MODIFICATIONS OF STEAM POWER PLANT INTO COMBINED CYCLE BY INTRODUCING LNG AS FUEL

Size: px
Start display at page:

Download "MODIFICATIONS OF STEAM POWER PLANT INTO COMBINED CYCLE BY INTRODUCING LNG AS FUEL"

Transcription

1 MODIFICATIONS OF STEAM POWER PLANT INTO COMBINED CYCLE BY INTRODUCING LNG AS FUEL Akhil Mohandas 1, Subin Thomas 2, Akul Vijay N 3, Gokul V H 4,Jithin Martin 5, Shyam Kumar S 6, Tom M Pynadath 7, Vimal Kumar 8, Rafin T A 9 1-7(B-Tech student, Mechanical Department, Nirmala College of Engineering, Thrissur, Kerala, India) 8(Senior Engineer, Petrochemical Division, FACT, Udyogamandal, Ernakulam, Kerala, India) 9(Assistant Professor, Mechanical Department, Nirmala College of Engineering, Thrissur, Kerala, India) ABSTRACT: The aim of the presented paper is to understand the latest trends in the steam power plant which works on the simple Rankine cycle.steam power plants suffer from limited efficiencies and consequential dominance of fuel prices on generation costs. Combined cycles, however, exploit the waste heat from exhaust gases to boost power output, resulting in overall efficiencies around 50%, which are significantly above those of steam power plants. The underlying idea to write this paper is to study the possibilities of installation of gas turbine with heat recovery steam generator for the required power and steam production, hence determine numerically the cost of power production, steam production, and profit of the company. KEYWORDS: Rankine cycle; Brayton cycle; Cogeneration; Reheat ABBREVATIONS: LNG: Liquefied Natural Gas 1. INTRODUCTION In a steam power plant, power and steam production is done with the help of steam turbines, which works on the basis of simple Rankine cycle. We observe that the use of steam power plant is uneconomical, because it has a lot of disadvantages such as variable heat losses, efficiency is only 35 to 40% and high cost to operate. In a combined cycle power plant (CCPP), or combined cycle gas turbine (CCGT) plant, a gas turbine generator generates electricity and heat in the exhaust is used to make steam, which in turn drives a steam turbine to generate additional electricity. This last step enhances the efficiency of electricity generation. In order to overcome these disadvantages and make economical, we proposed our guide to use the possibilities of a single gas turbine with heat recovery steam generator instead of steam turbines. The gas turbine works on the basis of Brayton cycle. The fuel required for running gas turbine is LNG (Liquefied Natural Gas). Gas turbine with heat recovery steam generator is a form of highly efficient energy generation technology that combines a gas fired turbine with a heat recovery steam generator. The power plant is generates heat. The design uses a gas turbine to create power and then recover the resulting waste heat to produce steam

2 2. LITERATURE SURVEY I. Najjar&Akyurt (1994) reviewed various types of combined cycles, including repowering, integrated gasification and other advanced systems. According to this study: 1). Combined cycles boost power output and efficiency to levels that are considerably above those of steam power plants 2). Repowering, when converting an existing steam plant to combined cycle, offers savings in capital cost as compared to new construction 3). Combined cycle, when integrated with coal gasification, holds promise in converting coal into electric power in an efficient, economical and environmentally acceptable manner 4). The airbottoming cycle (ABC), chemically recuperated gas turbine, compressed air energy storage (CAES) and compressed air storage humidification (CASH) are among advanced concepts with promise II. for combined cycle applications. Khaliq & Kaushik (2004) carried an improved second-law analysis of the combined power-cycle with reheat and showed the importance of the parameters examined. The analysis has included the energy destruction in the components of the cycle and an assessment of the effects of pressure ratio; temperature ratio and number of reheat stages on the cycle performance. The energy balance or second-law approach presented facilitates the design and III. IV. optimization of complex cycles by pinpointing and quantifying the losses. By placing reheat in the expansion process, significant increases in specific power output and efficiency were obtained. The gains are substantial for one and two reheats, but progressively smaller for subsequent stages. Manuel Valdés (2003) shows a possible way to achieve a thermo economic optimization of combined cycle gas turbine (CCGT) power plants. The optimization has been done using a genetic algorithm, which has been tuned applying it to a single pressure CCGT power plant. Once tuned, the optimization algorithm has been used to evaluate more complex plants, with two and three pressure levels in the heat recovery steam generator (HRSG).The variables considered for the optimization were the thermodynamic parameters that establish the configuration of the HRSG. Two different objective functions are proposed: one minimizes the cost of production per unit of output and the other maximizes the annual cash flow. The results obtained with both functions are compared in order to find the better optimization strategy. Bartnik&Ryszard (2011) in their book Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle presents the methodology, calculation procedures and tools used to

