Mechanical and thermal properties of composite material system reinforced with micro glass balloons

Size: px
Start display at page:

Download "Mechanical and thermal properties of composite material system reinforced with micro glass balloons"

Transcription

1 IOP Conference Series: Materials Science and Engineering Mechanical and thermal properties of composite material system reinforced with micro glass balloons To cite this article: Y Ozawa et al 2010 IOP Conf. Ser.: Mater. Sci. Eng Related content - Stochastic multiscale stress analysis via identification of microscopic randomness S Sakata and F Ashida - Multi-scale modeling of the progressive damage in cross-ply laminates under thermal and mechanical loading D Yang, Y Sheng, J Ye et al. - Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates M A Arca and D Coker View the article online for updates and enhancements. This content was downloaded from IP address on 01/05/2018 at 10:07

2 Mechanical and Thermal Properties of Composite Material System Reinforced with Micro Glass Balloons Y OZAWA 1, M WATANABE 2, T KIKUCHI 3, and H ISHIWATARI 4 1 Fukushima University, 1, Kanayagawa, Fukushima, , JAPAN 2 Koriyama Technical Academy, 5, Kaminoyama, Koriyama, , JAPAN 3 Fukushima Technology Centre, Machiikedai, Koriyama, , JAPAN 4 Graduate School, Fukushima University, 1, Kanayagawa, Fukushima, , JAPAN Yoshihito Ozawa <p145@ipc.fukushima-u.ac.jp> Abstract. The mechanical and thermal properties of polymer composites reinforced with micro glass balloons are investigated in temperature conditions. The matrix resin of the composite is epoxy resin and its dispersion is micro glassy spherical shells of Sirasu Balloon. The composite system developed is a kind of micro porous materials with lightweight. From the experimental data of bending and tension tests, mechanical behaviours of the composites were clarified, and the effects of material properties and configurations on the mechanical properties of composites were discussed from the viewpoint of micromechanical study. A homogenization theory with multi-scale analytical method has been applied in order to evaluate the composite material system in temperature conditions. Numerical calculations were performed by using a model of micro porous materials and setting properties of each material at the temperature. Analytical results for the mechanical behaviour made a good agreement with experimental result of the composites in temperature conditions. 1. Introduction In developing the high speed robotics hand system, a newly designed structure component must be needed with excellent features, i.e., ultra lightweight (its density less than 0.5g/cm 3 ), high stiffness and high strength. In order to satisfy both of lightweight and high stiffness/ strength, a lightweight composite material system, which will consist of core material with lightweight and outer fibrous material of woven type or knitted type, is one of the candidates for application. In this study, mechanical behavior of newly developed core composite material with lightweight is investigated in temperature conditions. From the experimental results, the mechanical properties of the composite will be discussed from the viewpoint of micro-mechanical study. By using an analytical model of micro porous materials, a homogenization theory with multi-scale analytical method will be described in order to evaluate the mechanical and thermal properties of the composite material system in temperature conditions. c 2010 Published under licence by Ltd 1

3 2. Specimens and experimental procedure We have developed a micro porous composite material for the core material of composite material system. The matrix resin of the composite was epoxy resin, and its dispersion for reinforcement was micro glassy spherical shells of Sirasu Balloon Maarlite 713D of Marunaka-Hakudo Co. That is, the composite material system is micro glass balloon reinforced epoxy resin (Sirasu Balloon/Epoxy) composites [1]. Bending tests and tension tests were performed by using the solid and hollow cylindrical specimens (length 190mm and diameter 25mm for solid type; same geometry with thickness 2.5mm for hollow type) of the composite, under the conditions of 50%RH at 298K. The density of specimen is 0.6 for solid type, and the apparent density is 0.3 for hollow one. From the experimental data of bending tests and tension tests, the mechanical behavior of the composites was discussed from the viewpoint of micro-mechanical study, and the method of molding was also evaluated. In the case of tension test shown in Fig. 1(a), the load P displacement curves for porous composite specimen both of solid type and hollow type indicate linear behaviors from earlier stage of displacement to the maximum. In the case of bending test (Fig. 1(b)), P - curve of hollow specimen indicates non-linear behavior from displacement 2mm to maximum. On the other hand, P - curve of solid specimen indicates linear behavior from earlier stage of loading to the maximum. Any load drop could not be observed. We observed a fracture surface of micro porous composite specimen by using a scanning electron microscope (SEM) in order to discuss the influence of the dispersion of Sirasu Balloons on the characteristics of the composite. From Fig. 2, a large number of Sirasu Balloons and many air cavities with different size were observed. We performed image processing analysis for SEM photograph. Sirasu Balloons and air cavities were recognized as circles and the diameter of each circle was measured automatically. The result of stochastic analysis was also shown in same figure to examine diameter size distribution of balloon particles and air cavities in micro porous composite specimens. We found some characteristic peaks on the axis of diameter for balloon particles and air cavities. There obviously exists the highest peak of Sirasu Balloon at m of diameter in the diagram. In addition, the peak at about 2 m indicates the existence of micro cavities of air which might be produced from inside of Sirasu Balloon, and the peak at 200 m shows relatively large air bubbles which could be caught in molding process. The strength of the composites would be affected by the existence of large size of air bubbles. Better fabrication method should be desired for the composites with lightweight, sufficient strength and rigidity. Load (N) rigid cylindrical rod 4510N Displacement (mm) (a) tension test 1780N hollow cylindrical rod Load (N) rigid cylindrical rod Displacement (mm) (b) bending test 780N hollow cylindrical rod 660N Figure 1. Load P -Displacement curve of composites. (CHS=1.0mm/min) 2

4 500 m Diameter of Void ( m) Figure 2. SEM photograph of porous composites and Diameter histogram for voids Improvement of fabrication method of lightweight composites The Sirasu Balloon Maarlite 723C of Marunaka-Hakudo Co. was used for new reinforcements. Sirasu Balloon has micro glassy spherical shell body which was manufactured from volcanic glassy pumice tuff by heating rapidly at about 1300K. Therefore, it has superior heat resistance, strong impact resistance, and high thermal insulation, for this reason, it could be applied to exterior wall and so on. From the reference of Maarlite 723C, the bulk density is 0.15±0.025g/cm 2, the average diameter is m, float ratio wt%, and Ph [2]. The epoxy resin used was Ciba-Geigy GY-250. The resin is unplasticized diglycidyl ether of bisphenol A (DGEBA) with mean molecular weight of 380 and an epoxide equivalent of g/eq. From technical data for mechanical properties of the matrix resin, bending strength b is 55MPa, tensile strength t is 62MPa, glass transition temperature tan dry ; 428K, fracture toughness GIC; 0.15kJ/m 2 and water absorption ratio is 0.16%. The hexahydrophthalic anhydride hardener HN of Hitachi Chemical Co., Ltd. and the accelerator #2E4MZ of Shikoku Chemical Co. were also used for mixture. The Sirasu Balloon/Epoxy composites was fabricated in batches by mixing 100g of GY250 with 85g of HN-5500 and 1g of #2E4MZ, and then adding the 200ml of Maarlite 723C. Degas processes for the resin system were sometimes taken by holding it in a vacuum chamber before and during cure in order to prevent the entrapment of air bubbles. Heating procedure for the specimens is shown in Fig Temperature ( ) Time (minute) Figure 3. Heating procedure of composites specimens. 3

