Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma

Size: px
Start display at page:

Download "Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma"

Transcription

1 Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma Alexander Fridman, Alexander Gutsol Young I Cho, Chiranjeev Kalra Plasma Catalysis Vs. Plasma Processing Methane Conversion to Hydrogen Gliding Arc in Tornado Experiments and Modeling Plasma Catalytic Conversion of Hydrocarbons as Hydrogen Production Technology

2 Plasma-Chemical Hydrogen Production from Water H 2 O= H 2 + ½ O ev n, % CO 2 = CO + ½ O ev ev E v, mol

3 Two Step Plasma Cycle for Hydrogen Production CO 2 = CO + ½ O ev CO 2 Non-Equilibrium Plasma CO 2 dissociation CO 2, CO, O 2 O 2 Gas Separation Unit CO 2 CO 2 Catalytic Shift Unit CO H 2 O CO+H 2 O= H 2 + CO ev H 2

4 Plasma Catalysis Vs. Thermo- Catalytic Partial Oxidation Catalysis CH 4 + 1/2 (O N 2 ) Temperature CO + 2 H N kj/mol Thermo-Catalytic Conversion: High Temperature Requirements (>1100K) Large Specific Size of Reactor Special Materials Requirements and Reactor Design Sulfur from Natural Gas Causes Catalyst Poisoning Low Conversion at Moderate Equivalence Ratios ( ) Plasma-Catalysis: Low Temperature Operation (~750K) Large Specific Productivity Lower Temperature Requirements No Sensitivity to sulfur or other impurities Possibility to Operate at High Equivalence ( )

5 Plasma As Catalyst Plasma Catalytic Hydrogen Production from Natural Gas gas chromatography Plasma PO optimal parameters: gas sampling GLIDING ARC REACTOR CH O 2 = CO + 2 H 2 optimal equivalence ratio = 3.3, [O2]/ [CH4]=0.6 mixing chamber Flow controllers Temperature controller Quartz heater power supply resistor box Oscilloscope & data acquisition Preheating temperature = Internal, 750K Conversion = 92% Electric energy cost : experimental = 0.06 kwh/m 3 modeling EQ = 0.11 kwh/m 3 modeling NE = 0.07 kwh/m 3 Output Syn-Gas energy = 3.00 kwh/m 3 power for 100,000 barrel/day of Liquid Fuel: experimental = 4.5 MW modeling EQ = 8.2 MW modeling NE= 5.2 MW

6 Which Plasma to Choose? Thermal Plasma Non-Thermal Plasma X-ray view of the sun Aurora ICP Torch TORNADO Gliding Arc Corona Discharge

7 Gliding Arc as Transitional Non-Equilibrium Plasma: THERMAL PLASMA Very High Plasma power and density. High Gas temperature. No selective chemical process can be achieved. NON-THERMAL PLASMA Low gas temperature and very high electron temperature. Low Power Density Chemical Selectivity can be achieved. MAJOR CHALLENGES : Power Density & Productivity. Selectivity. Gliding Arc in Tornado

8 GLIDING ARC in Flat Geometry Fast Equilibrium to Non-Equilibrium Transition Arc starts in a narrow gap between diverging electrodes in a gas flow. Current increases very fast and the voltage on the arc drops. Gas flow forces the arc to move along the diverging electrodes and elongate. The growing arc demands more power to sustain itself. Arc cools down and becomes Non-Equilibrium to sustain itself with less power.

9 GLIDING ARC in Flat Geometry Fast Equilibrium to Non-Equilibrium Transition Extinction Elongation Initial Breakdown

10 Non-Equilibrium Gliding Arc Reactor l Point of Total Extinction Point of Developed Gliding Arc when Maximum Energy is Transferred Point of Gliding Arc Ignition J Power (W) P* P* P max P max P* P max R = 25 kohm R = 50 kohm R = 100 kohm Gas inlet DC Power Supply R V o Current (A) Electrical scheme of the DC Gliding Arc. R = 100 kohm R = 25 kohm R = 50 kohm R = 50 kohm R = 100 kohm R = 25 kohm

11 Reverse Vortex Flow (Tornado) Stabilization of Gliding Arc Methane Syn-Gas out Nozzle For reverse Vortex flow Syn-Gas out Reverse Vortex flow Circumferential Velocity component Reverse Vortex flow Axial velocity component Air Air

12 Gas Burner with Reverse Vortex Flow, Tornado Stabilization of Flame ε 0.5 ε 1.1 ε 1.8

13 THE GLIDING ARC IN TORNADO Gliding Arc in Tornado Flow Ground Discharge Zone Spiral Electrode Anode Tangential Gas inlet Cylindrical Volume Gliding Arc in Tornado works in a Reverse Vortex Flow setup. A circular and spiral electrode is placed in the plane of the flow act as diverging High Voltage DC Electrodes. Ring Electrode High Voltage DC Axial Inlet Schematic Diagram for GAT reactor. The flow conditions and the characteristics of the power supply determine the shape of the spiral electrode.

14 Gliding Arc Tornado From the Spiral to the Ring

15 Gliding of Arc on Spiral Electrodes in Reverse Vortex Flow The arc ignites as an equilibrium discharge and elongates on the Spiral Electrode

16 It Can Melt a Metal Rod But You Can Touch It

17 EXPERIMENTAL SETUP Gas Chromatography Gas Sampling Gliding Arc Reactor resistor box power supply Flow Controllers Heat Exchanger Oscilloscope & data acquisition

18 Plasma Catalytic Methane Partial Oxidation THE EXPERIMENTAL SETUP FIRED AT EQUIVALENCE RATIO 4. Syn-gas Burner Plasma-Catalytic Reactor

19 Chemical Kinetics Simulation The entire process includes three main stages: 1.) Electric discharge stage 2.) Mixing of air and post discharge methane. 3.) Post discharge regime. The neutral species chemistry was described by the GRI-MECH 2.11 kinetic scheme including 65 species and 200 reactions. In the post discharge region the gas mixture is allowed to react within a certain residence time, with small heat losses. The syn-gas production is characterized by two stages: 1.) The short combustion zone. 2.) The longer zone, which can be called as the reforming zone At the first stage the concentrations of O and OH radicals are relatively large, and it is characterized by very fast chemistry. At the second stage, much slower chemistry takes place. Water and CO2 are consumed, yielding hydrogen and CO, the corresponding reaction are endothermic ones, causing the observable temperature decrease.