3 support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. They alsoanalyse the optimum selection of the structure of heat exchangers in a 370 MW power block, the structure of heat recovery steam generators and gas turbines. Conversion of Coal-Fired Power Plant to Cogeneration and Combined-Cycle also addresses the problems of converting existing power plants to dual-fuel gas-steam combined-cycle technologies coupled with parallel systems. 3. THE EXISTING SYSTEM Fig.1.Schematic Diagram Showing the Simple Steam Cycle in a Power Plant. The schematic diagram Fig.1. Shows a simple steam cycle which works on the basis of simple Rankine cycle. It consists of a boiler, steam turbine, generator, deaerator, pumps, condenser, a source and sink Power and steam production is done with the help of steam turbines. In boiler superheated steam is generated. Steam expands in steam turbine which drives a generator. The cooling water circuit is modelled by sink and cooling water pump. The fuel in the furnace may be furnace oil or coal. It produces an electrical power P el of KW. The mass flow rate of steam through the system is 450kg/s and the enthalpy is kJ/kg. The simple steam cycle is less economical because it has a lot of disadvantages such as variables heat losses, less efficiency and higher cost of operation

4 4. THE PROPOSED SYSTEM Fig.2. Schematic Diagram Showing Combine Power Plant with Gas Turbine. Inorder to overcome the disadvantages of steam power plant we propose a combined cycle power plant with gas turbine which is shown in Fig.2. The above schematic diagram shows a combine cycle power plant with a gas turbine producing an electrical power P el of KW. The mass flow rate of steam through the system is kg/s. We can infer that for the same electrical power the steam production rate is more for a combined. Also the mechanical efficiency and exergy efficiency is more. So the heat loss is less as well the losses in the whole system is less when compared to the simple steam cycle. Combined cycles boost power output and efficiency to levels that are considerably above those of steam power plants

5 6. RESULTS AND DISCUSSION Graph.1. Effect of temperature and entropy of a simple steam turbine power plant system. Graph 2. Effect of temperature and entropy of a combined cycle power plant with gas turbine system. The graphs 1 and 2 show the variation of enthalpy at various temperatures in a steam cycle and a combined cycle power plant. When we compare the cycles obtained we

6 found that the superheated temperature for combined cycle is C while the superheated temperature for simple cycle is 448 C. This shows the superheated temperature is more for combined cycle than simple cycle. So heat loss is less in a combined cycle than simple steam cycle. The entropy at the superheated stage for simple steam cycle is 6.55KJ/KgK and that of combined cycle is 6.925KJ/KgK. Therefore the efficiency of a combined cycle is better compared to a simple cycle.. Table1 showing different percentage exergy efficiency, losses and exergy transmitted from various equipments in a simple steam power plant. Table 2 showing different percentage exergy efficiency, losses and exergy transmitted from various equipments in a combined cycle power plant. From the above tables 1 and 2 we can infer that the losses in steam power plant are more compared to that of the combined cycle power plant. Also we can conclude that the heat converted into work is more in combined cycle power plant compared to the steam power plant. We can also infer from the above tables that the efficiency of a combined cycle power plant is more compared to that of the steam power plant. This is because steam can be produced from waste heat of the exhaust, and injected into the air delivered by the compressor or into the combustor, thus increasing the electrical output of the gas turbine in a combined cycle

7 Table 3 Shows gross and net efficiencies of a simple steam power plant. From the above tables 3 and 4 we can infer that net energy for simple steam cycle is % while that for combined cycle is %. The net exergy for simple steam cycle is % while that for combined cycle is %. Therefore energy and exergy produced in a combined cycle power plant is more compared to the steam power plant. Also we can conclude that the gross efficency of a combined cycle power plant is better compared to the steam power plant. This is also same in case of net efficiencies. Thus dramatic improvements in efficiency at all loads i.e. better efficiency. 7. MERITS OF COMBINED CYCLE Simple-cycle gas turbines that are designed for power generation have often been used when natural gas or distillate fuels can be burned economically. Steam can be produced from waste heat of the exhaust, and injected into the air delivered by the Table 4 Shows gross and net efficiencies of a combined steam power plant. compressor or into the combustor, thus increasing the electrical output of the gas turbine. Dramatic improvements in efficiency at all loads i.e. better efficiency. Improved operating reliability. New modifications can be added at low-cost to existing power facilities. Modifying can greatly enhance the efficiency to levels comparable with those of plants originally constructed as fully-fired combined cycle economic analyses reveal that significant fuel savings justify the capital investment. Cooling requirement of the combined cycle is much lower than the normal steam turbine power plant having same capacity output. It has high ratio of power output to the area occupied. Therefore for designing a combined cycle plant space requirement is not a concern