5 2.2. Experiments In order to examine the mechanical behaviors and properties of composites, three point bending tests were performed by using the specimens of coupon type under the conditions of 50%RH at 298K. For the experiments, the Sirasu Balloon/Epoxy composites was carefully machined into the precise geometry of specimens; length 80mm, width 10mm and thickness 4.0mm. Three groups of specimens are chosen with three different depth position along the thickness direction; upper position, middle and lower. The cross head speed (CHS) of bending tests was kept at 1.0mm/min. The load and the strain at 11mm offset point from the loading were recorded by personal computer during the tests. After the test, we observed the damage propagation in the micro porous composites specimen by using an optical microscope and a scanning electron microscope (SEM). 3. Experimental results and consideration 3.1. Experimental results of the composites From experimental results for porous composite specimens of coupon type cut from the different point along the depth direction, Fig. 4 shows the load P - Displacement curves of three point bending tests. In the case of the specimens from the lower position, P - curve indicates slightly non-linear behavior at loading stage from displacement 1.2mm to maximum, and the maximum load is 55N. Additionally, the slope of P - curve, which means bending rigidity of the composites, takes larger value than that of the specimens cut from middle or upper position. On the other hand, P - curve of a specimen from upper position indicates non-linear behavior from earlier stage of loading to the maximum, and the maximum load takes low values of 32N. We could not observe any load drop in all the case of specimens from three different positions. From the experimental result of bending tests, mechanical behavior and properties of micro porous composite were examined. For specimens from lower position at 298K and 50%RH, bending modulus 4.46GPa and bending strength is 44.2MPa. For specimens from middle, bending modulus 3.14GPa and bending strength is 28.3MPa while bending modulus 2.97GPa and bending strength is 22.6MPa for specimens from upper. The density of specimens was measured by using small samples cut from the specimens. The mechanical properties of porous composites are summarized in Table 1. Lower Middle Upper Figure 4. Load P - Displacement curve of bending test for composites. (CHS=1.0mm/min) 4

6 WCCM/APCOM 2010 Table 1. Mechanical property of SB Composites and Epoxy Resin. Density (103kg/m3) Bending modulus (GPa) Bending strength (MPa) Specific bending modulus (GPa) Specific bending strength (MPa) SB composites improved Upper Middle Lower Old data Epoxy resin SEM observation for specimens We observed a fracture surface of micro porous composite specimen by using a SEM in order to discuss the influence of the dispersion of Sirasu Balloon on the characteristics of the composites. Viewing the Fig. 5, a lot of Sirasu Balloons were observed with some variation of balloon size. However, there are few air cavities and large air bubbles of different size were not observed in the figure. Therefore, dispersion of Sirasu Balloons is good and the improved method is effective for fabrication of Sirasu Balloon/Epoxy composites materials. From the observations of the surface of cross section by using a SEM, the analysis of digital image processing was performed. Fig. 6 shows the result of stochastic analysis for mean diameter size distribution of balloon particles against the depth along thickness direction in micro porous composite specimens. We observed a characteristic curve for balloon diameter due to the buoyancy of balloons in matrix resin. In the upper position near the surface of fabricated materials, relatively large size of balloons were observed and mean diameter takes larger value of 51 m. Therefore, the density of composites could be small and bending modulus and bending strength take lower values than that of specimens from middle or lower position. In addition, in the case of lower position, the mean value of diameter of Sirasu Balloon decreased with sharp slope of the curve, and it is easily found that bending modulus would change with increasing the depth along the thickness direction of molding process. The strength of the composites might be affected by the existence of balloons with different sizes. (a) micro porous composites (upper) (b) inside of Sirasu Balloon Figure 5. SEM photograph of micro porous composites. 5

7 Mean diameter of SB ( m) Upper Middle Lower Depth along thickness direction (mm) Figure 6. Mean diameter of Sirasu Balloon against depth along thickness direction. 4. Theoretical analysis of the Composites 4.1. A Model for FEM Analysis From the experimental results, the effects of material properties and configurations on the mechanical properties of the composite were discussed from the viewpoint of micromechanical study. Making dispersion models of micro porous materials microscopically, we apply a homogenization theory with multi-scale analytical method [3] for evaluation of the macroscopic mechanical behavior of the composite material system in temperature conditions. From Fig. 5, the developed porous composite materials have a structure which contains a lot of spherical shells of Sirasu Balloon with some deviation of diameter in the matrix resin. It is easily found that the balloons were dispersed well over the observed area and few air bubbles were observed in the figure. Therefore, the microscopic structure of the composites could assume to be periodical for the analysis. From the viewpoint of micro-mechanical study, a homogenization theory with multiscale analytical method will be described for evaluation of the macroscopic mechanical behavior of the composites at various temperatures. We design a simple two- and three-dimensional dispersion model on the basis of the balloon density as shown Fig. 7(a) for 2D model and 7(b) for 3D model. In the experiment, any surface treatment such as a silane coupling agents were NOT applied, however it is easily seen that the bonding between the balloons and the matrix was good. Then, we assume that micro balloons are perfectly bonded to the matrix, and the air of 1013 hpa (1 atm) is filled inside the balloon. Temperature is uniform in the composites. And the diameter of balloon are set as 40 m from the mean value of Sirus Balloons and the distance between the two balloons were determined by the volume fraction of the composites used in the experiments. Fig. 8 shows a unit cell model for FEM analysis for 2D model, which consists of two quartered Sirasu Balloon aligned diagonally and the epoxy resin of remaining part. The white part of quarter circle shows the air in the Sirasu Balloon. The unit cell model is divided into quadrangle elements for FEM analysis. The total number of node is 586 and the total number of quadrangle element is 523. FEM analysis was performed for tensile test at the temperature condition of 123K (-150 C), 298K (25 C) and 403K (130 C). The elastic properties used in the analysis are shown in Table Results of FEM Analysis Some numerical calculations were performed by using a model of micro porous materials and setting thermal properties of each material at the temperature. The Sirasu Balloon was assumed to take constant elastic property independent of temperature. Stress distribution as obtained from the numerical model shows that the stresses in the membrane of balloon is higher than that in the matrix as shown in Fig. 9. Though the thickness and diameter of 6