20 Simulation Vs Experiments The conversion degree: α = ([H2] + [CO]) / 3[CH4] Conversion Degree Equivalence Ratio Modeling results With plasma Experimental results with plasma Modeling results without plasma Experimental results without plasma

21 Simulation Vs Experiments Electric Energy Cost = W el (KW-hr)/ meter cube of Syn-Gas (Output Syn-Gas Energy = 3.00 kwh/m 3 ) Electric Energy Cost (KWhr/m^3 of syngas) Equivalence Ratio Modeling results Experimental results

22 Simulation Vs Experiments Methane Energy Cost = [CH4] (KW-hr) per meter-cube of Syn-Gas 10 9 Methane Energy cost KW-hr/m^3 of wyn gas Equivalence Ratio Modeling results with Plasma Experimental results with plasma Modeling results without plasma Experimental results without plasma

23 10 Simulation Vs Experiments Total Energy Cost = (Electric Energy Cost + Methane Energy Cost) per meter Cube of Syn-Gas 9 Energy Cost (KWhr/m^3 of syngas) Equivalence Ratio Modeling results With plasma Experimental results with plasma Modeling results without plasma Experimental results without plasma

24 Simulation Vs Experiments Efficiency = KW-hr of Syn-Gas Produced / Total Energy Input in KW-hr Theoretical maximum efficiency can be Efficiency Equivalence Ratio Modeling results With plasma Experimental results with plasma Modeling results without plasma Experimental results without plasma

25 Plasma Catalysis Highlights: Only 2.0% of Total Energy Consumption Required for Plasma Power Electric Energy Cost 0.06 kwh/m3 of syn-gas (energy from syn-gas = 3.0 KW-hr/m 3 ). 92% conversion at Equivalence ratio of 3.3. Internal Heat Recuperation (Preheating) at 750 K. No soot Deposition. Large Specific Production rates due to low residence times. Effective for Higher Hydrocarbon conversion to Syn-Gas. Not Sensitive to Sulfur and Other Impurities.

26 Best Regards, Chiranjeev Kalra from the city of brotherly love

PLASMA-ASSISTED COMBUSTION SYNTHESIS OF HYDROGEN

PLASMA-ASSISTED COMBUSTION SYNTHESIS OF HYDROGEN PLASMA-ASSISTED COMBUSTION SYNTHESIS OF HYDROGEN Alexander Fridman, Drexel University Hydrogen Production from Hydrocarbons, H2O and H2S, Stimulated by Non-Thermal Atmospheric Pressure Plasma Plasma-Chemical

More information

NON THERMAL PLASMA CONVERSION OF PYROGAS INTO SYNTHESIS GAS

NON THERMAL PLASMA CONVERSION OF PYROGAS INTO SYNTHESIS GAS NON THERMAL PLASMA CONVERSION OF PYROGAS INTO SYNTHESIS GAS Fela Odeyemi, Alexander Rabinovich, and Alexander Fridman Mechanical Engineering and Mechanics Department, Drexel University, Philadelphia PA

More information

Gliding arc in tornado using a reverse vortex flow

Gliding arc in tornado using a reverse vortex flow REVIEW OF SCIENTIFIC INSTRUMENTS 76, 025110 2005 Gliding arc in tornado using a reverse vortex flow Chiranjeev S. Kalra, Young I. Cho, a Alexànder Gutsol, and Alexander Fridman Department of Mechanical

More information

Production of synthesis gas from methane by high temperature

Production of synthesis gas from methane by high temperature Production of synthesis gas from methane by high temperature Popov Viktor E., Surov A.V., Subbotin D.I., Popov S.D., Serba E.O., Obraztsov N.V. Institute for Electrophysics and Electric Power of the Russian

More information

A NON-THERMAL GLIDING ARC PLASMA REFORMER FOR SYNGAS PRODUCTION

A NON-THERMAL GLIDING ARC PLASMA REFORMER FOR SYNGAS PRODUCTION 3rd Thermal and Fluids Engineering Conference (TFEC) March 4 7, 2018 Fort Lauderdale, FL, USA TFEC-2018-22074 A NON-THERMAL GLIDING ARC PLASMA REFORMER FOR SYNGAS PRODUCTION Howard Pearlman 1*, Max Demydovych

More information

Partial Oxidation and Autothermal Reforming of Heavy Hydrocarbon Fuels with Non- Equilibrium Gliding Arc Plasma for Fuel Cell Applications.

Partial Oxidation and Autothermal Reforming of Heavy Hydrocarbon Fuels with Non- Equilibrium Gliding Arc Plasma for Fuel Cell Applications. Partial Oxidation and Autothermal Reforming of Heavy Hydrocarbon Fuels with Non- Equilibrium Gliding Arc Plasma for Fuel Cell Applications A Thesis Submitted to the Faculty of Drexel University by Michael

More information

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS

HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS PSFC/RR-01-1 HYDROGEN MANUFACTURING USING LOW CURRENT, NON-THERMAL PLASMA BOOSTED FUEL CONVERTERS L. Bromberg, D.R. Cohn, A. Rabinovich and N. Alexeev December 11, 2000 * Plasma Science and Fusion Center

More information

Plasma Reforming of Diesel Fuel. L. Bromberg, A. Rabinovich, N. Alexeev,and D.R. Cohn. March 1999

Plasma Reforming of Diesel Fuel. L. Bromberg, A. Rabinovich, N. Alexeev,and D.R. Cohn. March 1999 PSFC/JA-99-4 Plasma Reforming of Diesel Fuel L. Bromberg, A. Rabinovich, N. Alexeev,and D.R. Cohn March 1999 Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139 To

More information

Dynamic Plasma-Liquid System with Discharge in Reverse Vortex Flow of Tornado Type

Dynamic Plasma-Liquid System with Discharge in Reverse Vortex Flow of Tornado Type 20 International Journal of Plasma Environmental Science & Technology, Vol.5, No.1, MARCH 2011 Dynamic Plasma-Liquid System with Discharge in Reverse Vortex Flow of Tornado Type O. A. Nedybaliuk, V. Ya.

