for Microarray Gene Data for Cancer Detection Shashank K S

More information

A Model Based Background Adjustment for. Oligonucleotide Expression Arrays

A Model Based Background Adjustment for. Oligonucleotide Expression Arrays Model Based Background djustment for Oligonucleotide Expression rrays pril 18, 004 bstract High density oligonucleotide expression arrays are widely used in many areas of biomedical research. ffymetrix

More information

FEATURE-LEVEL EXPLORATION OF THE CHOE ET AL. AFFYMETRIX GENECHIP CONTROL DATASET

FEATURE-LEVEL EXPLORATION OF THE CHOE ET AL. AFFYMETRIX GENECHIP CONTROL DATASET Johns Hopkins University, Dept. of Biostatistics Working Papers 3-17-2006 FEATURE-LEVEL EXPLORATION OF THE CHOE ET AL. AFFYETRIX GENECHIP CONTROL DATASET Rafael A. Irizarry Johns Hopkins Bloomberg School

More information

PLM Extensions. B. M. Bolstad. October 30, 2013

PLM Extensions. B. M. Bolstad. October 30, 2013 PLM Extensions B. M. Bolstad October 30, 2013 1 Algorithms 1.1 Probe Level Model - robust (PLM-r) The goal is to dynamically select rows and columns for down-weighting. As with the standard PLM approach,

More information

SPH 247 Statistical Analysis of Laboratory Data

SPH 247 Statistical Analysis of Laboratory Data SPH 247 Statistical Analysis of Laboratory Data April 14, 2015 SPH 247 Statistical Analysis of Laboratory Data 1 Basic Design of Expression Arrays For each gene that is a target for the array, we have

More information

Microarray Informatics

Microarray Informatics Microarray Informatics Donald Dunbar MSc Seminar 31 st January 2007 Aims To give a biologist s view of microarray experiments To explain the technologies involved To describe typical microarray experiments

More information

Identification of biological themes in microarray data from a mouse heart development time series using GeneSifter

Identification of biological themes in microarray data from a mouse heart development time series using GeneSifter Identification of biological themes in microarray data from a mouse heart development time series using GeneSifter VizX Labs, LLC Seattle, WA 98119 Abstract Oligonucleotide microarrays were used to study

More information

A Statistical Framework for the Analysis of Microarray Probe-Level Data

A Statistical Framework for the Analysis of Microarray Probe-Level Data Johns Hopkins University, Dept. of Biostatistics Working Papers 3-1-2005 A Statistical Framework for the Analysis of Microarray Probe-Level Data Zhijin Wu Department of Biostatistics, Johns Hopkins Bloomberg

More information

Computational Biology Lecture #11: OMICS: Transcriptomics & Proteomics. Probes & ProbeSets in Affymetrix Chips

Computational Biology Lecture #11: OMICS: Transcriptomics & Proteomics. Probes & ProbeSets in Affymetrix Chips Computational Biology Lecture #11: OMICS: Transcriptomics & Proteomics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Nov 28 2005 L7-1 Probes & ProbeSets in Affymetrix Chips L7-2

More information

Intro to Microarray Analysis. Courtesy of Professor Dan Nettleton Iowa State University (with some edits)

Intro to Microarray Analysis. Courtesy of Professor Dan Nettleton Iowa State University (with some edits) Intro to Microarray Analysis Courtesy of Professor Dan Nettleton Iowa State University (with some edits) Some Basic Biology Genes are DNA sequences that code for proteins. (e.g. gene lengths perhaps 1000

More information

Deakin Research Online

Deakin Research Online Deakin Research Online This is the published version: Church, Philip, Goscinski, Andrzej, Wong, Adam and Lefevre, Christophe 2011, Simplifying gene expression microarray comparative analysis., in BIOCOM

More information

Meta-analysis combines Affymetrix microarray results across laboratories

Meta-analysis combines Affymetrix microarray results across laboratories Comparative and Functional Genomics Comp Funct Genom 2005; 6: 116 122. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.460 Conference Paper Meta-analysis combines

More information

t-test at the Probe Level: An Alternative Method to Identify Statistically Significant Genes for Microarray Data

t-test at the Probe Level: An Alternative Method to Identify Statistically Significant Genes for Microarray Data Microarrays 2014, 3, 340-351; doi:10.3390/microarrays3040340 OPEN ACCESS microarrays ISSN 2076-3905 www.mdpi.com/journal/microarrays Article t-test at the Probe Level: An Alternative Method to Identify

