LDS Technical Guidance

Size: px
Start display at page:

Download "LDS Technical Guidance"

Transcription

1 May 21, 2008 The following was provided to County staff as internal guidance for reviewers in applying the adequate outfall requirements of the Public Facilities Manual (PFM). A number of private sector engineers have requested copies of the document to aid them in preparing plan submissions. It is being provided with the caveat that the guidance in this document does not represent a formal interpretation of the PFM provisions referenced in the various questions posed and is subject to change. The document does not address all possible situations nor does it include a thorough discussion on how the determinations were arrived at. The guidance should only be applied to the specific scenarios described herein based on a thorough review of conditions in the field. Particularly with respect to the extent of downstream review, it is noted that under E, the Director may require analysis farther downstream when the submitted narrative described in and all related plats and plans are insufficient to show the true impact of the development on surrounding and other lower lying properties, or if there are known drainage problems downstream. If you have any questions, please contact a stormwater engineer in the Stormwater and Geotechnical Section of the Environmental and Site Review Division at LDS Technical Guidance Adequate Outfall (PFM ) March 1, 2008 The following is provided to County staff as an internal guidance document in an attempt to clarify interpretations of portions of the PFM pertaining to application of the outfall requirements on a development plan. This is to be considered a living document, and will be updated in the future as warranted.

2 Page 2 of Where does the outfall analysis start? The starting point for the outfall analysis is where the proposed storm system meets an existing receiving pipe or channel/stream. Any portion of the receiving pipe or channel/stream that is replaced or stabilized as part of the project of development is considered to be part of the existing receiving pipe or channel/stream (i.e., the starting point would not move downstream). A natural watercourse or channel/stream has bed and banks, PFM A pipe system (see Diagram 1) is a man-made enclosed conveyance system, and the confluence occurs at manhole structures. Diagram 1 2. A point of confluence is where at least two concentrated flows come together. Sheet flow or shallow flow cannot be considered as a point discharge unless it first enters a storm system through a man-made structure, such as an inlet, or collectively in an open channel/stream. Shallow flow that is not within a bed and banks conveyance system or a man-made channel (excluding minor swales) is considered to be sheet flow. Small discharges, like those from an underdrain (4 to 8 diameter pipe), are not considered to be concentrated point discharges since the flow quickly dissipates and alone does not create a bed and bank situation. MH2 & Inlet 3 are Points of Confluence in Diagram 1.

3 Page 3 of How do we measure the first drainage area for applying the 90% rule (PFM A)? Determine the starting point. The first drainage area is the total drainage area to the starting point (including the drainage area of the receiving pipe or channel). The First Drainage Area is 10 acres in Diagram 1 above. 4. Define development site. Development site is the area within the limits of disturbance of the development. It may not necessarily follow the property boundary. It does include areas (even off-site), which are disturbed to construct a new outfall system to an existing receiving pipe or channel/stream. However, it does not include areas which are disturbed to replace and improve an existing receiving pipe or channel/stream solely to make it adequate. 5. When a channel/stream or storm sewer pipe crosses a development site, should the outfall be considered concentrated at the property line, even though the runoff from the development site is sheet flow to the channel/stream or existing inlet structure? No. If the development is not concentrating flow (pre-existing watercourse) and the flow is over vegetated (undeveloped) areas outside the limits of clearing and grading, the flow from the site should be considered as sheet flow. The channel/stream or storm sewer pipe crossing the site is considered as bypassing concentrated flow as the development site did not cause the concentration of flow (e.g. an INF grading plan for a lot where there is large stream in the back yard that will not be disturbed during construction). See Diagram 2.

4 Page 4 of 11

5 Page 5 of 11 However, for an addition or improvement to previously developed land with sheet flow from the addition or improvement, the downstream end of the existing storm sewer system must be checked if there are drainage complaints on file, to ensure any increase will not aggravate any existing drainage problem, PFM B(2) (e.g. a site plan for a portion of an existing shopping center that shows sheet flow to existing drop inlets). See Diagram 3.