More information

Rapid Production of Hydrogen-Rich Syngas Using a Non-Thermal Plasma Fuel Reformer

Rapid Production of Hydrogen-Rich Syngas Using a Non-Thermal Plasma Fuel Reformer 2018 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER & MOBILITY (P&M) TECHNICAL SESSION AUGUST 7-9, 2018 - NOVI, MICHIGAN Rapid Production of Hydrogen-Rich Syngas Using a Non-Thermal

More information

Influence of discharge characteristics on methane decomposition in dielectric barrier discharge reactor

Influence of discharge characteristics on methane decomposition in dielectric barrier discharge reactor Influence of discharge characteristics on methane decomposition in dielectric barrier discharge reactor Sungkwon Jo 1), Dae Hoon Lee 2), Woo Seok Kang 3) and Young-Hoon Song 4) 1), 2), 3), 4) Plasma Laboratory,

More information

ACETYLENE FROM METHANE BY GLIDING ARC PROCESSING

ACETYLENE FROM METHANE BY GLIDING ARC PROCESSING ACETYLENE FROM METHANE BY GLIDING ARC PROCESSING Krzysztof Krawczyk, Joanna Ruszniak, Jan Sentek, and Krzysztof 6FKPLGW6]DáRZVNL a Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3,

More information

CFD modeling of Plasmatron Methane Reformer

CFD modeling of Plasmatron Methane Reformer PSFC/JA-05-14 CFD modeling of Plasmatron Methane Reformer L. Bromberg August 25, 2005 Massachusetts Institute of Technology Plasma Science and Fusion Center Supported by Chevron Texaco, ArvinMeritor and

More information

Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor

Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor Partial Oxidation of Methane to Form Synthesis Gas in a Tubular AC Plasma Reactor T.A. Caldwell, H. Le, L.L. Lobban, and R.G. Mallinson Institute for Gas Utilization and Technologies, School of Chemical

More information

Plasma assisted fuel reforming for on-board hydrogen rich gas production

Plasma assisted fuel reforming for on-board hydrogen rich gas production Plasma assisted fuel reforming for on-board hydrogen rich gas production Adeline Darmon, Jean-Damien Rollier, Emmanuelle Duval, Jose Gonzalez-Aguilar, Rudolf Metkemeijer, Laurent Fulcheri To cite this

More information

A new vortex method of plasma insulation and explanation of the Ranque effect

A new vortex method of plasma insulation and explanation of the Ranque effect J. Phys. D: Appl. Phys. 31 (1998) 704 711. Printed in the UK PII: S0022-3727(98)85168-1 A new vortex method of plasma insulation and explanation of the Ranque effect A Gutsol and J A Bakken Institute of

More information

Slim POX Design for Gasification 4th International Freiberg Conference on IGCC & XtL Technologies 3-5. May 2010

Slim POX Design for Gasification 4th International Freiberg Conference on IGCC & XtL Technologies 3-5. May 2010 Slim POX Design for Gasification 4th International Freiberg Conference on IGCC & XtL Technologies 3-5. May 2010 H. Tautz, Dept. EV, Linde Engineering Contents Introduction Kinetic modeling Reactor design

More information

Available online at ScienceDirect. Procedia Engineering 118 (2015 )

Available online at   ScienceDirect. Procedia Engineering 118 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 118 (01 ) 10 17 International Conference on Sustainable Design, Engineering and Construction Sustainable energy from biogas

More information

Water Plasma Generation under Atmospheric Pressure for Waste Treatment

Water Plasma Generation under Atmospheric Pressure for Waste Treatment Water Plasma Generation under Atmospheric Pressure for Waste Treatment Shigehiro Shimbara and Takayuki Watanabe Research Laboratory for Nuclear Reactors Tokyo Institute of Technology Email: watanabe@nr.titech.ac.jp

More information

Hydrogen Production via Biomethane Reforming in DBD Reactor

Hydrogen Production via Biomethane Reforming in DBD Reactor 93 Hydrogen Production via Biomethane Reforming in DBD Reactor M. Dors 1, T. Izdebski 1, A. Berendt 1, and J. Mizeraczyk 1, 2 1 Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid

More information

[20a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature

[20a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature [2a] Development of Liquid Fuel Reformer Using Low Energy Pulse (LEP) Discharge at Room Temperature Yasushi Sekine, Masahiko Matsukata, Eiichi Kikuchi, Shigeru Kado Waseda Univ. 55S62, Okubo, Shinjyuku

More information

Autothermal Reforming of Hydrocarbon Fuels

Autothermal Reforming of Hydrocarbon Fuels Autothermal Reforming of Hydrocarbon Fuels Harald Zeman, Michael Url, Hermann Hofbauer Institute of Chemical Engineering, Vienna University of Technology Getreidemarkt 9/166, A-1060 Vienna, harald.zeman@tuwien.ac.at