8 Combined cycle power plant is more suitable for rapid start and shutdown than the steam power plants. Therefore these plants accept load variations quickly and help in maintaining the stability in the electric grid. 8. CONCLUSION Combined cycle generation system features high thermal efficiency, low installed cost, fuel flexibility with a wide range of gas and liquid fuels, low operation and maintenance costs, operating flexibility at base, mid-range and daily start, high reliability and availability, short installation times and high efficiency in small capacity increments. In particular: 1. Combined cycles boost power output and efficiency to levels that are considerably above those of steam power plants. 2. Repowering, when converting an existing steam plant to combined cycle, offers savings in capital cost as compared to new construction. 3. Combined cycle, when integrated with coal gasification, holds promise in converting coal into electric power in an efficient, economical and environmentally acceptable manner. ACKNOWLEDGEMENT This paper is the outcome of hard work with the help and cooperation from many sources. We express our gratitude and sincere thanks to college management and all the faculties of the department of mechanical engineering, Nirmala College of Engineering. Authors are thankful to Petrochemical Division, FACT Udyogamandal for their support and guidance. REFERENCE I. Y. S. H. Najjar & M. Akyurt, Combined cycle with gas turbine engine, Heat Recovery Systems & CHP Vol. 14, No. 2, pp , 1994 II. Khaliq & S.C. Kaushik, Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat, Applied Thermal Engineering 24 (2004) III. Manuel Valdés, M Dolores Durán and Antonio Rovira, Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms Applied Thermal Engineering Volume 23, Issue 17, December 2003, Pages IV. Bartnik&Ryszard Conversion of Coal-Fired Power Plant to Cogeneration and Combined- Cycle (2011). V. E. Godoy, S.J. Benz and N.J. Scenna, A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships, Applied Thermal Engineering Volume 31, Issue 5, April 2011, Pages

9 VI. VII. VIII. IX. Blank and Veatch, Power Plant Engineering, CBS Publishers & Distributors Pvt Ltd., 2005 Edition, Pages Khaliq & S.C.Kaushik, Secondlaw based thermodynamic analysis of Brayton/Rankine combined power cycle with reheats, Applied Energy 78 (2004) Pages Sanjay Onkar Singh and B.N. Prasad Comparative performance analysis of cogeneration gas turbine cycle for different blade cooling means International Journal of Thermal Sciences Volume 48, Issue 7, July 2009, Pages Khaliq & S.C. Kaushik, Secondlaw based thermodynamic analysis of Brayton/Rankine combined power cycle with reheats, Applied Energy 78 (2004), Pages

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT Harendra Singh 1, Prashant Kumar Tayal 2 NeeruGoyal 3, Pankaj Mohan

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS Muammer Alus, Milan V. Petrovic University of Belgrade-Faculty of Mechanical Engineering, Laboratory of Thermal

More information

Stationary Combustion Systems Chapter 6

Stationary Combustion Systems Chapter 6 Stationary Combustion Systems Chapter 6 Stationary combustion systems presently supply most of the earth s electricity. Conversion will take time, so study of these systems in order to improve them is

More information

OPTIMIZATION OF THE TRIPLE-PRESSURE COMBINED CYCLE POWER PLANT. Muammer ALUS and Milan V. PETROVI] *

OPTIMIZATION OF THE TRIPLE-PRESSURE COMBINED CYCLE POWER PLANT. Muammer ALUS and Milan V. PETROVI] * THERMAL SCIENCE: Year 2012, Vol. 16, No. 3, pp. 901-914 901 OPTIMIZATION OF THE TRIPLE-PRESSURE COMBINED CYCLE POWER PLANT by Muammer ALUS and Milan V. PETROVI] * Faculty of Mechanical Engineering, University

More information

Exergy in Processes. Flows and Destruction of Exergy

Exergy in Processes. Flows and Destruction of Exergy Exergy in Processes Flows and Destruction of Exergy Exergy of Different Forms of Energy Chemical Energy Heat Energy Pressurised Gas Electricity Kinetic Energy Oxidation of Methane ΔH = -890.1 kj/mol ΔS

More information

Thermodynamic analysis of a regenerative gas turbine cogeneration plant

Thermodynamic analysis of a regenerative gas turbine cogeneration plant Journal of KUMAR Scientific et al: & Industrial THERMODYNAMIC Research ANALYSIS OF A REGENERATIVE GAS TURBINE COGENERATION PLANT Vol. 69, March 2010, pp. 225-231 225 Thermodynamic analysis of a regenerative

More information

2. TECHNICAL DESCRIPTION OF THE PROJECT

2. TECHNICAL DESCRIPTION OF THE PROJECT 2. TECHNICAL DESCRIPTION OF THE PROJECT 2.1. What is a Combined Cycle Gas Turbine (CCGT) Plant? A CCGT power plant uses a cycle configuration of gas turbines, heat recovery steam generators (HRSGs) and

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

STUDY ON EFFECTIVE PARAMETER OF THE TRIPLE-PRESSURE REHEAT COMBINED CYCLE PERFORMANCE

STUDY ON EFFECTIVE PARAMETER OF THE TRIPLE-PRESSURE REHEAT COMBINED CYCLE PERFORMANCE THERMAL SCIENCE: Year 2013, Vol. 17, No. 2, pp. 497-508 497 STUDY ON EFFECTIVE PARAMETER OF THE TRIPLE-PRESSURE REHEAT COMBINED CYCLE PERFORMANCE by Thamir K. IBRAHIM a,c* and Mustafizur M. RAHMAN b a