8 WCCM/APCOM 2010 balloons are small, the micro balloons could play an important role as reinforcements of the composites. Fig. 10 shows the analytical results of stress-strain curves for tension test in various temperature conditions. The experimental results of tension test at temperature of 298K are also shown in the same figure. The analytical results at 298K made a good agreement with experimental ones of the composite. It can be said that a unit cell model of micro porous materials is valid for evaluation of the mechanical behaviour of the composite material system in temperature conditions. The other mechanical characteristics can be also evaluated by using this model for homogenization theory with multi-scale analytical method. The feasibility of using a periodic model for this material should be examined for different types of unit cells e.g. square, face-centered, body-centered, hexagonal, diamond to evaluate the influence on stress results and to explain the rule for filler alignment in the composites by considering the energy balance. It would be further work for us. Table 2. Elastic property used in FEM analysis [4, 5]. Temperature K E(resin) GPa E(sb) Gpa ν(resin) ν(sb) [5] [6] Sirasu Balloon Epoxy resin Unit cell mm (a) 2D model of dispersion (b) 3D model Figure 7. Finite element model for micro porous composite material. Figure 8. Unit cell model for FEM analysis. Figure 9. Stress Distribution in Composites with 3D model. 7

9 10 8 Stress (MPa) K experiment 298K analysis 403K analysis 123K analysis Strain (%) Figure 10. Stress - strain curves of FEM analysis for tension tests in temperature environments. 5. Conclusion We developed the micro porous composites with lightweight for advanced mechanical system, especially robotics hand system. The mechanical properties of developed composites were investigated, and elastic moduli of composites at various temperature conditions were analyzed by using a model of micro porous materials. Acknowledgments The authors also gratefully acknowledge support from the Ministry of Education, Culture, Sports, Science and Technology through Grant for City Area Program [Development Stage] in Koriyama Area during References [1] Ozawa, Y., Kikuchi, T., Watanabe, M., and Yabuki, K., Mechanical Behavior of Composite Material System with Ultra Light Weight, Proceedings of the JSASS/JSME/JAXA Structures Conference, pp , 2006.(in Japanese) [2] Marunaka-Hakudo Co., Catalogue of Maarlite723D [3] Shibuya, Y., Thermo-Mechanical Behavior of Quasi-Random Fiber Composite and Its Modeling, THERMAL STRESSES 03, MA-10-4, [4] Ashby, M. F. and Jones, D. R. H., Engineering Materials - An Introduction to their Properties and Applications, Part B, Pergamon Press, Oxford, UK. [5] Fiori, C. and Devine, R. A. B., Evidence for a wide continuum of polymorphs in a-sio2, Phys. Rev. B, 33, pp ,

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening 2016 International Conference on Electronic Information Technology and Intellectualization (ICEITI 2016) ISBN: 978-1-60595-364-9 Carbon-fiber Reinforced Concrete with Short Aramid-fiber Interfacial Toughening

More information

The Flexural Properties of Glass Fabric/Epoxy -Rigid Polyurethane Foam Core Sandwich Composites at Different Span to Depth Ratios and Densities

The Flexural Properties of Glass Fabric/Epoxy -Rigid Polyurethane Foam Core Sandwich Composites at Different Span to Depth Ratios and Densities Proc. of the Intl. Conf. on Advances In Engineering And Technology - ICAET-214 ISBN: 978-1-63248-28-6 doi: 1.15224/ 978-1-63248-28-6-3-87 The Flexural Properties of Glass Fabric/Epoxy -Rigid Polyurethane

More information

Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix

Effect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix ffect of aging on the reinforcement efficiency of carbon nanotubes in epoxy matrix A. Allaoui, P. vesque and J. B. Bai * LMSSMAT CNRS UMR8579, cole Centrale Paris, 9229 Châtenay-Malabry, France ABSTRACT

More information

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites

Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites High Performance Structure and Materials VI 379 Mechanical performance of bacterial cellulose nanofibre-reinforced epoxy composites H. Takagi1, A. N. Nakagaito1 & K. Uchida2 1 2 Institute of Technology

More information

EXPERIMENTAL ANALYSIS OF COIR-FIBER REINFORCED POLYMER COMPOSITE MATERIALS

EXPERIMENTAL ANALYSIS OF COIR-FIBER REINFORCED POLYMER COMPOSITE MATERIALS Int. J. Mech. Eng. & Rob. Res. 2013 P N E Naveen and M Yasaswi, 2013 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 2, No. 1, January 2013 2013 IJMERR. All Rights Reserved EXPERIMENTAL ANALYSIS OF COIR-FIBER

More information

Investigations of fracture process in concrete using X-ray micro-ct

Investigations of fracture process in concrete using X-ray micro-ct Investigations of fracture process in concrete using X-ray micro-ct Ł. Skarżyński 1, J. Tejchman 1 1 Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland, Aims The main objective of

More information

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract

AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES. Abstract AN INNOVATIVE DUCTILE COMPOSITE FABRIC FOR STRENGTHENING CONCRETE STRUCTURES Nabil F. Grace, Lawrence Technological University, Southfield, MI George Abdel-Sayed, University of Windsor, Windsor, ON Wael

More information

Axial Tensile Testing of Single Fibres

Axial Tensile Testing of Single Fibres Modern Mechanical Engineering, 2012, 2, 151-156 doi:10.4236/mme.2012.24020 Published Online November 2012 (http://www.scirp.org/journal/mme) Axial Tensile Testing of Single Fibres Prasanna Kumar Ilankeeran,

More information

Determination of through thickness properties for Composite thick laminate S.Vali-shariatpanahi * * Stress Engineer/Durability group leader -Airbus

Determination of through thickness properties for Composite thick laminate S.Vali-shariatpanahi * * Stress Engineer/Durability group leader -Airbus Determination of through thickness properties for Composite thick laminate S.Vali-shariatpanahi * * Stress Engineer/Durability group leader -Airbus Address: Building 09J, Airbus UK,FILTON,BRISTOL BS 99

More information

Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber reinforced composite materials

Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber reinforced composite materials Available online at www.sciencedirect.com Procedia Engineering 10 (2011) 3279 3284 ICM11 Investigation of influence of tab types on tensile strength of E-glass/epoxy fiber reinforced composite materials