More information

GREMI NON-THERMAL PLASMAS AND HYDROGEN PRODUCTION

GREMI NON-THERMAL PLASMAS AND HYDROGEN PRODUCTION GREMI NON-THERMAL PLASMAS AND HYDROGEN PRODUCTION F. Ouni, E. El Ahmar, O. Aubry, C. Met, A. Khacef, and J. M. Cormier GREMI-Polytech'Orléans, 14 rue d'issoudun, B.P. 6744, 45067 Orléans Cedex 2, France

More information

Experimental Investigation of Plasma Assisted Reforming of Propane

Experimental Investigation of Plasma Assisted Reforming of Propane PSFC/JA-05-15 Experimental Investigation of Plasma Assisted Reforming of Propane L. Bromberg K. Hadidi D.R. Cohn August 25, 2005 Massachusetts Institute of Technology Plasma Science and Fusion Center Supported

More information

ADVANCED CATALYTIC STUDIES FOR POWER ENGINEERING AND ENVIRONMENTAL PROTECTION

ADVANCED CATALYTIC STUDIES FOR POWER ENGINEERING AND ENVIRONMENTAL PROTECTION ADVANCED CATALYTIC STUDIES FOR POWER ENGINEERING AND ENVIRONMENTAL PROTECTION Z.R. Ismagilov Boreskov Institute of Catalysis CONTENTS OF THE LECTURE Introduction Catalytic combustion Catalytic heaters

More information

Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611

Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611 A Compact Reformer for Portable Fuel Cells Jing Su and Chang-Won Park Dept. of Chemical Engineering, University of Florida, Gainesville, FL 32611 Abstract A compact reformer to generate hydrogen for portable

More information

DESIGN AND SIMULATION OF A TRAPPED-VORTEX COMBUSTION CHAMBER FOR GAS TURBINE FED BY SYNGAS

DESIGN AND SIMULATION OF A TRAPPED-VORTEX COMBUSTION CHAMBER FOR GAS TURBINE FED BY SYNGAS DESIGN AND SIMULATION OF A TRAPPED-VORTEX COMBUSTION CHAMBER FOR GAS TURBINE FED BY SYNGAS A. Di Nardo, G. Calchetti, C. Mongiello antonio.dinardo@enea.it via Anguillarese 301-00123 Roma Abstract The trapped

More information

Hydrogen-Rich Gas Production from Plasmatron Reforming of Biofuels

Hydrogen-Rich Gas Production from Plasmatron Reforming of Biofuels PSFC/JA-4-22 Hydrogen-Rich Gas Production from Plasmatron Reforming of Biofuels Hadidi, K., Bromberg, L., Cohn, D.R., Rabinovich, A. Alexeev *, N., Samokhin *, A. Plasma Science and Fusion Center Massachusetts

More information

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas

Module 4 : Hydrogen gas. Lecture 29 : Hydrogen gas 1 P age Module 4 : Hydrogen gas Lecture 29 : Hydrogen gas 2 P age Keywords: Electrolysis, steam reforming, partial oxidation, storage Hydrogen gas is obtained in a very trace amount in atmosphere. It is

More information

Integrated Electrochemical Thermal Ammonia Production Process

Integrated Electrochemical Thermal Ammonia Production Process Integrated Electrochemical Thermal Ammonia Production Process Junhua Jiang, Ted Aulich, Alexey Ignatchenko, and Chris Zygarlicke, Energy & Environmental Research Center (EERC) University of North Dakota

More information

High Efficiency Operation Method for Solid Oxide Fuel Cell System

High Efficiency Operation Method for Solid Oxide Fuel Cell System 62 China Steel Technical Report, No. 29, High pp.62-66, Efficiency (2016) Operation Method for Solid Oxide Fuel Cell System High Efficiency Operation Method for Solid Oxide Fuel Cell System CHUN-HSIU WANG

More information

Development of natural gas utilization technology in the field of heat treatment of metals Endothermic gas generators fully powered by natural gas

Development of natural gas utilization technology in the field of heat treatment of metals Endothermic gas generators fully powered by natural gas 23rd World Gas Conference, Amsterdam 2006 Development of natural gas utilization technology in the field of heat treatment of metals Endothermic gas generators fully powered by natural gas Main author

More information

Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor

Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge and catalyst hybrid reactor Article Energy Science & Technology July 2011 Vol.56 No.20: 2162 2166 doi: 10.1007/s113-011-85-0 SPECIAL TOPICS: Hydrogen production by reforming methane in a corona inducing dielectric barrier discharge

More information

Modelling of plasma heating of the substrate

Modelling of plasma heating of the substrate Modelling of plasma heating of the substrate Kandasamy Ramachandran Centre for Research in Material Sciences & Thermal Management Karunya University, Coimbatore 641 114 Plasma spraying Quality of the coatings

More information

Combustion Modeling for Industrial Systems. Niveditha Krishnamoorthy CD-adapco

Combustion Modeling for Industrial Systems. Niveditha Krishnamoorthy CD-adapco Combustion Modeling for Industrial Systems Niveditha Krishnamoorthy CD-adapco niveditha.krishnamoorthy@cd-adapco.com Outline Combustion capabilities of STAR-CCM+ Modeling of process heaters, crackers,

More information

Role of Plasma Chemistry in Methane Decomposition in an Arc Jet Reactor

Role of Plasma Chemistry in Methane Decomposition in an Arc Jet Reactor 95 International Journal of Plasma Environmental Science and Technology Vol.2, No.2, SEPTEMBER 2008 Role of Plasma Chemistry in Methane Decomposition in an Arc Jet Reactor N.K. Hwang 1,2, M.S. Cha 2, D.H.