More information

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT AN EXERGY COST ANALYSIS OF A COGENERATION PLANT L. P. Gonçalves, and F. R. P. Arrieta Pontifícia Universidade Católica de Minas Gerais Programa de Pós-Graduação em Engenharia Mecânica Av. Dom José Gaspar,

More information

Thermodynamic and Thermo Economic Optimization of Combined Cycle Power Plant

Thermodynamic and Thermo Economic Optimization of Combined Cycle Power Plant Thermodynamic and Thermo Economic Optimization of Combined Cycle Power Plant Masoud Taghavi, Mohsen Abdollahi, and Gholamreza Salehi Abstract Combined Cycle Power Plant is the most effective among all

More information

Performance and Emission Characteristics of Natural Gas Combined Cycle Power Generation System with Steam Injection and Oxyfuel Combustion

Performance and Emission Characteristics of Natural Gas Combined Cycle Power Generation System with Steam Injection and Oxyfuel Combustion Performance and Emission Characteristics of Natural Gas Combined Cycle Power Generation System with Steam Injection and Oxyfuel Combustion By Nitin N. Varia A Thesis Submitted in Partial Fulfillment of

More information

ENERGY AND EXERGY ANALYSIS OF A 250MW COAL FIRED THERMAL POWER PLANT AT DIFFERENT LOADS

ENERGY AND EXERGY ANALYSIS OF A 250MW COAL FIRED THERMAL POWER PLANT AT DIFFERENT LOADS ENERGY AND EXERGY ANALYSIS OF A 250MW COAL FIRED THERMAL POWER PLANT AT DIFFERENT LOADS Soupayan Mitra 1, Joydip Ghosh 2 1 Associate Professor, Mechanical Engineering Department, Jalpaiguri Government

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

Chapter 2.7: Cogeneration

Chapter 2.7: Cogeneration Chapter 2.7: Cogeneration Part-I: Objective type questions and answers 1. In cogeneration, the system efficiencies can go up to ------ a) 70% b) 80% c) 90% d) 60% 2. Cogeneration is the simultaneous generation

More information

Low temperature cogeneration using waste heat from research reactor as a source for heat pump

Low temperature cogeneration using waste heat from research reactor as a source for heat pump National Centre for Nuclear Research in Poland Low temperature cogeneration using waste heat from research reactor as a source for heat pump Anna Przybyszewska International Atomic Energy Agency 14-16

More information

Performance of a Gas Turbine Power Plant

Performance of a Gas Turbine Power Plant International Journal of Mechanical Engineering and Applications 2017; 5(1): 60-69 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20170501.18 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

Energy And Exergy Analysis Of Fully Condensing Steam Turbine At Various Steam Load Condition

Energy And Exergy Analysis Of Fully Condensing Steam Turbine At Various Steam Load Condition International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 957-963, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

Technology and Prospect of Process Heat Application of HTR(High temperature gas cooled reactor) Applications in Oil Refining Industry

Technology and Prospect of Process Heat Application of HTR(High temperature gas cooled reactor) Applications in Oil Refining Industry Technology and Prospect of Process Heat Application of HTR(High temperature gas cooled reactor) Applications in Oil Refining Industry Dr. Min Qi, Associate Professor Institute of Nuclear and New Energy

More information

Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on

Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on Chapter 10, Problem 8C. Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure on Pump work input: Turbine work output: Heat supplied:

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants

Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants Muammer Alus, Milan V. Petrovic - Faculty of Mechanical Engineering Laboratory of Thermal Turbomachinery

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

Engineering Thermodynamics

Engineering Thermodynamics Unit 61: Engineering Thermodynamics Unit code: D/601/1410 QCF level: 5 Credit value: 15 Aim This unit will extend learners knowledge of heat and work transfer. It will develop learners understanding of

More information

Application of Exergy Analysis. Value and Limitations

Application of Exergy Analysis. Value and Limitations Application of Exergy Analysis Value and Limitations Power Plant Exergy Flows and Destruction Stack 2 Other Losses 1 Fuel 92 27 65 20 Steam 43 7 Shaft Power 32 Combustion Heat Transfer Turbine Steam 3

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

The Effect of the Condenser Inlet Cooling Water Temperature on the Combined Cycle Power Plant Performance

The Effect of the Condenser Inlet Cooling Water Temperature on the Combined Cycle Power Plant Performance WWJMRD 2017; 3(10): 206-211 www.wwjmrd.com International Journal Peer Reviewed Journal Refereed Journal Indexed Journal UG Approved Journal Impact Factor MJIF: 4.25 e-issn: 2454-6615 Muammer Alus Mohamed

More information

A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture

A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture Presentation at the

More information

Electricity Generation from Waste Heat

Electricity Generation from Waste Heat Electricity Generation from Waste Heat Organic Rankine Cycle (ORC) Technology www.durr.com Make the most out of your waste your waste heat heat Organic Rankine Cycle (ORC) is a key technology used for

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Course 0101 Combined Cycle Power Plant Fundamentals