More information

An Interactive Power Analysis Tool for Microarray Hypothesis Testing and Generation

An Interactive Power Analysis Tool for Microarray Hypothesis Testing and Generation BIOINFOTICS Vol. no. 6, pages 7 doi:.9/bioinformatics/bti??? Gene expression An Interactive Power Analysis Tool for Microarray Hypothesis Testing and Generation Jinwook Seo*, Heather Gordish-Dressman,

More information

Analyzing DNA Microarray Data Using Bioconductor

Analyzing DNA Microarray Data Using Bioconductor Analyzing DNA Microarray Data Using Bioconductor Sandrine Dudoit and Rafael Irizarry Short Course on Mathematical Approaches to the Analysis of Complex Phenotypes The Jackson Laboratory, Bar Harbor, Maine

More information

A Parallel Approach to Microarray Preprocessing and Analysis

A Parallel Approach to Microarray Preprocessing and Analysis A Parallel Approach to Microarray and Patrick Breheny 2007 Outline The Central Dogma Purifying and labeling RNA Measuring of the amount of RNA corresponding to specific genes requires a number of steps,

More information

The effect of normalization methods on the identification of differentially expressed genes in microarray data

The effect of normalization methods on the identification of differentially expressed genes in microarray data School of Humanities and Informatics Dissertation in Bioinformatics 20p Advanced level Spring term 2006 The effect of normalization methods on the identification of differentially expressed genes in microarray

More information

Normalizing Affy microarray data

Normalizing Affy microarray data Normalizing Affy microarray data All product names are given as examples only and they are not endorsed by the USDA or the University of Illinois. INTRODUCTION The following is an interactive demo describing

More information

An overview of image-processing methods for Affymetrix GeneChips

An overview of image-processing methods for Affymetrix GeneChips An overview of image-processing methods for Affymetrix GeneChips Jose M. Arteaga-Salas 1,$, Harry Zuzan 2,$, William B. Langdon 1,3, Graham J. G. Upton 1 and Andrew P. Harrison 1,3,* 1 Department of Mathematical

More information

FACTORS CONTRIBUTING TO VARIABILITY IN DNA MICROARRAY RESULTS: THE ABRF MICROARRAY RESEARCH GROUP 2002 STUDY

FACTORS CONTRIBUTING TO VARIABILITY IN DNA MICROARRAY RESULTS: THE ABRF MICROARRAY RESEARCH GROUP 2002 STUDY FACTORS CONTRIBUTING TO VARIABILITY IN DNA MICROARRAY RESULTS: THE ABRF MICROARRAY RESEARCH GROUP 2002 STUDY K. L. Knudtson 1, C. Griffin 2, A. I. Brooks 3, D. A. Iacobas 4, K. Johnson 5, G. Khitrov 6,

More information

Artificial Intelligence in Medicine

Artificial Intelligence in Medicine Artificial Intelligence in Medicine Title Comprehensive Detection of Cancer Gene Expression Profiles and Gene Networks are Impacted by the Choice of Pre-Processing Algorithm and Gene-Selection Method.

More information

Integrative Genomics 1a. Introduction

Integrative Genomics 1a. Introduction 2016 Course Outline Integrative Genomics 1a. Introduction ggibson.gt@gmail.com http://www.cig.gatech.edu 1a. Experimental Design and Hypothesis Testing (GG) 1b. Normalization (GG) 2a. RNASeq (MI) 2b. Clustering

More information

"Harshlighting" small blemishes on microarrays

Harshlighting small blemishes on microarrays BMC Bioinformatics This Provisional PDF corresponds to the article as it appeared upon acceptance. The fully-formatted PDF version will become available shortly after the date of publication, from the

More information

Introduction to microarrays

Introduction to microarrays Bayesian modelling of gene expression data Alex Lewin Sylvia Richardson (IC Epidemiology) Tim Aitman (IC Microarray Centre) Philippe Broët (INSERM, Paris) In collaboration with Anne-Mette Hein, Natalia

More information

Exploration and Analysis of DNA Microarray Data

Exploration and Analysis of DNA Microarray Data Exploration and Analysis of DNA Microarray Data Dhammika Amaratunga Senior Research Fellow in Nonclinical Biostatistics Johnson & Johnson Pharmaceutical Research & Development Javier Cabrera Associate

More information

Exam 1 from a Past Semester

Exam 1 from a Past Semester Exam from a Past Semester. Provide a brief answer to each of the following questions. a) What do perfect match and mismatch mean in the context of Affymetrix GeneChip technology? Be as specific as possible

More information