More information

Power-Cost Alternative De-NOx Solutions for Coal-Fired Power Plants

Power-Cost Alternative De-NOx Solutions for Coal-Fired Power Plants Power-Cost Alternative De-NOx Solutions for Coal-Fired Power Plants 12/21/2015 Power Engineering By Bin Xu, David Wilson, and Rob Broglio Traditionally, large coal-fired generating units have complied

More information

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications

Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Simulation of Atmospheric Air Micro Plasma Jet for Biomedical Applications Luke T. Gritter 1, Jeffrey S. Crompton *1, and Kyle C. Koppenhoefer 1 1 AltaSim Technologies, LLC 130 E. Wilson Bridge Rd, Suite

More information

Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

Discharge Characteristics of DC Arc Water Plasma for Environmental Applications Plasma Science and Technology, Vol.14, No.12, Dec. 2012 Discharge Characteristics of DC Arc Water Plasma for Environmental Applications LI Tianming ( ), Sooseok CHOI, Takayuki WATANABE Department of Environmental

More information

HYDROGEN PRODUCTION VIA METHANE REFORMING USING VARIOUS MICROWAVE PLASMA SOURCES

HYDROGEN PRODUCTION VIA METHANE REFORMING USING VARIOUS MICROWAVE PLASMA SOURCES HYDROGEN PRODUCTION VIA METHANE REFORMING USING VARIOUS MICROWAVE PLASMA SOURCES MARIUSZ JASIŃSKI a*, MIROSŁAW DORS a, HELENA NOWAKOWSKA a, and JERZY MIZERACZYK a,b a Centre for Plasma and Laser Engineering,

More information

COST TD1208 Workshop on Application of Gaseous Plasma with Liquids. Book of Contributed Papers

COST TD1208 Workshop on Application of Gaseous Plasma with Liquids. Book of Contributed Papers 20 th Symposium on Application of Plasma Processes COST TD1208 Workshop on Application of Gaseous Plasma with Liquids Book of Contributed Papers Tatranská Lomnica, Slovakia 17-22 January, 2015 Edited by

More information

THERMAL SPRAY COATINGS

THERMAL SPRAY COATINGS THERMAL SPRAY COATINGS THERMAL SPRAY is a group of processes in which metals, alloys, ceramics, plastics and composite materials in the form of powder, wire, or rod are fed to a torch or gun with which

More information

AJChE 2005, Val. 5, No.1, 30-34

AJChE 2005, Val. 5, No.1, 30-34 AJChE 2005, Val. 5, No.1, 30-34 Takayuki Watanabe Research. Laboratory for Nuclear Reactors Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 JAPAN Email: watanabe@nr.titech.ac.jp

More information

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch WDS'05 Proceedings of Contributed Papers, Part II, 337 342, 2005. ISBN 80-86732-59-2 MATFYZPRESS Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch T. Kavka, M. Hrabovsky, O. Chumak, and V.

More information

EFEECT OF HYDROGEN ADDITION ON METHANE COMBUSTION IN A CAN TYPE COMBUSTOR

EFEECT OF HYDROGEN ADDITION ON METHANE COMBUSTION IN A CAN TYPE COMBUSTOR EFEECT OF HYDROGEN ADDITION ON METHANE COMBUSTION IN A CAN TYPE COMBUSTOR Ramesh E (Roll No. 10105144) Abstract The effects of hydrogen addition on lean methane combustion was numerically investigated

More information

Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol

Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol Hydrogen Production by Non Thermal Plasma Steam Reforming of alkanes and ethanol A. Khacef, F. Ouni, E. El Ahmar, O. Aubry, and J. M. Cormier GREMI-Polytech'Orléans, 14 rue d'issoudun, BP 6744, 4567 Orléans

More information

Optimize for Profit Extracting Additional Value from your Methanol Plant Presentation to IMPCA Asia Methanol Conference 3 November 2016

Optimize for Profit Extracting Additional Value from your Methanol Plant Presentation to IMPCA Asia Methanol Conference 3 November 2016 Optimize for Profit Extracting Additional Value from your Methanol Plant Presentation to IMPCA Asia Methanol Conference 3 November 2016 1 About Jembec Consulting Established 2009 Consults to methanol industry

More information

Plasma-assisted combustion: applications and fundamental mechanisms

Plasma-assisted combustion: applications and fundamental mechanisms Plasma-assisted combustion: applications and fundamental mechanisms Christophe Laux, Diane Rusterholtz, Da Xu, Marien Simeni Simeni, Guillaume Pilla, Séverine Barbosa, Deanna Lacoste, Jonas Moeck*, Gabi

More information

A Non-Catalytic Fuel-Flexible Reformer

A Non-Catalytic Fuel-Flexible Reformer Paper # 070MI-0132 Topic: Microcombustion and New Combustion Devices 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

NOx Reduction: Flue Gas Recirculation vs Selective Catalytic Reduction. Presented by Jason Jacobi October 28, 2015

NOx Reduction: Flue Gas Recirculation vs Selective Catalytic Reduction. Presented by Jason Jacobi October 28, 2015 NOx Reduction: Flue Gas Recirculation vs Selective Catalytic Reduction Presented by Jason Jacobi October 28, 2015 Agenda NOx Regulations What is NOx? NOx types How to control NOx? What is FGR? What is

More information

American Journal of Chemical Engineering

American Journal of Chemical Engineering American Journal of Chemical Engineering 2013; 1(1): 17-23 Published online June 30, 2013 (http://www.sciencepublishinggroup.com/j/ajche) doi: 10.11648/j.ajche.20130101.14 Optimum and comparison of theoretical

More information

CO 2 -neutral Methanol Synthesis from CO 2 and H 2 by Smart-Scaled, Reaction-Integrated Plasma Process. R. Chaudhary, G. van Rooij, S. Li, V.

CO 2 -neutral Methanol Synthesis from CO 2 and H 2 by Smart-Scaled, Reaction-Integrated Plasma Process. R. Chaudhary, G. van Rooij, S. Li, V. CO 2 -neutral Methanol Synthesis from CO 2 and H 2 by Smart-Scaled, Reaction-Integrated Plasma Process R. Chaudhary, G. van Rooij, S. Li, V. Hessel Micro Flow Chemistry & Process Technology (SFP) Prof.