Course 0101 Combined Cycle Power Plant Fundamentals Course 0101 Combined Cycle Power Plant Fundamentals Fossil Training 0101 CC Power Plant Fundamentals All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

More information

Efficient and Flexible AHAT Gas Turbine System

Efficient and Flexible AHAT Gas Turbine System Efficient and Flexible AHAT Gas Turbine System Efficient and Flexible AHAT Gas Turbine System 372 Jin ichiro Gotoh, Dr. Eng. Kazuhiko Sato Hidefumi Araki Shinya Marushima, Dr. Eng. OVERVIEW: Hitachi is

More information

Optimal Design Technologies for Integration of Combined Cycle Gas Turbine Power Plant with CO 2 Capture

Optimal Design Technologies for Integration of Combined Cycle Gas Turbine Power Plant with CO 2 Capture 1441 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials

Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials 7. COGENERATION Syllabus Cogeneration: Definition, Need, Application, Advantages, Classification, Saving potentials 7.1 Need for cogeneration Thermal power plants are a major source of electricity supply

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 08 Aug p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 08 Aug p-issn: Thermodynamic analysis and comparison of various organic fluids for ORC in Gas turbine-organic Rankine combined cycle plant with solar reheating and regeneration of ORC fluid Dr. R.S. Mishra 1, Dharmendra

More information

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012

Cogeneration. Thermal Chillers. and. .. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Cogeneration and Thermal Chillers.. ASHRAE National Capital Chapter. Arlington, VA 10/10/2012 Agenda Cogeneration Interest and Application Basics Equipment Matching Thermal Chiller Overview Steam Components

More information

Performance Optimization of Steam Power Plant through Energy and Exergy Analysis

Performance Optimization of Steam Power Plant through Energy and Exergy Analysis I NPRESSCO NTERNATIONAL PRESS CORPORATION International Journal of Current Engineering and Technology, Vol.2, No.3 (Sept. 2012) ISSN 2277-4106 Research Article Performance Optimization of Steam Power Plant

More information

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett Faculté de génie Génie mécanique Faculty of Engineering Mechanical Engineering MCG2131 - THERMODYNAMICS II 22 April 2008 Page 1 of 7 Prof. W. Hallett Closed book. Non-programmable calculators only allowed.

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Decentralized Biomass Power Production

Decentralized Biomass Power Production Decentralized Biomass Power Production by Dr. Eric Bibeau University of Manitoba (Alternative Energy Research) Biomass Energy II Heat and Power Workshop November 13, 2003 Activity at U of M biomass alternative

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

The H-25/H-15 Gas Turbine A Product of Hitachi Quality

The H-25/H-15 Gas Turbine A Product of Hitachi Quality GKKP-08-012 Rev.0 The H-25/H-15 Gas Turbine A Product of Hitachi Quality The H-25 s fuel savings will repay your investment within a few years while allowing you a range of fuels from distillate to natural

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Challenges in Designing Fuel-Fired sco2 Heaters for Closed sco2 Brayton Cycle Power Plants

Challenges in Designing Fuel-Fired sco2 Heaters for Closed sco2 Brayton Cycle Power Plants 5th International Supercritical CO 2 Power Cycles Symposium March 29-31, 2016, San Antonio, Texas Challenges in Designing Fuel-Fired sco2 Heaters for Closed sco2 Brayton Cycle Power Plants David Thimsen

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

Design Optimisation of the Graz Cycle Prototype Plant

Design Optimisation of the Graz Cycle Prototype Plant Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Optimisation of the Graz Cycle Prototype Plant Presentation at the ASME Turbo

More information

Gas turbine power plant. Contacts: Mail: Web:

Gas turbine power plant. Contacts: Mail: Web: Gas turbine power plant Contacts: Mail: poddar05@gmail.com Web: http://www.ajourneywithtime.weebly.com/ Contents Gas turbine power plant Elements of gas turbine power plants Gas turbine fuels Cogeneration

More information

William C. Stenzel, P. E. SEPRIL Dale M. Sopocy, P. E. SEPRIL Stanley E. Pace SEPRIL

William C. Stenzel, P. E. SEPRIL Dale M. Sopocy, P. E. SEPRIL Stanley E. Pace SEPRIL By William C. Stenzel, P. E. SEPRIL Dale M. Sopocy, P. E. SEPRIL Stanley E. Pace SEPRIL Repowering Existing Fossil Steam Plants By William C. Stenzel, P. E. SEPRIL Dale M. Sopocy, P. E. SEPRIL Stanley

More information

Hitachi H-25 & H-80 Gas Turbine. Bucharest, Apr.23, 2013

Hitachi H-25 & H-80 Gas Turbine. Bucharest, Apr.23, 2013 Hitachi H-25 & H-80 Gas Turbine Bucharest, Apr.23, 2013 Doc No. : GKKP-13-009 Rev.0 Hitachi, Ltd. 2013. All rights reserved. 1 Table of Contents Hitachi Gas Turbine Business H-25 Performance and Applications