6 Page 6 of Does a driveway culvert concentrate flow? Driveway culverts placed within an existing roadside ditch are not considered to be concentrating flow. Driveway culverts placed to convey sheet flow from one side of the driveway to the other are not considered to be concentrating flow unless the flow rate is greater than 2 cfs during a 10-year storm or the culvert is diverting the direction of flow. 7. When determining the extent of review in accordance with PFM A (90% rule), if more than one channel/pipe is entering at the same point of confluence (common in piped systems), should the drainage areas contributing to that point of confluence be added together rather than evaluated separately? Added together. The comparison drainage area contributing at a specific point is the drainage area exiting at the point of confluence minus the drainage area entering the point of confluence from the development site s direction (which may not be the same as the first drainage area ). If, in a piped system, any additional flows entering the structure, either through a pipe or an inlet, other than the pipe containing the runoff from the project of development s flow is counted toward the drainage area contributing at the point of confluence. Inlet 3 in Diagram 1 has three points of inflow, from MH2, from the storm pipe with 8 acres of drainageshed, and the 1-acre of sheet flow through the inlet at the top. The total drainage area is 24 acres. The drainageshed area from the direction of the development site is 15 acres. Subtracting 15 from 24 we get 9 acres. Nine acres is at least 90% of the First Drainage Area of 10 acres. Therefore, the extent of review is 150 feet downstream of IN3 if the lowest 150 is adequate for stability and capacity. 8. A pond should be evaluated as a point of confluence, as runoff enters from several directions and by a combination of flow regimes (sheet flow and concentrated flow). A pond should be handled as a point of confluence since the outfall of the pond does not distinguish whether the flow entering the pond is sheet flow or concentrated, or whether a pipe or channel discharges into the pond at the top of the pond or closer to the control structure. The pond is a man-made system. When using the 90% rule to determine the extent of review, to determine the drainage area for comparison, subtract the drainage area from the development site s direction from the total drainage area to the pond s control structure. If the darinage area meets the 90% criteria, the extent of review will be at least 150 feet

7 Page 7 of 11 below the daylight point of the principal spillway or at least 150 feet below the first structure below the dam if discharging into a closed system. If the entire drainage area is 100 times greater than the contributing drainage area of the development site, the extent of review is at the pond s control structure. Diagram 4 The drainage area at the Starting Point is 8 acres. The drainage area to the pond from the development site s direction is 9 acres. The drainage area to the pond is 17 acres. Subtract 9 from 17 to get 8 acres as the drainage area for comparison. 8 acres is at least 90% of the drainage area at the Starting point of 8 acres. Therefore the extent of review is at least 150 feet below the end of the principal spillway pipe. 9. Which areas are used to determine the proportional improvement under PFM A (shear stress) and B (capacity method) when there is a drainage diversion? If the downstream system is inadequate and the designer chooses to show no adverse impact with a proportional improvement, the proportional improvement is determined using the existing (pre-development, i.e. pre-diversion) drainage area to the subject cross section and the post development (i.e. post-diversion) drainage area to the subject cross section. 10. Which areas are used to determine the proportional improvement under PFM C (detention method) when there is a drainage diversion?

8 Page 8 of 11 If the downstream system is inadequate and the designer chooses to show no adverse impact with a proportional improvement using the detention method, the proportional improvement is determined using the development site s runoff volume in a good forested condition computed from the existing drainage area to the outfall and the runoff volume of the post development condition from the post development drainage area to that particular outfall. 11. Providing the Storm Sewer Design Computations on a plan is an acceptable method to demonstrate capacity at a cross-section along the extent of review). The typical computations on a plan are for the proposed storm sewer system to be constructed with the plan of development, PFM To satisfy the outfall requirements, one option is to include For Information Only those sheets from the approved design plan from which the system was approved, or the other option is to extend the chart with the notations that they system is existing through labeling, ensuring that the actual flows, capacity flows and velocities are included. PFM Sections verbatim Adequate drainage of surface waters means the effective conveyance of storm and other surface waters through and from the development site and the discharge of such waters into a natural watercourse, i.e., a stream with a defined channel (bed and banks), or man-made drainage facility of sufficient capacity without adverse impact upon the land over which the waters are conveyed or upon the watercourse or facility into which such waters are discharged (91-06-PFM) The owner or developer may continue to discharge stormwater which has not been concentrated (i.e. sheet flow) into a lower lying property if: A (91-06-PFM) The peak rate after development does not exceed the predevelopment peak rate; or B(1) (91-06-PFM) The increase in peak rate or volume caused by the development will not have any adverse impact (e.g. soil erosion, sedimentation, duration of ponding water, inadequate overland relief) on the lower lying property as determined by the Director; and B(2) (91-06-PFM) The increase in peak rate or volume caused by the development will not aggravate any existing drainage problem or cause a new drainage problem on the downstream property (91-06-PFM) Increases in peak rates or volumes of sheet flow that may cause any adverse impact on lower lying properties shall be discharged into an adequate existing drainage