More information

EFFECT OF CRACK ARRESTER FOR FOAM CORE SANDWICH PANEL UNDER MODE I, MODE II AND MIXED-MODE CONDITION

EFFECT OF CRACK ARRESTER FOR FOAM CORE SANDWICH PANEL UNDER MODE I, MODE II AND MIXED-MODE CONDITION 16TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF CRACK ARRESTER FOR FOAM CORE SANDWICH PANEL UNDER MODE I, MODE II AND MIXED-MODE CONDITION Hirokazu Matsuda*, Go Matsubara*, Yasuo Hirose*,

More information

Study of Mechanical Behaviour of Polymer/Glass Fibre Reinforced Polymer Matrix Composites

Study of Mechanical Behaviour of Polymer/Glass Fibre Reinforced Polymer Matrix Composites Study of Behaviour of Polymer/ Fibre Reinforced Polymer Matrix Composites Puttaswamaiah. S 1, Maruthi B. H 2, K. Channakeshavalu 3,Sanketh.S 4 1, 2, 3 & 4 Dept. of Engineering, East West Institute of Technology

More information

CURVED BEAM TEST BEHAVIOR OF 3D WOVEN COMPOSITES

CURVED BEAM TEST BEHAVIOR OF 3D WOVEN COMPOSITES CURVED BEAM TEST BEHAVIOR OF 3D WOVEN COMPOSITES Christopher Redman, Harun Bayraktar, Michael McClain Albany Engineered Composites 112 Airport Drive Rochester, NH 03867 ABSTRACT The use of traditional

More information

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams

Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams Comparison of Energy Absorption Characteristics of Thermoplastic Composites, Steel and Aluminum in High-Speed Crush Testing of U-Beams CELANESE ENGINEERED MATERIALS Michael Ruby October, 2013 1 Overview

More information

New developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA

New developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA New developments to Capture the Manufacturing Process of Composite Structures in LS-DYNA Gregor Knust, Thomas Klöppel, André Haufe, Christian Liebold DYNAmore GmbH, Stuttgart Oasys LS-DYNA Users Meeting

More information

Hitachi Anisotropic Conductive Film ANISOLM AC-8955YW. Issued 2007/03/30

Hitachi Anisotropic Conductive Film ANISOLM AC-8955YW. Issued 2007/03/30 Hitachi Chemical Data Sheet Hitachi Anisotropic Conductive Film ANISOLM AC-8955YW Issued 27/3/3 1. Standard specification, bonding condition, storage condition and characteristic...1 2. Precautions in

More information

THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES. Introduction

THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES. Introduction THERMOPLASTIC PREPREG INSERT INJECTION MOLDING COMPOSITES: MECHANICAL AND ADHESIVE PROPERTIES Badin Pinpathomrat, Akihiko Imajo, Supaphorn Thumsorn, Hiroyuki Hamada Kyoto Institute of Technology, Kyoto,

More information

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP.

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Mohit Jaiswal Assistant Professor, Department of Civil

More information

Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites

Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites Bull. Mater. Sci., Vol. 32, No. 1, February 2009, pp. 77 81. Indian Academy of Sciences. Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer

More information

Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper

Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper Materials Transactions, Vol. 49, No. 1 (2008) pp. 144 to 150 #2008 The Japan Institute of Metals Fatigue Crack Initiation and Propagation in Lotus-Type Porous Copper Hironori Seki*, Masakazu Tane and Hideo

More information

Part 4 MECHANICAL PROPERTIES

Part 4 MECHANICAL PROPERTIES Part 4 MECHANICAL PROPERTIES Fiber Composite Materials M. S. Ahmadi 192 TENSILE PROPERTIES Tensile properties, such as tensile strength, tensile modulus, and Poisson s ratio of flat composite laminates,

More information

Fracture behaviour of natural fibre reinforced composites

Fracture behaviour of natural fibre reinforced composites High Performance Structures and Materials V 221 Fracture behaviour of natural fibre reinforced composites H. Takagi 1 & Y. Hagiwara 2 1 Institute of Technology and Science, The University of Tokushima,

More information

Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy

Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy Bull. Mater. Sci., Vol. 24, No. 2, April 2001, pp. 219 223. Indian Academy of Sciences. Effect of filler addition on the compressive and impact properties of glass fibre reinforced epoxy NIKHIL GUPTA*,

More information

FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires

FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires FEA and Experimental Studies of Adaptive Composite Materials with SMA Wires K.Kanas, C.Lekakou and N.Vrellos Abstract This study comprises finite element simulations and experimental studies of the shape

More information

Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading. Amir Fam, Bart Flisak and Sami Rizkalla

Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading. Amir Fam, Bart Flisak and Sami Rizkalla Behavior of Concrete-Filled FRP Tubes Under Bending, Axial Loads, and Combined Loading Amir Fam, Bart Flisak and Sami Rizkalla ABSTRACT Innovative hybrid systems such as the concrete-filled fiber reinforced

More information

Fracture Toughness and Mechanical Properties of Aluminum Oxide Filled Chopped Strand Mat E-Glass Fiber Reinforced Epoxy Composites

Fracture Toughness and Mechanical Properties of Aluminum Oxide Filled Chopped Strand Mat E-Glass Fiber Reinforced Epoxy Composites International Journal of Scientific and Research Publications, Volume 4, Issue 7, July 2014 1 Fracture Toughness and Mechanical Properties of Aluminum Oxide Filled Chopped Strand Mat E-Glass Fiber Reinforced

More information

NEW HYBRID GLULAM BEAM REINFORCED WITH CFRP AND ULTRA-HIGH-PERFORMANCE CONCRETE

NEW HYBRID GLULAM BEAM REINFORCED WITH CFRP AND ULTRA-HIGH-PERFORMANCE CONCRETE NEW HYBRID GLULAM BEAM REINFORCED WITH CFRP AND ULTRA-HIGH-PERFORMANCE CONCRETE L. MICHEL Associate Professor Université Lyon 1-INSA LYON 1 82 bd Niels Bohr 69622 VILLEURBANNE Emmanuel.ferrier@univ-lyon1.fr

More information

TECHNOLOGY FOR CONCRETE SHELLS FABRICATION REINFORCED BY GLASS FIBERS

TECHNOLOGY FOR CONCRETE SHELLS FABRICATION REINFORCED BY GLASS FIBERS TECHNOLOGY FOR CONCRETE SHELLS FABRICATION REINFORCED BY GLASS FIBERS ABSTRACT Vitalijs Lusis * * Riga Technical University Concrete mechanics laboratory E-mail: Vitalijs.Lusis@rtu.lv The use of fiberconcrete,