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

The H-25/H-15 Gas Turbine A Product of Hitachi Quality

The H-25/H-15 Gas Turbine A Product of Hitachi Quality DMLieferant www.dmliefer.ru The H-25/H-15 Gas Turbine A Product of Hitachi Quality The H-25 s fuel savings will repay your investment within a few years while allowing you a range of fuels from distillate

More information

Steam generation unit in a simple version of biomass based small cogeneration unit

Steam generation unit in a simple version of biomass based small cogeneration unit MATEC Web of Conferences 18, 01010 (2014) DOI: 10.1051/ matecconf/ 20141801010 C Owned by the authors, published by EDP Sciences, 2014 Steam generation unit in a simple version of biomass based small cogeneration

More information

Large Frame Gas Turbines, The Leading Technology of Power Generation Industries

Large Frame Gas Turbines, The Leading Technology of Power Generation Industries Large Frame Gas Turbines, The Leading Technology of Power Generation Industries YASUSHI FUKUIZUMI*1 AKIMASA MUYAMA*2 SHIGEHIRO SHIOZAKI*1 SUMIU UCHIDA*3 In developing large-capacity turbines for use in

More information

Carrington Power Station

Carrington Power Station Carrington Power Station INTRODUCTION 01 Welcome to Carrington Power Station Carrington Power Station is a 884.2MW plant that generates enough electricity to power more than one million homes and businesses.

More information

BUILDINGS & OFFICE SPACES INDUSTRIAL SOLUTIONS. Combined production of Heat and Power. Waste Heat Recovery Bottoming Cycle

BUILDINGS & OFFICE SPACES INDUSTRIAL SOLUTIONS. Combined production of Heat and Power. Waste Heat Recovery Bottoming Cycle BUILDINGS & OFFICE SPACES Combined production of Heat and Power INDUSTRIAL SOLUTIONS Waste Heat Recovery Bottoming Cycle The ENEFCOGEN GREEN line of products is designed for applications of Combined Heat

More information

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+,

Combined Cycle Power Plants. Combined Cycle Power Plant Overview (Single- and Multi-Shaft) Training Module. ALSTOM (Switzerland) Ltd )*+, Power Plant Overview Training Module ALSTOM (Switzerland) Ltd )*+, We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without

More information

Overview of cogeneration technology and application

Overview of cogeneration technology and application Overview of cogeneration technology and application Cogeneration Week Hanoi, 6 April 2004 Melia Hotel, Hanoi Leif Mortensen, Coal Expert Cogeneration or Combined Heat and Power (CHP) Sequential generation

More information

Guidance Document for Cogeneration Emissions. (Cogeneration Guidelines)

Guidance Document for Cogeneration Emissions. (Cogeneration Guidelines) Guidance Document for Cogeneration Emissions (Cogeneration Guidelines) October 2008 Alberta Environment 1 Introduction This document replaces the Guidance Document for Cogeneration Emissions (2006). The

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Father of thermodynamics, Sadi Carnot said that man is the weakest animal on the earth yet dominates the entire world. only because of power. Best power plant cycle is the one in

More information

Power cycles. Principles of combustion cycles and efficient concepts

Power cycles. Principles of combustion cycles and efficient concepts Power cycles Principles of combustion cycles and efficient concepts This contribution is based on the EC BREF- document Reference Document on Best Available Techniques for Large Combustion Plants July

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

Steam balance optimisation strategies

Steam balance optimisation strategies Steam balance optimisation strategies Publicado en Chemical Engineering, Noviembre 2002 Background Optimising a steam balance in a plant with several steam mains pressures is not always a simple intuitive

More information

CHAPTER 4 STEAM TURBINE and CYCLE HEAT BALANCE

CHAPTER 4 STEAM TURBINE and CYCLE HEAT BALANCE CHAPTER STEAM TURBINE and CYCLE HEAT BALANCE.1. Steam Turbine Principles... 2.2. Steam Turbine Analysis... 3.3. Arrangements of Steam Turbines..... Heat Balance... 6.. System Performance... 7 Chapter 1

More information

Modelling and Optimisation of the Otahuhu B Combined Cycle Gas Turbine Power Station

Modelling and Optimisation of the Otahuhu B Combined Cycle Gas Turbine Power Station Modelling and Optimisation of the Otahuhu B Combined Cycle Gas Turbine Power Station Hannon Lim 1, Jonathan Currie 2, David I. Wilson 2 and John Rickerby 3 1 Electrical and Electronic Engineering AUT University

More information

ORGANIC RANKINE CYCLE AS EFFICIENT ALTERNATIVE TO STEAM CYCLE FOR SMALL SCALE POWER GENERATION

ORGANIC RANKINE CYCLE AS EFFICIENT ALTERNATIVE TO STEAM CYCLE FOR SMALL SCALE POWER GENERATION th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT0 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics July 0 Pointe Aux Piments, Mauritius

More information

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Energy Conversion Technologies for Biomass fuelled small-systems