9 Page 9 of 11 system or the developer shall provide an adequate drainage system satisfactory to the Director to preclude any adverse impact upon the adjacent or downstream property The extent of the review of the downstream drainage system shall be: A To a point that is at least 150 ft (46 m) downstream to a point where the receiving pipe or channel is joined by another that has a drainage area that is at least 90% of the size of the first drainage area at the point of confluence; or B To a point at which the total drainage area is at least 100 times greater than the contributing drainage area of the development site; or C To a point that is at least 150 ft (45 m) downstream of a point where the drainage area is 360 acres (1.46 km 2 ) or greater D When using A and C for the extent of review, the analysis must be to a point where all the cross-sections are adequate in the farthest downstream reach of 150 feet. A minimum of three cross-sections shall be provided in the 150 foot reach. If the detention method described in C is used, the three cross-sections in the farthest downstream reach of 150 feet shall be limited to showing a defined channel or a man-made drainage facility and checking for flooding as described in C(3) and A Critical Shear Stress Method A (1) If the outfall is inadequate due to erosive velocities along the extent of review, which is described in , the critical shear stress method may be used to show no adverse impact due to erosive velocities. The erosive work on the channel for the postdevelopment conditions shall be reduced to a level below the erosive work on the channel under pre-development conditions by the required proportional improvement. The required proportional improvement of the downstream system at each inadequate cross-section is the ratio of the post-development C times A (see for a description of C times A) for the contributing drainage area of the site to the existing development C times A for the entire drainage area at that cross-section. The required proportional improvement is computed as follows: P i = [C d A d / C cs A cs ] X 100 where, P i = Required Proportional Improvement (%) C d = Runoff Coefficient for the Contributing Drainage Area of the Site in a Post-development Condition A d = Contributing Drainage Area of the Site C cs = Runoff Coefficient for the Contributing Drainage Area to the Cross-section in a Existing Development Condition A cs = Contributing Drainage Area to the Cross-section

10 Page 10 of B Channel Capacity Method B (1) If the outfall is inadequate due to inadequate capacity along the extent of review, which is described in , the channel capacity method may be used to show no adverse impact due to overtopping. The largest storm that does not exceed the actual channel, pipe, or culvert capacity under pre-development conditions shall be determined for the cross-section that is most frequently over its capacity. The post-development peak flows for the above storm and the 2-year and 10-year storms shall be reduced to a level below the pre-development conditions by a percent equal to the required proportional improvement. See A (1) for a description of the required proportional improvement C Detention Method C(1) It shall be presumed that no adverse impact and a proportional improvement will occur if on-site detention is provided as follows and the outfall is discharging into a defined channel or man-made drainage facility: C (1) (i) Extended detention of the 1-year storm volume for a minimum of 24 hours. If extended detention of the BMP volume (see et seq.) also is provided, the 24 hours shall be applied to the difference between the 1-year storm volume and the BMP volume; and C(1)(ii) In order to compensate for the increase in runoff volume, the 2-year and 10- year post-development peak rates of runoff from the development site shall be reduced below the respective peak rates of runoff for the site in good forested condition (e.g., for NRCS method, a cover type of "woods" and a hydrologic condition of "good"). This reduction results in a proportional improvement and is computed as follows: R i = [1 - (V f / V d )] X 100 where, R i = Reduction of Peak Flow Below a Good Forested Condition (%) V f = Runoff Volume from the Site in a Good Forested Condition V d = Runoff Volume from the Site in a Post-Developed Condition 2 Because of the long detention times resulting from this method, consideration shall be given to hydrology, soils and extended detention when choosing the appropriate landscaping for the detention facility Closed Conduit Design Calculations. In general, design calculations required for submittal to the Director are as follows: A copy of the drainage plan showing drainage divides, contributing areas and adopted Comprehensive Plan recommendation or existing zoning, whichever is higher Stormwater runoff quantities.