More information

Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate

Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate International Journal of Computational Engineering Research Vol, 03 Issue, 10 Effect of Angle Ply Orientation On Tensile Properties Of Bi Directional Woven Fabric Glass Epoxy Composite Laminate K.Vasantha

More information

Finite Element Analysis on the Unloading Elastic Modulus of Aluminum Foams by Unit-cell Model

Finite Element Analysis on the Unloading Elastic Modulus of Aluminum Foams by Unit-cell Model IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Finite Element Analysis on the Unloading Elastic Modulus of Aluminum Foams by Unit-cell Model To cite this article: F Triawan

More information

Mechanical Behavior of Glass Fiber Reinforced Polymer Pultruded Composite Gratings

Mechanical Behavior of Glass Fiber Reinforced Polymer Pultruded Composite Gratings Modern Mechanical Engineering, 213, 3, 142-146 Published Online November 213 (http://www.scirp.org/journal/mme) http://dx.doi.org/1.4236/mme.213.342 Mechanical Behavior of Glass Fiber Reinforced Polymer

More information

EXPERIMENTAL STUDY ON THE EFFECT OF TENSION FOR RUBBER BEARINGS

EXPERIMENTAL STUDY ON THE EFFECT OF TENSION FOR RUBBER BEARINGS EXPERIMENTAL STUDY ON THE EFFECT OF TENSION FOR RUBBER BEARINGS Naoyuki IWABE 1, Mineo TAKAYAMA 2, Nagahide KANI 3 And Akira WADA 4 SUMMARY This paper presents the experimental results from the tension

More information

Effect of PEK Content on Fracture Toughness of Glass Woven Fabric / Phenolic Resin Composites

Effect of PEK Content on Fracture Toughness of Glass Woven Fabric / Phenolic Resin Composites Effect of PEK Content on Fracture Toughness of Glass Woven Fabric / Phenolic Resin Composites Y.Q. Sun 1,2, J.H. Li, 2 J.B. Wang, 2 S.R. Zheng 3 and M.L. Sun 3 1 Laboratory for Nonlinear Mechanics of Continuous

More information

COMPOSITE LANDING GEAR COMPONENTS FOR AEROSPACE APPLICATIONS

COMPOSITE LANDING GEAR COMPONENTS FOR AEROSPACE APPLICATIONS 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMPOSITE LANDING GEAR COMPONENTS FOR AEROSPACE APPLICATIONS H.G.S.J. Thuis National Aerospace Laboratory NLR Keywords: Composites, Resin Transfer

More information

FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT

FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FRACTURE TOUGHNESS EVALUATION OF COMPOSITE/METAL ADHESIVE STRUCTURE IN CRYOGENIC ENVIRONMENT Ryohei Maruyama*, Tomohiro Yokozeki **, Toshio Ogasawara***,

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM

CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM CHARACTERIZATION OF PHYSICAL AND MECHANICAL PROPERTIES OF RIGID POLYURETHANE FOAM Puput Wiyono, Faimun, Priyo Suprobo and Heppy Kristijanto Department of Civil Engineering, Institut Teknologi Sepuluh Nopember,

More information

STRENGTH DISTRIBUTION COMPARISON OF AEROSPACE AND WIND ENERGY CARBON FIBER REINFORCED EPOXY. Eric M. Jensen*, Ray S. Fertig III*

STRENGTH DISTRIBUTION COMPARISON OF AEROSPACE AND WIND ENERGY CARBON FIBER REINFORCED EPOXY. Eric M. Jensen*, Ray S. Fertig III* International Conference on Future Technologies for Wind Energy October 07-09, 2013, Laramie, Wyoming, USA STRENGTH DISTRIBUTION COMPARISON OF AEROSPACE AND WIND ENERGY CARBON FIBER REINFORCED EPOXY Eric

More information

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1

MECHANICAL CHARACTERIZATION OF SANDWICH STRUCTURE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 Composites in Construction 2005 Third International Conference Lyon, France, July 11 13, 2005 MECHANICAL CHARACTERIZATION OF SANDWICH STRCTRE COMPRISED OF GLASS FIBER REINFORCED CORE: PART 1 S.V. Rocca

More information

THROUGH-THICKNESS MELDING OF ADVANCED CFRP FOR AEROSPACE APPLICATIONS

THROUGH-THICKNESS MELDING OF ADVANCED CFRP FOR AEROSPACE APPLICATIONS THROUGH-THICKNESS MELDING OF ADVANCED CFRP FOR AEROSPACE APPLICATIONS RJ Caspe, VL Coenen, A Nesbitt, RJ Day and AN Wilkinson Northwest Composites Centre University of Manchester, Paper Science Building,

More information

IMPACT PROPERTIES OF CFRP/AL HYBRID BEAM FOR ABSORBING IMPACT ENERGY IN SIDE COLLISION OF AUTOMOBILES

IMPACT PROPERTIES OF CFRP/AL HYBRID BEAM FOR ABSORBING IMPACT ENERGY IN SIDE COLLISION OF AUTOMOBILES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPACT PROPERTIES OF CFRP/AL HYBRID BEAM FOR ABSORBING IMPACT ENERGY IN SIDE COLLISION OF AUTOMOBILES Goichi Ben*, Yoshio Aoki**, Nao Sugimoto* *Nihon

More information

DURABILITY OF PRESSURE SENSITIVE ADHESIVE JOINTS

DURABILITY OF PRESSURE SENSITIVE ADHESIVE JOINTS DURABILITY OF PRESSURE SENSITIVE ADHESIVE JOINTS Paul Ludwig Geiss, Daniel Vogt Kaiserslautern University of Technology, Faculty Mechanical and Process Engineering, Workgroup Materials and Surface Technologies

More information

Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite

Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite From the SelectedWorks of Innovative Research Publications IRP India Summer August 1, 2015 Experimental Evaluation of Tensile Strength and Young s Modulus of Woven Jute fiber and Polyurethane Composite

More information

Mechanical Behaviour of Polymer Sandwich Composites under Compression

Mechanical Behaviour of Polymer Sandwich Composites under Compression American Journal of Materials Science 2015, 5(3C): 107-111 DOI: 10.5923/c.materials.201502.22 Mechanical Behaviour of Polymer Sandwich Composites under Compression Mohd. Zahid Ansari *, Sameer Rathi, Kewal

More information

MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES

MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES MECHANICAL PROPERTIES OF TRIAXIAL BRAIDED CARBON/EPOXY COMPOSITES C. L. Bowman 1, G. D. Roberts 1, M. S. Braley 2, M. Xie 3 & M. J. Booker 4 1 NASA Glenn Research Center, Cleveland OH 44135 2 A&P Technology,