Energy Conversion Technologies for Biomass fuelled small-systems Facoltà di Ingegneria Corso di laurea in Engineering Sciences Thesis on applied Thermal Engineering Energy Conversion for Biomass fuelled small-systems Relatore Prof. Ing. Roberto Verzicco Correlatore

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 016 ISSN (online): 31-0613 Thermodynamic Analysis of Thermal Power Plant Cycle Veeranagouda Patil 1 M. R. Nagaraj 1

More information

Proceedings of 2nd Conference: People and Buildings, held at Graduate Centre, London Metropolitan University, London, UK, 18 th of September 212. Network for Comfort and Energy Use in Buildings: http://www.nceub.org.uk

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad,

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, 500014. MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : THERMAL ENGINEERING II Course Code : A50326- Class : III B. Tech I Semester

More information

Power Block Technology for CSP

Power Block Technology for CSP bike-fitline.com Power Block Technology for CSP www.renac.de 1 Power Block Technology for CSP Introduction: Conversion of Thermal Energy into Electricity Thermodynamic Basics Rankine Cycle (Steam Plants)

More information

A COMPREHENSIVE STUDY ON WASTE HEAT RECOVERY FROM INTERNAL COMBUSTION ENGINES USING ORGANIC RANKINE CYCLE

A COMPREHENSIVE STUDY ON WASTE HEAT RECOVERY FROM INTERNAL COMBUSTION ENGINES USING ORGANIC RANKINE CYCLE THERMAL SCIENCE: Year 2013, Vol. 17, No. 2, pp. 611-624 611 A COMPREHENSIVE STUDY ON WASTE HEAT RECOVERY FROM INTERNAL COMBUSTION ENGINES USING ORGANIC RANKINE CYCLE by Mojtaba TAHANI a, b, Saeed JAVAN

More information

Thermo-Economic Analysis of Combined Cycle MED-TVC Desalination System

Thermo-Economic Analysis of Combined Cycle MED-TVC Desalination System Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 1005 1020 The 7 th International Conference on Applied Energy ICAE2015 Thermo-Economic Analysis of Combined Cycle MED-TVC

More information

Exergy Analysis of a Power Plant in Abu Dhabi (UAE)

Exergy Analysis of a Power Plant in Abu Dhabi (UAE) Exergy Analysis of a Power Plant in Abu Dhabi (UAE) Omar Mohamed Alhosani 1, Abdulla Ali Alhosani 2, Zin Eddine Dadach 3 1, 2, 3 Chemical Engineering Department, Abu Dhabi Men s College, Higher Colleges

More information

Canada. Iron and Steel Sector - PI Specifics

Canada. Iron and Steel Sector - PI Specifics How can process integration help me? Process integration (PI) is a very efficient approach to improving the energy efficiency of large and complex industrial facilities. PI refers to the application of

More information

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING

II. SYSTEM DESCRIPTION AND MATHEMATICAL MODELING Mathematical Modeling and Analysis of Absorption Refrigeration System Using Waste Heat of Diesel Genset Yashvir Singh 1*, Deepak Kumar 2, Ajay Kumar 3, Amneesh Singla 4 1,2,3,4 Mechanical Engineering,

More information

Eng Thermodynamics I: Sample Final Exam Questions 1

Eng Thermodynamics I: Sample Final Exam Questions 1 Eng3901 - Thermodynamics I: Sample Final Exam Questions 1 The final exam in Eng3901 - Thermodynamics I consists of four questions: (1) 1st Law analysis of a steam power cycle, or a vapour compression refrigeration

More information

Organic Rankine Cycle Configurations

Organic Rankine Cycle Configurations Proceedings European Geothermal Congress 2007 Unterhaching, Germany, 30 May-1 June 2007 Organic Rankine Cycle Configurations Uri Kaplan Ormat Technologies, Inc., 6225 Neil Road, Suite 300 - Reno, NV 89511-1136,

More information

Cogeneration. Rangan Banerjee. Department of Energy Science and Engineering. IIT Bombay

Cogeneration. Rangan Banerjee. Department of Energy Science and Engineering. IIT Bombay Cogeneration Rangan Banerjee Department of Energy Science and Engineering IIT Bombay Lecture in KIC-TEQIP programme on Energy Management and Energy Efficiency - IITG - 24 th May 2016 Utility options Fuel

More information

energytech.at energytech.at [ energy technology austria ] Cogeneration (CHP) TechnologyPortrait

energytech.at energytech.at [ energy technology austria ] Cogeneration (CHP) TechnologyPortrait energytech.at [ energy technology austria ] energytech.at The internet-platform for innovative energy technologies in the area of renewable energy sources and energy efficiency http://energytech.at TechnologyPortrait

More information

Technical and economical feasibility of the Rankine compression gas turbine (RCG)

Technical and economical feasibility of the Rankine compression gas turbine (RCG) Applied Thermal Engineering 26 (2006) 413 420 www.elsevier.com/locate/apthermeng Technical and economical feasibility of the Rankine compression gas turbine (RCG) H. Ouwerkerk *, H.C. de Lange Eindhoven