11 Page 11 of Pipe design calculations: A For storm sewer systems or portions of systems designed for pressure flow, a storm sewer profile with energy and hydraulic gradients drawn on it shall be submitted for the portion of the system that experiences pressure flow B Energy and hydraulic gradients do not need to be submitted for non-pressure systems Energy loss calculations at storm sewer junctions.

TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 DRAINAGE SYSTEM DESIGN SPECIFICATIONS AND SCOPE 105.1

TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 DRAINAGE SYSTEM DESIGN SPECIFICATIONS AND SCOPE 105.1 TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 DRAINAGE SYSTEM DESIGN SECTION TITLE PAGE 105.1. SPECIFICATIONS AND SCOPE 105.1 105.2. METHODS OF ANALYSIS 105.1 105.2.1. Rational Method

More information

STORM DRAINS AND IRRIGATION

STORM DRAINS AND IRRIGATION TABLE OF CONTENTS PART III - MINIMUM DESIGN STANDARDS Section 105 STORM DRAINS AND IRRIGATION 105.1. STORM DRAINS... 105.1 105.2. METHODS OF ANALYSIS... 105.1 105.2.1. Rational Method... 105.1 105.2.2.

More information

Chapter 4. Drainage Report and Construction Drawing Submittal Requirements

Chapter 4. Drainage Report and Construction Drawing Submittal Requirements 4.0 Introduction The requirements presented in this section shall be used to aid the design engineer or applicant in the preparation of drainage reports, drainage studies, and construction drawings for

More information

Stormwater Local Design Manual For Houston County, Georgia

Stormwater Local Design Manual For Houston County, Georgia Stormwater Local Design Manual For Houston County, Georgia Adopted November 15, 2005 TABLE OF CONTENTS 1. FORWARD... 1 2. GENERAL LEVEL OF SERVICE STANDARDS... 2 2.1. DETENTION REQUIREMENTS... 2 2.1.1.

More information

Chapter 7. Street Drainage. 7.0 Introduction. 7.1 Function of Streets in the Drainage System. 7.2 Street Classification

Chapter 7. Street Drainage. 7.0 Introduction. 7.1 Function of Streets in the Drainage System. 7.2 Street Classification 7. Introduction This chapter summarizes methods to evaluate runoff conveyance in various street cross sections and curb types in the Town of Castle Rock and identifies acceptable upper limits of street

More information

Warner Robins Stormwater Local Design Manual

Warner Robins Stormwater Local Design Manual Warner Robins Stormwater Local Design Manual Prepared for Houston County City of Warner Robins City of Perry City of Centerville May 17, 2005 Version 4 (As presented with adopted Stormwater Ordinance)

More information

STORM DRAINAGE DESIGN MANUAL

STORM DRAINAGE DESIGN MANUAL Appendix I STORM DRAINAGE DESIGN MANUAL by: SUNGATE DESIGN GROUP, P.A. GEN ERAL DESIGN STAN DARDS AN D POLICIES 1. STREET AND LOCAL DRAINAGE Discharge estimates for specified design storms shall be calculated

More information

MODEL Stormwater Local Design Manual. City of Centerville

MODEL Stormwater Local Design Manual. City of Centerville MODEL Stormwater Local Design Manual City of Centerville Adopted December 6, 2005 TABLE OF CONTENTS 1. FORWARD... 1 2. GENERAL LEVEL OF SERVICE STANDARDS... 1 2.1. DETENTION REQUIREMENTS... 1 2.1.1. Discharge

More information

SECTION 3 DRAINAGE. 3-1 General. 3-2 Drainage Ordinances and Legal Requirements

SECTION 3 DRAINAGE. 3-1 General. 3-2 Drainage Ordinances and Legal Requirements SECTION 3 DRAINAGE 3-1 General All Drainage plans for proposed development shall be prepared by a Professional Engineer registered in Virginia, except as noted below. Further, their seal and signature

More information

SECTION STORM DRAINAGE DESIGN, GRADING, AND WATER QUALITY TECHNICAL CRITERIA TABLE OF CONTENTS PAGE 402 STORM DRAINAGE DESIGN CRITERIA 400-1