More information

Mechanical Characterization of PU Based Sandwich Composites with Variation in Core Density

Mechanical Characterization of PU Based Sandwich Composites with Variation in Core Density International Journal of Materials Science and Applications 2015; 4(4): 277-282 Published online July 17, 2015 (http://www.sciencepublishinggroup.com/j/ijmsa) doi: 10.11648/j.ijmsa.20150404.19 ISSN: 2327-2635

More information

Flexural Behaviour of Sandwich Composite Panels Fabricated Through Different Vacuum Bagging Techniques

Flexural Behaviour of Sandwich Composite Panels Fabricated Through Different Vacuum Bagging Techniques Journal of Materials Science & Surface Engineering Vol. 3 (4), 2015, pp 293-297 Contents lists available at http://www.jmsse.org/ Journal of Materials Science & Surface Engineering Flexural Behaviour of

More information

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method American Journal of Materials Science 2015, 5(3C): 7-11 DOI: 10.5923/c.materials.201502.02 Characterization of Mechanical Properties of SiC/Ti-6Al-4V Metal Matrix Composite (MMC) Using Finite Element Method

More information

EFFECT OF VOLUME FRACTION EPOXY-HOLLOW GLASS MICROSPHERES AND CURING TEMPERATURE VARIATION ON COMPRESSIVE PROPERTIES OF COMPOSITES

EFFECT OF VOLUME FRACTION EPOXY-HOLLOW GLASS MICROSPHERES AND CURING TEMPERATURE VARIATION ON COMPRESSIVE PROPERTIES OF COMPOSITES EFFECT OF VOLUME FRACTION EPOXY-HOLLOW GLASS MICROSPHERES AND CURING TEMPERATURE VARIATION ON COMPRESSIVE PROPERTIES OF COMPOSITES Sutikno, Wajan Berata, Wahyu Wijanarko and Indra Sidharta Mechanical Engineering

More information

PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC

PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC PRESTRESSED CONCRETE PLATES WITH HIGH STRENGTH FABRIC H.W. Reinhardt, M. Krueger Constructions Materials Institute, University of Stuttgart, Germany Abstract Tests on fine grain concrete plates with textile

More information

Cold-curing epoxy system based on Araldite LY 564 / Hardener HY 560

Cold-curing epoxy system based on Araldite LY 564 / Hardener HY 560 Ciba Specialty Chemicals Performance Polymers Structural Composites MATRIX SYSTEMS FOR AEROSPACE COMPOSITES MATRIX SYSTEMS FOR INDUSTRIAL COMPOSITES DATA SHEET Cold-curing epoxy system based on Araldite

More information

EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE

EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE Hiroshi MUTSUYOSHI 1) and Nguyen Duc HAI 1) 1) Structural Material Lab., Department of Civil and Environmental Engineering,

More information

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING FE MODELING OF STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING H. R. C. S. Bandara (Email: chinthanasandun@yahoo.com) J. C. P. H. Gamage (Email: kgamage@uom.lk)

More information

Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions

Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Corrosion resistance of Ti-Ta-Zr coatings in the Boiling Acid Solutions To cite this article: I A Polyakov et al 2016 IOP Conf.

More information

Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres

Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres Sudarisman, I. J. Davies, and H. Hamada, Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres, Compos. Part A, 38(3) pp. 1070-1074

More information

FLEXURAL STRENGTH OF ALUMINA CERAMICS: WEIBULL ANALYSIS

FLEXURAL STRENGTH OF ALUMINA CERAMICS: WEIBULL ANALYSIS Lidija Ćurković Ante Bakić Janoš Kodvanj Tatjana Haramina ISSN 1333-1124 FLEXURAL STRENGTH OF ALUMINA CERAMICS: WEIBULL ANALYSIS Summary UDK 666.3.017 In this paper, flexural strength, fs, of cold isostatically

More information

MECHANICAL PROPERTIES OF THERMAL INSULATING SANDWICH MATERIALS

MECHANICAL PROPERTIES OF THERMAL INSULATING SANDWICH MATERIALS MECHANICAL PROPERTIES OF THERMAL INSULATING SANDWICH MATERIALS Petr Valasek, Petr Chocholous, Miroslav Muller Czech University of Life Sciences Prague valasekp@tf.czu.cz, muller@tf.czu.cz Abstract. Sandwich

More information

Experimental investigation on the mechanical properties of glass fiber reinforced nylon

Experimental investigation on the mechanical properties of glass fiber reinforced nylon IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental investigation on the mechanical properties of glass fiber reinforced nylon To cite this article: D M Nuruzzaman et

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS

CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS CRACKING BEHAVIOR AND CRACK WIDTH PREDICTIONS OF CONCRETE BEAMS PRESTRESSED WITH BONDED FRP TENDONS Weichen XUE Professor Tongji University Siping Road 1239#, Shanghai 200092, China xuewc@tongji.edu.cn*

More information

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS

Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS Progress report Material characterization and impact performance of Semi Impregnated Micro-Sandwich structures, SIMS Dipartimento di Ingegneria Meccanica e Aerospaziale By. Prof. G. Belingardi, Alem.T.

More information

Stress-Strain Behavior

Stress-Strain Behavior 15-1 CHAPTER 15 CHARACTERISTICS, APPLICATIONS, AND PROCESSING OF POLYMERS PROBLEM SOLUTIONS Stress-Strain Behavior which is 15.1 From Figure 15.3, the elastic modulus is the slope in the elastic linear

More information

Structural Designing for Sheet Molding Compound

Structural Designing for Sheet Molding Compound Structural Designing for Sheet Molding Compound Naoshi Yamada *1, Akihiro Fujita *1, Etsuko Tanigaki *2, Masanori Okano *2, Asami Nakai *2, Hiroyuki Hamada *2 *1 Advanced Technology R&D Center/Mitsubishi

More information

Effects of temperature on monotonic and fatigue properties of carbon fibre epoxy cross ply laminates

Effects of temperature on monotonic and fatigue properties of carbon fibre epoxy cross ply laminates Effects of temperature on monotonic and fatigue properties of carbon fibre epoxy cross ply laminates Y. Matsuhisa, J. King To cite this version: Y. Matsuhisa, J. King. Effects of temperature on monotonic

More information

ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING

ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING ON MINIMISING THE OBTRUSIVITY OF AN OPTICAL FIBRE SENSOR WITH RESPECT TO MATRIX CRACKING E.N. Barton 1, S.L. Ogin 1, A.M.Thorne 2 and G.T. Reed 3 1 School of Mechanical and Material Engineering 2 School