More information

Efficiency improvement of steam power plants in Kuwait

Efficiency improvement of steam power plants in Kuwait Energy and Sustainability V 173 Efficiency improvement of steam power plants in Kuwait H. Hussain, M. Sebzali & B. Ameer Energy and Building Research Center, Kuwait Institute for Scientific Research, Kuwait

More information

Investigation of Separator Parameters in Kalina Cycle Systems

Investigation of Separator Parameters in Kalina Cycle Systems Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Investigation

More information

DUAL REPRESENTATION OF MINIMUM ENERGY REQUIREMENTS APPLICATIONS TO P&P PROCESSES

DUAL REPRESENTATION OF MINIMUM ENERGY REQUIREMENTS APPLICATIONS TO P&P PROCESSES Congrès s Annuel ATIP Annecy 27-29 29 avril 2005 DUAL REPRESENTATION OF MINIMUM ENERGY REQUIREMENTS APPLICATIONS TO P&P PROCESSES David Brown Zoé Périn-Levasseur François Maréchal Jean Paris EP Montréal

More information

Exploitation of Low-Grade Heat in Site Utility Systems

Exploitation of Low-Grade Heat in Site Utility Systems CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET102101762 367

More information

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

More information

Introduction: Thermal treatment

Introduction: Thermal treatment Thermal Treatment 2 Introduction: Thermal treatment Technologies using high temperatures to treat waste (or RDF) Commonly involves thermal combustion (oxidation) Reduces waste to ash (MSW c. 30% of input)

More information

Applied Thermo Fluids-II: (Autumn 2017) Section-A: Thermal Power Plants

Applied Thermo Fluids-II: (Autumn 2017) Section-A: Thermal Power Plants Applied Thermo Fluids-II: (Autumn 2017) Section-A: Thermal Power Plants Module-1 (Introduction & Thermodynamics of thermal power plants) Dr. M. Ramgopal, Mechanical Engineering, IIT Kharagpur Reference:

More information

Steam Power Station (Thermal Station)

Steam Power Station (Thermal Station) Steam Power Station (Thermal Station) A generating station which converts heat energy into electrical energy through turning water into heated steam is known as a steam power station. A steam power station

More information

Theoretical Investigation on the Partial Load Feedwater Heating System with Thermal Vapor Compressor in a Coal-fired Power Unit

Theoretical Investigation on the Partial Load Feedwater Heating System with Thermal Vapor Compressor in a Coal-fired Power Unit Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 1102 1107 The 7 th International Conference on Applied Energy ICAE2015 Theoretical Investigation on the Partial Load Feedwater

More information

Combined Heat and Power (CHP)

Combined Heat and Power (CHP) February 3-4, 2009 Net Zero Energy Installation and Deployed Bases Workshop Colorado Springs, CO Session III: Power & Energy Architecture for NZE Cliff Haefke Energy Resources Center / University of Illinois

More information

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021031 181

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine

More information

Performance Benefits for Organic Rankine Cycles with Flooded Expansion

Performance Benefits for Organic Rankine Cycles with Flooded Expansion Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 6-2-2010 Performance Benefits for Organic Rankine Cycles with Flooded Expansion Brandon

More information

Article Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled

Article Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled Article Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled Hossein Safaei and Michael J. Aziz * Harvard John A. Paulson School of Engineering

More information

Energy Audit of 250 MW Thermal Power Stations PTPS, Panipat

Energy Audit of 250 MW Thermal Power Stations PTPS, Panipat Energy Audit of 250 MW Thermal Power Stations PTPS, Panipat Vikrant Bhardwaj 1, Rohit Garg 2, Mandeep Chahal 3, Baljeet Singh 4 1 Asstt. Professor in Deptt. Of Mechanical Engineering, IIET, (Kinana) Jind

More information

COURSE TITLE : POWER PLANT INSTRUMENTATION COURSE CODE : 5215 COURSE CATEGORY : E PERIODS/WEEK : 4 PERIODS/SEMESTER: 52 CREDITS : 4

COURSE TITLE : POWER PLANT INSTRUMENTATION COURSE CODE : 5215 COURSE CATEGORY : E PERIODS/WEEK : 4 PERIODS/SEMESTER: 52 CREDITS : 4 COURSE TITLE : POWER PLANT INSTRUMENTATION COURSE CODE : 5215 COURSE CATEGORY : E PERIODS/WEEK : 4 PERIODS/SEMESTER: 52 CREDITS : 4 TIME SCHEDULE Module Topics Periods 1 Introduction to power plants 14

More information

EXERGETIC ANALYSIS OF SOLAR AIDED COAL FIRED (210MW) THERMAL POWER PLANT

EXERGETIC ANALYSIS OF SOLAR AIDED COAL FIRED (210MW) THERMAL POWER PLANT International Journal of Advances in Thermal Sciences and Engineering Volume 2 Number 2 July-December 2011, pp. 85-90 EXERGETIC ANALYSIS OF SOLAR AIDED COAL FIRED (210MW) THERMAL POWER PLANT V. Siva Reddy

More information