More information

Fundamental study of NO x removal from diesel exhaust gas by dielectric barrier discharge reactor

Fundamental study of NO x removal from diesel exhaust gas by dielectric barrier discharge reactor Journal of Mechanical Science and Technology 26 (6) (2012) 1921~1928 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-012-0402-y Fundamental study of NO x removal from diesel exhaust gas by dielectric

More information

Crystallization of Amorphous Silicon Thin Film. by Using a Thermal Plasma Jet. Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong*

Crystallization of Amorphous Silicon Thin Film. by Using a Thermal Plasma Jet. Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong* Crystallization of Amorphous Silicon Thin Film by Using a Thermal Plasma Jet Hyun Seok Lee, Sooseok Choi, Sung Woo Kim, and Sang Hee Hong* Department of Nuclear Engineering, Seoul National University Seoul

More information

HYDROGEN PRODUCTION in PLASMA ASSISTED GASIFICATION PROCESSES

HYDROGEN PRODUCTION in PLASMA ASSISTED GASIFICATION PROCESSES Austrian Russian Science Day «Alternative and Renewable Energy Sources» October 15, 2007, Vienna HYDROGEN PRODUCTION in PLASMA ASSISTED GASIFICATION PROCESSES Dr. Sergey V.KOROBTSEV HYDROGEN ENERGY & PLASMA

More information

Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel

Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel Hydrogen from Renewable Fuels by Autothermal Reforming: Alcohols, Carbohydrates, and Biodiesel Lanny D. Schmidt Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis

More information

Ammonia Based Fuels For Environmentally Friendly Power Generation

Ammonia Based Fuels For Environmentally Friendly Power Generation NH3 Fuel Conference 2013 Ammonia Based Fuels For Environmentally Friendly Power Generation Arif Karabeyoglu Space Propulsion Group, Inc. KOC University and Brian Evans Space Propulsion Group, Inc. September

More information

Syngas from Glycerine by Electric Arc

Syngas from Glycerine by Electric Arc 2 nd European Conference on Polygeneration 30 th March-1 st April, 2011 Tarragona, Spain Motta N, Diego Fernando; Montañez V, Fernando; Carrillo C, Gilberto. Syngas from Glivcerin by Electric Arc Syngas

More information

EFFECT ON PERFORMANCE OF ENGINE BY INJECTING HYDROGEN

EFFECT ON PERFORMANCE OF ENGINE BY INJECTING HYDROGEN Int. J. Mech. Eng. & Rob. Res. 2013 Suryakant Sharma et al., 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 3, July 2013 2013 IJMERR. All Rights Reserved EFFECT ON PERFORMANCE OF ENGINE

More information

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER. Portions of this document may be illegible electronic image products. Images are produced from the best available original document. 3 rn -I 0 ZLS TL-s DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. INDIRECT-FIRED GAS TURBINE DUAL FUEL CELL

More information

Study of an integrated system for the production of hydrogen by autothermal reforming of methanol

Study of an integrated system for the production of hydrogen by autothermal reforming of methanol 7 th European Symposium on Computer Aided Process Engineering ESCAPE7 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. Study of an integrated system for the production of hydrogen

More information

Steam Reformation & Water Gas Shift. Team 1 Gabrielle Carbone, Kathleen Cooley, David Hessler, and Jacob Prucnal

Steam Reformation & Water Gas Shift. Team 1 Gabrielle Carbone, Kathleen Cooley, David Hessler, and Jacob Prucnal Steam Reformation & Water Gas Shift Team 1 Gabrielle Carbone, Kathleen Cooley, David Hessler, and Jacob Prucnal Overall Process CH 4 + H 2 O CO + 3H 2 Steam Reforming of Methane H = +206 kj/mol CH 4 +

More information

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 32, NO. 2, APRIL 2004 473 Effects of Anode Nozzle Geometry on Ambient Air Entrainment Into Thermal Plasma Jets Generated by Nontransferred Plasma Torch Sooseok

More information

Direct Conversion Process from Syngas to Light Olefins A Process Design Study

Direct Conversion Process from Syngas to Light Olefins A Process Design Study CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET102100156 331

More information

Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed

Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed Korean J. Chem. Eng., 24(4), 674-678 (2007) SHORT COMMUNICATION Hydrogen production by catalytic decomposition of methane over carbon catalysts in a fluidized bed Jae Uk Jung, Wooseok Nam, Ki June Yoon

More information

A study of the hydrogen production from a small plasma converter

A study of the hydrogen production from a small plasma converter Fuel 86 (7) 81 89 www.fuelfirst.com A study of the hydrogen production from a small plasma converter Rong-Fang Horng a, *, Yuh-Ping Chang a, Hui-Hui Huang b, Ming-Pin Lai a a Department of Mechanical Engineering,

More information

Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace

Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace Turkish J. Eng. Env. Sci. 30 (2006), 135 143. c TÜBİTAK Simulation of Flameless Combustion of Natural Gas in a Laboratory Scale Furnace Sébastien MURER, Barbara PESENTI and Paul LYBAERT Thermal Engineering

More information

DOE/ID/ Work Performed Under Contract No. DE-FC36-95ID13331

DOE/ID/ Work Performed Under Contract No. DE-FC36-95ID13331 DOE/ID/13331-2 Dilute Oxygen Combustion Phase 2 Final Report Yong Wang Hisashi Kobayashi September 2005 Work Performed Under Contract No. DE-FC36-95ID13331 For U.S. Department of Energy Assistant Secretary

More information

Modeling and simulations of methane steam reforming in thermally coupled plate type membrane reactor

Modeling and simulations of methane steam reforming in thermally coupled plate type membrane reactor Title Modeling and simulations of methane steam reforming in thermally coupled plate type membrane reactor Authors Keyur S. Patel, Aydin K. Sunol Affiliations Department of Chemical Engineering, University