More information

Properties in Shear. Figure 7c. Figure 7b. Figure 7a

Properties in Shear. Figure 7c. Figure 7b. Figure 7a Properties in Shear Shear stress plays important role in failure of ductile materials as they resist to normal stress by undergoing large plastic deformations, but actually fail by rupturing under shear

More information

IMPROVEMENT OF IMPREGNATION AND MECHANICAL PROPERTIES OF CFRTP COMPOSITES BY MICRO-BRAIDED YARNS

IMPROVEMENT OF IMPREGNATION AND MECHANICAL PROPERTIES OF CFRTP COMPOSITES BY MICRO-BRAIDED YARNS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPROVEMENT OF IMPREGNATION AND MECHANICAL PROPERTIES OF CFRTP COMPOSITES BY MICRO-BRAIDED YARNS P. Wongsriraksa 1 *, A. Nakai 2, K. Uzawa 1 and

More information

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains Introduction In the previous lecture we have introduced the needs, background and societies for mechanical testing of composites. In this lecture and subsequent lectures we will see principles for the

More information

Fatigue behaviour of uni-directional flax fibre/epoxy composites

Fatigue behaviour of uni-directional flax fibre/epoxy composites Downloaded from orbit.dtu.dk on: Apr 7, 218 Fatigue behaviour of uni-directional flax fibre/epoxy composites Ueki, Yosuke ; Lilholt, Hans; Madsen, Bo Published in: Proceedings of the 2th International

More information

INNOVATIVE FIBRE REINFORCED BRIDGE DECK MODULES ABSTRACT

INNOVATIVE FIBRE REINFORCED BRIDGE DECK MODULES ABSTRACT INNOVATIVE FIBRE REINFORCED BRIDGE DECK MODULES Heather Crocker, ISIS Canada, Winnipeg, MB Emile Shehata, Wardrop Engineering Inc., Winnipeg, MB Rick Haldane-Wilsone, Wardrop Engineering Inc., Winnipeg,

More information

Expanding the Performance Envelope for Long Fiber Thermoplastic Composites with Unidirectional Tape Inserts

Expanding the Performance Envelope for Long Fiber Thermoplastic Composites with Unidirectional Tape Inserts Expanding the Performance Envelope for Long Fiber Thermoplastic Composites with Unidirectional Tape Inserts White Paper Innovation Made to Order PlastiComp, Inc. 110 Galewski Drive Winona, Minnesota, U.S.A.

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) FABRICATION AND ANALYSIS OF MECHANICAL PROPERTIES OF FRP COMPOSITES. Hyderabad.

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) FABRICATION AND ANALYSIS OF MECHANICAL PROPERTIES OF FRP COMPOSITES. Hyderabad. INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES

REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES REVIEW ON SHEAR SLIP OF SHEAR KEYS IN BRIDGES Benjamin Raison R; Freeda Christy C PG student, School of Civil Engineering, Karunya University. Associate Professor, School of Civil Engineering, Karunya

More information

Stress-Strain Behaviour of Structural Lightweight Concrete under Confinement

Stress-Strain Behaviour of Structural Lightweight Concrete under Confinement 6 th International Conference on Structural Engineering and Construction Management 2015, Kandy, Sri Lanka, 11 th -13 th December 2015 SECM/15/110 Stress-Strain Behaviour of Structural Lightweight Concrete

More information

SEBASTIAN FISCHER Universität Stuttgart, Institut für Flugzeugbau, Stuttgart, Germany

SEBASTIAN FISCHER Universität Stuttgart, Institut für Flugzeugbau, Stuttgart, Germany SANDWICH STRUCTURES WITH FOLDED CORE: MANUFACTURING AND MECHANICAL BEHAVIOR SEBASTIAN FISCHER Universität Stuttgart, Institut für Flugzeugbau, 70569 Stuttgart, Germany SEBASTIAN HEIMBS EADS Innovation

More information

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni Deflection Assessment of an FRP-Reinforced Concrete Bridge By Danielle K. Stone, Andrea Prota, and Antonio Nanni Synopsis: Serviceability of FRP-reinforced concrete structures remains a highly relevant

More information

EXPERIMENTAL EVALUATION FOR CFRP STRENGTH AFTER VARIOUS PAINT STRIPING METHODS

EXPERIMENTAL EVALUATION FOR CFRP STRENGTH AFTER VARIOUS PAINT STRIPING METHODS 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EXPERIMENTAL EVALUATION FOR CFRP STRENGTH AFTER VARIOUS PAINT STRIPING METHODS Yutaka Iwahori*, Tomohiro Hasegawa**, Kozue Nakane* * JAXA, ** NIPPI

More information

Optimization of input parameters for material model of fibre reinforced concrete and application on the numerical simulation of tunnel lining

Optimization of input parameters for material model of fibre reinforced concrete and application on the numerical simulation of tunnel lining Optimization of input parameters for material model of fibre reinforced concrete and application on the numerical simulation of tunnel lining Tereza Sajdlová, Radomír Pukl Červenka Consulting, Prague,

More information

, 29, , (1995). ABSTRACT

, 29, , (1995). ABSTRACT 1 Brodt, M. and Lakes, R. S., "Composite materials which exhibit high stiffness and high viscoelastic damping", adapted from J. Composite Materials, 29, 1823-1833, (1995). ABSTRACT Composite micro-structures

More information

FATIGUE LIFE ASSESSMENT FOR COMPOSITE MATERIALS

FATIGUE LIFE ASSESSMENT FOR COMPOSITE MATERIALS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE ASSESSMENT FOR COMPOSITE MATERIALS Y. Nikishkov*, A. Makeev School of Aerospace Engineering, Georgia Institute of Technology, Atlanta,

More information

NPL Manual. Modelling Creep in Toughened Epoxy Adhesives

NPL Manual. Modelling Creep in Toughened Epoxy Adhesives NPL Manual Modelling Creep in Toughened Epoxy Adhesives This Electronic Guide was produced as part of the Measurements for Materials System Programme on Design for Fatigue and Creep in Joined Systems Introduction

More information

Effect of FRP strengthening on the behavior of shear walls with opening

Effect of FRP strengthening on the behavior of shear walls with opening CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of FRP strengthening on the behavior of shear walls with opening M. Asfa

More information

SCIENCE CHINA Physics, Mechanics & Astronomy

SCIENCE CHINA Physics, Mechanics & Astronomy SCIENCE CHINA Physics, Mechanics & Astronomy Article March 2014 Vol.57 No.3: 501 511 doi: 10.1007/s11433-013-5197-z Structural effects of three-dimensional angle-interlock woven composite undergoing bending

More information

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION

GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION GLASS FIBER-REINFORCED PLASTIC POLES FOR TRANSMISSION AND DISTRIBUTION LINES: AN EXPERIMENTAL INVESTIGATION D. Polyzois, S. Ibrahim, V. Burachynsky, and S. K. Hassan Department of Civil and Geological

More information

Araldite LY 5052 Resin / Aradur 5052 Hardener

Araldite LY 5052 Resin / Aradur 5052 Hardener Araldite LY 5052 Resin / Aradur 5052 Hardener Product Description Araldite LY 5052 is a low-viscosity epoxy resin that is used with Aradur 5052, a mixture of polyamines, to form a cold curing epoxy system.