SECTION STORM DRAINAGE DESIGN, GRADING, AND WATER QUALITY TECHNICAL CRITERIA TABLE OF CONTENTS PAGE 402 STORM DRAINAGE DESIGN CRITERIA 400-1 CITY OF THORNTON Standards and Specifications Revised: October 2012 SECTION 400 - STORM DRAINAGE DESIGN, GRADING, AND WATER QUALITY TECHNICAL CRITERIA TABLE OF CONTENTS PAGE 401 GENERAL PROVISIONS 400-1

More information

3.3 Acceptable Downstream Conditions

3.3 Acceptable Downstream Conditions iswm TM Criteria Manual - = Not typically used or able to meet design criterion. 1 = The application and performance of proprietary commercial devices and systems must be provided by the manufacturer and

More information

DESIGN BULLETIN #16/2003 (Revised July 2007) Drainage Guidelines for Highways Under Provincial Jurisdiction in Urban Areas.

DESIGN BULLETIN #16/2003 (Revised July 2007) Drainage Guidelines for Highways Under Provincial Jurisdiction in Urban Areas. Drainage Guidelines for Highways Under Provincial Jurisdiction in Urban Areas. July 2007 Update to Design Bulletin #16/2003: Added under Design Criteria Culverts of 600mm diameter are commonly used to

More information

Stormwater Erosion Control & Post-Construction Plans (Stormwater Quality Plans)

Stormwater Erosion Control & Post-Construction Plans (Stormwater Quality Plans) Stormwater Erosion Control & Post-Construction Plans (Stormwater Quality Plans) Allen County Stormwater Plan Submittal Checklist The following items must be provided when applying for an Allen County Stormwater

More information

Water Resources Management Plan

Water Resources Management Plan P L Y M O U T H M I N N E S O T A Appendix D: The developed a to analyze and minimize the impact of existing and future development on the City s natural resources. It is important to the City to have

More information

Project Drainage Report

Project Drainage Report Design Manual Chapter 2 - Stormwater 2A - General Information 2A-4 Project Drainage Report A. Purpose The purpose of the project drainage report is to identify and propose specific solutions to stormwater

More information

Municipal Stormwater Ordinances Summary Table

Municipal Stormwater Ordinances Summary Table APPENDIX F Municipal Ordinances Summary Table Municipality Abington Bryn Athyn Borough Hatboro Borough Ordinance, SALDO Runoff equals pre post Erosion Sediment Control Water Quality Requirements Any which

More information

Local Stormwater Design Manual. City of Fairburn

Local Stormwater Design Manual. City of Fairburn APPENDIX D LOCAL STORMWATER DESIGN MANUAL Local Stormwater Design Manual City of Fairburn May 2008 TABLE OF CONTENTS 1. FORWARD... 1 2. GENERAL LEVEL OF SERVICE STANDARDS... 2 2.1. DETENTION REQUIREMENTS...

More information

E. STORMWATER MANAGEMENT

E. STORMWATER MANAGEMENT E. STORMWATER MANAGEMENT 1. Existing Conditions The Project Site is located within the Lower Hudson Watershed. According to the New York State Department of Environmental Conservation (NYSDEC), Lower Hudson

More information

SECTION 4 STORM DRAINAGE

SECTION 4 STORM DRAINAGE 4.01 GENERAL SECTION 4 STORM DRAINAGE These standards shall provide minimum requirements for the design of Storm Drainage and related appurtenances within the City of West Sacramento rights of way and

More information

RETENTION BASIN EXAMPLE

RETENTION BASIN EXAMPLE -7 Given: Total Tributary Area = 7.5 ac o Tributary Area within Existing R/W = 5.8 ac o Tributary Area, Impervious, Outside of R/W = 0.0 ac o Tributary Area, Pervious, Outside of R/W = 1.7 ac o Tributary

More information

ZONING ORDINANCE FOR THE ZONED UNINCORPORATED AREAS ARTICLE 1500 OF PUTNAM COUNTY, WEST VIRGINIA Page 149 ARTICLE 1500 DRAINAGE AND STORM SEWERS

ZONING ORDINANCE FOR THE ZONED UNINCORPORATED AREAS ARTICLE 1500 OF PUTNAM COUNTY, WEST VIRGINIA Page 149 ARTICLE 1500 DRAINAGE AND STORM SEWERS OF PUTNAM COUNTY, WEST VIRGINIA Page 149 ARTICLE 1500 DRAINAGE AND STORM SEWERS 1500.01 GENERAL REQUIREMENTS 1500.02 NATURE OF STORM WATER FACILITIES 1500.03 DRAINAGE EASEMENTS 1500.04 STORM WATER MANAGEMENT