More information

Ammonia as Hydrogen Carrier

Ammonia as Hydrogen Carrier Hydrogen ü Primary fuel source for fuel cell ü Low volume density ü Difficulty in storage and transportation Ammonia as Hydrogen Carrier Ammonia ü High H 2 density ü Carbon-free ü High boiling point ü

More information

Henning Bockhorn et al. / Energy Procedia 120 (2017)

Henning Bockhorn et al. / Energy Procedia 120 (2017) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 120 (2017) 484 491 www.elsevier.com/locate/procedia INFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11

More information

Investigation of Non-Premixed Opposed Flow H 2 /Air Laminar Flames using Coherent Anti-Stokes Raman Scattering (CARS)

Investigation of Non-Premixed Opposed Flow H 2 /Air Laminar Flames using Coherent Anti-Stokes Raman Scattering (CARS) 8 th US National Technical Meeting of the Combustion Institute Hosted by University of Utah, Park City, Utah May 19-22, 2013 Investigation of Non-Premixed Opposed Flow H 2 /Air Laminar Flames using Coherent

More information

2011 BRIMSTONE SULFUR SYMPOSIUM. Fundamentals 2011: Ammonia Destruction in SRU Furnaces

2011 BRIMSTONE SULFUR SYMPOSIUM. Fundamentals 2011: Ammonia Destruction in SRU Furnaces 2011 BRIMSTONE SULFUR SYMPOSIUM Fundamentals 2011: Ammonia Destruction in SRU Furnaces Peter Clark, Alberta Sulphur Research Ltd. Paul d Haene, DANA Technical Services Jim Jenkins, Shell Contents: 1. History

More information

Reforming landfill gas to syngas

Reforming landfill gas to syngas Reforming landfill gas to syngas Marco J. Castaldi Department of Earth & Environmental Engineering Henry Krumb School of Mines, Columbia University October 19, 2006 Waste-to-Energy Research and Technology

More information

Applicability of Dimethylether to Solid Oxide Fuel Cells

Applicability of Dimethylether to Solid Oxide Fuel Cells 17 Nov. 2011, 7th Asian DME Conference Applicability of Dimethylether to Solid Oxide Fuel Cells ~ Reforming and Cell Performance in Anode Off-gas Recycle ~ Yohei Tanaka, Katsutoshi Sato, Akihiko Momma,

More information

Effect of Choke Ring Position on Thermal and Fluid Flow in a SRU Thermal Reactor

Effect of Choke Ring Position on Thermal and Fluid Flow in a SRU Thermal Reactor International Journal of Mechanical Engineering and Robotics Research Vol. 4, No. 3, July 215 Effect of Choke Ring Position on Thermal and Fluid Flow in a SRU Thermal Reactor Chun-Lang Yeh Department of

More information

Plasma Assisted Reforming of Methane II: Partially Stirred Reactor (PaSR) Simulation. L. Bromberg. August 26, 2005

Plasma Assisted Reforming of Methane II: Partially Stirred Reactor (PaSR) Simulation. L. Bromberg. August 26, 2005 PSFC/JA-5-13 Plasma Assisted Reforming of Methane II: Partially Stirred Reactor (PaSR) Simulation L. Bromberg August 26, 25 Massachusetts Institute of Technology Plasma Science and Fusion Center Supported

More information

Biogas Conversionh using Dielectric Barrier Discharge Non-thermal Plasma

Biogas Conversionh using Dielectric Barrier Discharge Non-thermal Plasma Biogas Conversionh using Dielectric Barrier Discharge Non-thermal Plasma Yifei Sun*, Xiaolan Zeng, Zhijie Wang, Lina Liu School of Chemistry and Environment, Beihang University July. 3 rd, 2015 Outline

More information

Changes in combustion properties of Natural gas when mixed with Hydrogen

Changes in combustion properties of Natural gas when mixed with Hydrogen Changes in combustion properties of Natural gas when mixed with Hydrogen PARISA SAYAD, ALESSANDRO SCHÖNBORN AND JENS KLINGMANN DEPARTMENT OF ENERGY SCIENCES, LUND UNIVERSITY PARISA.SAYAD@ENERGY.LTH.SE

More information

Section 4.0: The Virginia Tech Plasma Torch Design

Section 4.0: The Virginia Tech Plasma Torch Design Section 4.0: The Virginia Tech Plasma Torch Design The Virginia Tech Plasma Torch was originally designed by Stouffer (1989) in 1988-89. It was designed to operate with argon, nitrogen, hydrogen and mixtures

More information

HYDROGEN GENERATION FOR MODERN REFINERIES

HYDROGEN GENERATION FOR MODERN REFINERIES HYDROGEN GENERATION FOR MODERN REFINERIES Luigi Bressan, Guido Collodi, Fabio Ruggeri Foster Wheeler Italiana SpA Via Caboto, 1 20094 Corsico Milan - Italy Abstract With increasing demand for diesel, more

More information

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat

Lecture 23. Chapter 30 Fusion Welding Processes. Introduction. Two pieces are joined together by the application of heat Lecture 23 Chapter 30 Fusion Welding Processes Introduction Fusion welding Two pieces are joined together by the application of heat Melting and fusing the interface Filler metal Extra metal added (melted)

More information

Modelling and Simulation of a Membrane Reactor for the Low Temperature Methane Steam Reforming

Modelling and Simulation of a Membrane Reactor for the Low Temperature Methane Steam Reforming A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

A FUEL FLEXIBLE REFORMING SYSTEM FOR PORTABLE SCALE SOFC

A FUEL FLEXIBLE REFORMING SYSTEM FOR PORTABLE SCALE SOFC 2013 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM POWER & MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY, MICHIGAN A FUEL FLEXIBLE REFORMING SYSTEM FOR PORTABLE SCALE SOFC