More information

Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials NASA Technical Paper 3663 Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials Alan T. Nettles and Emily J. Biss November 1996 NASA Technical Paper 3663 Low Temperature Mechanical

More information

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems

Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Upgrading the shear strength of non-ductile reinforced concrete frame connections using FRP overlay systems Mohamad J. Terro Associate Professor. Civil Engineering Department, Kuwait University. Sameer

More information

A Study on Cotton-Ramie Fabric Reinforced Composites

A Study on Cotton-Ramie Fabric Reinforced Composites International Journal of Materials Science ISSN 0973-4589 Volume 12, Number 1 (2017), pp. 117-125 Research India Publications http://www.ripublication.com A Study on Cotton-Ramie Fabric Reinforced Composites

More information

FIMATEST A NEW TESTING SYSTEM TO DETERMINE THE FIBRE-MATRIX ADHESION STRENGTH BY MEANS OF PULL- OUT TESTS

FIMATEST A NEW TESTING SYSTEM TO DETERMINE THE FIBRE-MATRIX ADHESION STRENGTH BY MEANS OF PULL- OUT TESTS FIMATEST A NEW TESTING SYSTEM TO DETERMINE THE FIBRE-MATRIX ADHESION STRENGTH BY MEANS OF PULL- OUT TESTS Edith Mäder, Christina Scheffler Leibniz-Insitut für Polymerforschung Dresden e.v. Hohe Straße

More information

International Conference on Mechanics and Civil Engineering (ICMCE 2014)

International Conference on Mechanics and Civil Engineering (ICMCE 2014) International Conference on Mechanics and Civil Engineering (ICMCE 2014) Interface Fracture Models of Concrete Externally Reinforced by FRP Plates Lei ZHANG 1,a,*, Ping-Hu LIU 2,b, Xiao-Peng GUO 2,c, Yong

More information

AXIOMATIC DESIGN OF COMPOSITE HEMISPHERICAL BEARING

AXIOMATIC DESIGN OF COMPOSITE HEMISPHERICAL BEARING Proceedings of ICAD24 Seoul June 21-24, 24 ICAD-24-19 AIOMATIC DESIGN OF COMPOSITE HEMISPHERICAL BEARING Dong Chang Park dongchang@kaist.ac.kr Jong Woon Kim k@kaist.ac.kr Seong Su Kim passion2@kaist.ac.kr

More information

Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, Korea,

Seoul National University, San 56-1, Shillim-Dong, Kwanak-Gu, Seoul, Korea, 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DEVELOPMENT OF CFRP PRECISION GANTRY BEAMS FOR 11 TH GENERATION LCD PANEL MANUFACTURING B. Bhandari 1, G.Y. Lee 1, D.S. Choi 2, J.H. Kim 2 and S.H.

More information

INTERFACIAL STRENGTH OF OPTICAL FIBRES

INTERFACIAL STRENGTH OF OPTICAL FIBRES INTERFACIAL STRENGTH OF OPTICAL FIBRES Klas Levin Structures Department, The Aeronautical Research Institute of Sweden (FFA), Box 1121, SE-161 11 Bromma, Sweden SUMMARY: The interfacial strength of three

More information

DEVELOPMENT OF THERMOPLASTIC RESIN IMPREGNATED YARN AND ITS COMPOSITE PROPERTIES

DEVELOPMENT OF THERMOPLASTIC RESIN IMPREGNATED YARN AND ITS COMPOSITE PROPERTIES DEVELOPMENT OF THERMOPLASTIC RESIN IMPREGNATED YARN AND ITS COMPOSITE PROPERTIES Akio Ohtani 1, Mitsuro Takagi 2, Jun Takashima 3, Kouji Nakajima 4, Takayuki Imai 4, Tadashi Uozumi 1, Asami Nakai 1, Hiroyuki

More information

THE EFFECT CLAY ON THE MECHANICAL PROPERTIES OF EPOXY RESINS SUBJECTED TO HYGROTHERMAL AGEING

THE EFFECT CLAY ON THE MECHANICAL PROPERTIES OF EPOXY RESINS SUBJECTED TO HYGROTHERMAL AGEING THE EFFECT CLAY ON THE MECHANICAL PROPERTIES OF EPOXY RESINS SUBJECTED TO HYGROTHERMAL AGEING Salah U. Hamim 1 & Raman P. Singh 1 1 Mechanical and Aerospace Engineering Oklahoma State University Helmerich

More information

applications. In this work, we report an epoxy system based on diglycidyl ether of bisphenol A (DGEBA) and

applications. In this work, we report an epoxy system based on diglycidyl ether of bisphenol A (DGEBA) and Single-component and fast-curing epoxy resin for liquid composite molding processes Yiru Wang 1,2,a, Wangshuang Liu 2, Yiping Qiu 1 and Yi Wei 2 1 Donghua University, College of Textiles, Shanghai 201620,

More information

Composites: Part B 42 (2011) Contents lists available at ScienceDirect. Composites: Part B

Composites: Part B 42 (2011) Contents lists available at ScienceDirect. Composites: Part B Composites: Part B 42 (2011) 1708 1712 Contents lists available at ScienceDirect Composites: Part B journal homepage: www.elsevier.com/locate/compositesb Mechanism of reinforcement in a nanoclay/polymer

More information

Flexural Behavior of Sandwich Composite Panels Under 4-Point Loading

Flexural Behavior of Sandwich Composite Panels Under 4-Point Loading International Journal of Materials Science ISSN 0973-4589 Volume 11, Number 1 (2016), pp. 47-55 Research India Publications http://www.ripublication.com Flexural Behavior of Sandwich Composite Panels Under

More information

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE ECF EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE Masato Ono, Ki-Woo Nam*, Koji Takahashi, Kotoji Ando Department of Safety & Energy Engineering, Yokohama National University 79-

More information