More information

Appendix B Stormwater Site Plan Submittal Requirements Checklist

Appendix B Stormwater Site Plan Submittal Requirements Checklist Stormwater Site Plan Submittal Requirements Checklist The Submittal Requirements Checklist is intended to aid the design engineer in preparing a Stormwater Site Plan. All items included in the following

More information

Storm Water System Improvements

Storm Water System Improvements IV Storm Water System Improvements A. General The purpose of this Section is to establish standard principles and practices for the design and construction of storm drainage facilities within the City

More information

Whitfield-Dalton Stormwater Local Design Manual. Effective Date: January 1, 2017

Whitfield-Dalton Stormwater Local Design Manual. Effective Date: January 1, 2017 Stormwater Local Design Manual Effective Date: January 1, 2017 Table of Contents 1. FORWARD... 1 1.1. Meeting the Stormwater Management Requirements... 1 Pre-Design Phase... 1 Design Phase... 1 Construction

More information

HYDROLOGIC CONSIDERATIONS. 22 nd Annual Nonpoint Source Pollution Conference Saratoga Springs, NY

HYDROLOGIC CONSIDERATIONS. 22 nd Annual Nonpoint Source Pollution Conference Saratoga Springs, NY LOW IMPACT DEVELOPMENT HYDROLOGIC CONSIDERATIONS 22 nd Annual Nonpoint Source Pollution Conference Saratoga Springs, NY May 18, 2011 PRESENTATION AGENDA Introduction Definitions Discuss Impacts to Hydrologic

More information

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall

Chapter 6. Hydrology. 6.0 Introduction. 6.1 Design Rainfall 6.0 Introduction This chapter summarizes methodology for determining rainfall and runoff information for the design of stormwater management facilities in the City. The methodology is based on the procedures

More information

PRELIMINARY DRAINAGE REPORT NEWCASTLE FIRE STATION OLD STATE HIGHWAY

PRELIMINARY DRAINAGE REPORT NEWCASTLE FIRE STATION OLD STATE HIGHWAY PRELIMINARY DRAINAGE REPORT FOR THE NEWCASTLE FIRE STATION OLD STATE HIGHWAY PREPARED FOR THE NEWCASTLE FIRE PROTECTION DISTRICT JULY 2014 BY ROSEVILLE DESIGN GROUP, INC. ROSEVILLE DESIGN GROUP, Inc Established

More information

CRITERIA FOR STORMWATER DESIGN

CRITERIA FOR STORMWATER DESIGN ..CHAPTER.. CRITERIA FOR STORMWATER DESIGN 2.1 Integrated Site Design Approach 2.1.1 Introduction This chapter represents the requirements, policies and other guidance for stormwater management design

More information

GRADING, EROSION AND SEDIMENTATION CONTROL

GRADING, EROSION AND SEDIMENTATION CONTROL SECTION 500 GRADING, EROSION AND SEDIMENTATION CONTROL 501 Erosion and Sedimentation Control Plan All engineering plans for projects that propose to construct new, or modify existing drainage facilities,

More information

CUYAHOGA COUNTY ENGINEER

CUYAHOGA COUNTY ENGINEER CUYAHOGA COUNTY ENGINEER DRAINAGE MANUAL Supplement to O.D.O.T. LOCATION and DESIGN MANUAL, Volume 2, Drainage Design, Section 1000 and 1100 May 28, 2010 Revisions to the July 29, 2009 edition are noted

More information

3.0 Planning and Submittal Requirements

3.0 Planning and Submittal Requirements October 2003, Revised February 2005 Chapter 3.0, Planning and Submittal Requirements Page 1 3.0 Planning and Submittal Requirements 3.1 Drainage Studies and Drawings The City of Greenwood Village (Village)

More information

The City of Bristol, Tennessee. Infrastructure Design Standards

The City of Bristol, Tennessee. Infrastructure Design Standards The City of Bristol, Tennessee Infrastructure Design Standards October 2017 GENERAL PROVISIONS Adoption These Infrastructure Design Standards (the Standards ) are adopted pursuant to Section 62-8 of the

More information

DRAFT. Technical Memorandum. Whitney Road Drainage & Safety Enhancements Phase III Hydraulic Update. Prepared For:

DRAFT. Technical Memorandum. Whitney Road Drainage & Safety Enhancements Phase III Hydraulic Update. Prepared For: DRAFT Technical Memorandum Whitney Road Drainage & Safety Enhancements Phase III Hydraulic Update Prepared For: Pinellas County Department of Environment and Infrastructure Division of Engineering and

More information

Introduction to Storm Sewer Design

Introduction to Storm Sewer Design A SunCam online continuing education course Introduction to Storm Sewer Design by David F. Carter Introduction Storm sewer systems are vital in collection and conveyance of stormwater from the upstream

More information

Phase II: Proposed (regulated) Impervious in disturbed area (ac) Long Lake Existing Impervious in disturbed area (ac)

Phase II: Proposed (regulated) Impervious in disturbed area (ac) Long Lake Existing Impervious in disturbed area (ac) Permit Application No.: 17-181 Rules: Erosion Control, Wetland Protection, and Waterbody Crossings & Structures Applicant: Hennepin County Received: 4/27/17 Project: CSAH 112 Phase II Complete: 9/5/17

More information

Considerations In Estimating Tailwater Elevations

Considerations In Estimating Tailwater Elevations Considerations In Estimating Tailwater Elevations by Alphonse (Al) J. Stewart, P.E., President www.suncam.com Page 1 of 39 ************************************************************************ This

More information

Design Example Residential Subdivision

Design Example Residential Subdivision Design Example Residential Subdivision Rhode Island Stormwater Design and Installation Standards Manual December 2010 Public Training March 22, 2010 Richard Claytor, P.E. 508-833-6600 Appendix D: Site

More information

2. DEFINITIONS. American Association of State Highway and Transportation Officials.

2. DEFINITIONS. American Association of State Highway and Transportation Officials. 2. DEFINITIONS 2.010 Definitions [See Amendment 2] In addition to words and terms that may be defined elsewhere in this manual, the following words and terms shall have the meanings defined below: AASHTO:

More information

Dawson County Public Works 25 Justice Way, Suite 2232, Dawsonville, GA (706) x 42228

Dawson County Public Works 25 Justice Way, Suite 2232, Dawsonville, GA (706) x 42228 Dawson County Public Works 25 Justice Way, Suite 2232, Dawsonville, GA 30534 (706) 344-3500 x 42228 DAWSON COUNTY STORM WATER REVIEW CHECKLIST Project Name: Property Address: Engineer: Fax #/Email: Date:

More information

Applying the Water Quality Volume

Applying the Water Quality Volume Applying the Water Quality Volume Justin Reinhart, PE Division of Surface Water Northeast Ohio Stormwater Training Council Cleveland, Ohio & Richfield, Ohio July 12, 2018 July 25, 2018 Post-Construction

More information

Final Drainage Report

Final Drainage Report Thornton Electric Substation Project Final Drainage Report December 14, 2016 DRAFT Prepared for: Xcel Energy, 1800 Larimer Street, Suite 400, Denver, Colorado 80202 Prepared by: 350 Indiana Street, Suite

More information

Article 20: Erosion Control and Stormwater Management

Article 20: Erosion Control and Stormwater Management Article 20: Erosion Control and Stormwater Management Section 360: Purpose, Scope of Authority, Performance Guarantee and Approvals A. Purpose. The purpose of this document is to set forth minimum requirements

More information

10.0 Storm Sewer Systems

10.0 Storm Sewer Systems October 2003 Chapter 10.0, Storm Sewer Systems Page 1 10.0 Storm Sewer Systems 10.1 Introduction A storm sewer system consists of a system of inlets, pipes, manholes, junctions, cleanouts, outlets, and

More information

STORM DRAINAGE DESIGN CRITERIA

STORM DRAINAGE DESIGN CRITERIA BWM Orig. 01/01/05 Revised 01/01/10 LUCAS COUNTY ENGINEERS OFFICE STORM DRAINAGE DESIGN CRITERIA Drainage The design of storm sewer systems will be based upon the Rational Method using the equation Q=CiA

More information

CHELTENHAM TOWNSHIP Chapter 290: WATERSHED STORMWATER MANAGEMENT Article IV: Stormwater Management