More information

Reactive CFD model for the simulation of glass furnace combustion

Reactive CFD model for the simulation of glass furnace combustion Reactive CFD model for the simulation of glass furnace combustion Ing. Michele Pallante, Prof. Carlo Cravero Università degli studi di Genova, DIME 1 Factors that affect the combustion in glass furnaces

More information

NON-THERMAL PLASMA-ASSISTED COMBUSTION RESEARCH AT LOS ALAMOS

NON-THERMAL PLASMA-ASSISTED COMBUSTION RESEARCH AT LOS ALAMOS NON-THERMAL PLASMA-ASSISTED COMBUSTION RESEARCH AT LOS ALAMOS L.A. Rosocha 1, ξ, Y. Kim 1, G.K. Anderson 1, S. Abbate 2, R. Sanchez-Gonzalez 3 1 Los Alamos National Laboratory, Los Alamos, NM (USA) 2 ONERA,

More information

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis)

Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Production of Synthesis Gas by High-Temperature Electrolysis of H 2 O and CO 2 (Coelectrolysis) Carl Stoots Idaho National Laboratory www.inl.gov Sustainable Fuels from CO 2, H 2 O, and Carbon-Free Energy

More information

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General

SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach. and My Research in General SOFC Modeling Considering Internal Reforming by a Global Kinetics Approach and My Research in General Martin Andersson Division of Heat Transfer, Department of Energy Sciences, Faculty of Engineering (LTH),

More information

CRITICAL ISSUES IN HEAT TRANSFER FOR FUEL CELL SYSTEMS

CRITICAL ISSUES IN HEAT TRANSFER FOR FUEL CELL SYSTEMS ECN-RX--05-101 CRITICAL ISSUES IN HEAT TRANSFER FOR FUEL CELL SYSTEMS.F. van den Oosterkamp resented at the Heat Transfer in Components and Systems for Sustainable Energy Technologies 5-7 April 2005, Grenoble,

More information

Available online at ScienceDirect. Energy Procedia 54 (2014 )

Available online at  ScienceDirect. Energy Procedia 54 (2014 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 54 (214 ) 236 245 4th International Conference on Advances in Energy Research 213, ICAER 213 Experimental Investigation on Biogas

More information

High performance radio frequency generator technology for the Thermo Scientific icap 7000 Plus Series ICP-OES

High performance radio frequency generator technology for the Thermo Scientific icap 7000 Plus Series ICP-OES TECHNICAL NOTE 43334 High performance radio frequency generator technology for the Thermo Scientific icap 7000 Plus Series ICP-OES Keywords Free-running, Plasma, RF generator, Solid-state Using inductively

More information

Solar syngas production from CO 2 and H 2 O in two-step thermochemical cycles based on

Solar syngas production from CO 2 and H 2 O in two-step thermochemical cycles based on Solar Fuels & Materials Page 215 Solar syngas production from CO 2 and H 2 O in two-step thermochemical cycles based on Zn/ZnO redox reactions Dr. Peter G. Loutzenhiser Department of Mechanical and Process

More information

Optimized design and operation strategy of a Ca-Cu chemical looping process for H 2 production

Optimized design and operation strategy of a Ca-Cu chemical looping process for H 2 production Optimized design and operation strategy of a Ca-Cu chemical looping J.R. Fernández*, J. M. Alarcón, J.C. Abanades jramon@incar.csic.es CO 2 Capture Group INCAR-CSIC (Spanish Research Council) LOGO World

More information

Advanced Modeling of Gasifiers

Advanced Modeling of Gasifiers Advanced Modeling of Gasifiers Gasification Process Modeling Using Computational Fluid Dynamics (CFD) John B. Roucis, GE Energy J. M. Kline, ChevronTexaco J.D. Smith, The CD adapco Group Gasification Technologies

More information

VOC-removal by means of non-thermal plasmas: plasma chemistry, techniques and examples

VOC-removal by means of non-thermal plasmas: plasma chemistry, techniques and examples VOC-removal by means of non-thermal plasmas: plasma chemistry, techniques and examples Dr. Ronny Brandenburg currently at Eindhoven University of Technology, Group EPG Summer School 2012 Part-Financed

More information

Design and Integration of Portable SOFC Generators. Introduction

Design and Integration of Portable SOFC Generators. Introduction Design and Integration of Portable SOFC Generators Joseph C. Poshusta, Ames Kulprathipanja, Jerry L. Martin, Christine M. Martin, Mesoscopic Devices, LLC, Broomfield, CO Introduction Although the majority

More information

Fuel Cell Systems: an Introduction for the Chemical Engineer

Fuel Cell Systems: an Introduction for the Chemical Engineer Fuel Cell Systems: an Introduction for the Chemical Engineer Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the Chicago

More information

Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power Cycles Pete Strakey, NETL

Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power Cycles Pete Strakey, NETL Oxy-Combustion Flame Fundamentals for Supercritical CO2 Power Cycles Pete Strakey, NETL 6 th International Supercritical CO 2 Power Cycles Symposium, March 27 29, 2018, Pittsburgh, PA Outline Effects of

More information

Flameless Combustion of H 2 - Enriched Fuels: a CFD Aided Experimental Investigation

Flameless Combustion of H 2 - Enriched Fuels: a CFD Aided Experimental Investigation Flameless Combustion of H 2 - Enriched Fuels: a CFD Aided Experimental Investigation C. Galletti 1, P. Gheri 2, G. Gigliucci 2, A. Parente 1, M. Schiavetti 2, S. Soricetti 1, L. Tognotti 1 1 DICCISM, University

More information

In situ studies of carbon formation leading to metal dusting in syngas processes

In situ studies of carbon formation leading to metal dusting in syngas processes In situ studies of carbon formation leading to metal dusting in syngas processes Olle Söderström Department of Chemical Engineering, Lund University February 2010 Abstract Metal dusting corrosion begins

More information