CHELTENHAM TOWNSHIP Chapter 290: WATERSHED STORMWATER MANAGEMENT Article IV: Stormwater Management CHELTENHAM TOWNSHIP Chapter 290: WATERSHED STORMWATER MANAGEMENT Article IV: Stormwater Management Online ECode Available on Cheltenham Township Website at: http://ecode360.com/14477578 For all regulated

More information

Middle Tennessee State University (MTSU) Stormwater Plan Review Checklist

Middle Tennessee State University (MTSU) Stormwater Plan Review Checklist For Middle Tennessee State University (MTSU) projects, the Project Manager or other MTSU designee will serve as the Plan Reviewer. This checklist is to be completed by the Plan Reviewer on behalf of MTSU.

More information

Chapter 4. Drainage Report and Construction Drawing Submittal Requirements

Chapter 4. Drainage Report and Construction Drawing Submittal Requirements 4.0 Introduction The requirements presented in this section shall be used to aid the design engineer or applicant in the preparation of drainage reports, drainage studies, and construction drawings for

More information

PART 3 - STANDARDS FOR SEWERAGE FACILITIES DESIGN OF STORM SEWERS

PART 3 - STANDARDS FOR SEWERAGE FACILITIES DESIGN OF STORM SEWERS PART 3 - STANDARDS FOR SEWERAGE FACILITIES 3.3 - DESIGN OF STORM SEWERS 3.301 Design of Storm Sewers A. General Information B. Investigations and Surveys C. Special Projects 3.302 Design Criteria for Storm

More information

Items in this checklist identify the base requirements that are to be provided by the design professional.

Items in this checklist identify the base requirements that are to be provided by the design professional. The Project Manager or other Owner designee will serve as the Plan Reviewer. This checklist is to be completed by the Plan Reviewer on behalf of the Owner. The Plan Reviewer s role is to review the submitted

More information

Water Quality: 1.0 Water Quality Protection Volume and Peak Flow 2.0 Construction SWP3 Guidelines and Form

Water Quality: 1.0 Water Quality Protection Volume and Peak Flow 2.0 Construction SWP3 Guidelines and Form : 1.0 Protection Volume and Peak Flow 2.0 and Form Table of Contents 1.0 Protection Volume and Peak Flow...WQ-1 1.1 Introduction...WQ-1 1.2 Protection Volume Calculation...WQ-1 1.3 Protection Volume Reduction

More information

Stormwater Management Studies PDS Engineering Services Division ES Policy # 3-01

Stormwater Management Studies PDS Engineering Services Division ES Policy # 3-01 Stormwater Management Studies PDS Engineering Services Division Revised Date: 2/28/08 INTRODUCTION The City of Overland Park requires submission of a stormwater management study as part of the development

More information

Stormwater Management Manual Revision History

Stormwater Management Manual Revision History Stormwater Management Manual Revision History Manual Creation Date: January 30, 2007 12/12/2006 Water Quality for Post-Construction Standards and Criteria are established as part of the National Pollution

More information

Shelbyville, Kentucky Stormwater Best Management Practices (BMPs) Stormwater Pollution Treatment Practices (Structural) DRAFT

Shelbyville, Kentucky Stormwater Best Management Practices (BMPs) Stormwater Pollution Treatment Practices (Structural) DRAFT Shelbyville, Kentucky Stormwater Best Management Practices (BMPs) Stormwater Pollution Treatment Practices (Structural) Activity: Infiltration Systems PLANNING CONSIDERATIONS: Design Life: Short IS Acreage

More information

APPENDIX G HYDRAULIC GRADE LINE

APPENDIX G HYDRAULIC GRADE LINE Storm Drainage 13-G-1 APPENDIX G HYDRAULIC GRADE LINE 1.0 Introduction The hydraulic grade line is used to aid the designer in determining the acceptability of a proposed or evaluation of an existing storm

More information

CITY OF JENKS EARTH CHANGE PERMIT APPLICATION

CITY OF JENKS EARTH CHANGE PERMIT APPLICATION CITY OF JENKS EARTH CHANGE PERMIT APPLICATION Any applicable State or Federal permits must be attached to this application or must be applied for with copies attached to this application if this permit

More information

COON CREEK WATERSHED DISTRICT PERMIT REVIEW. Spring Lake Park Schools Westwood Middle School st Avenue NE, Spring Lake Park, MN 55432

COON CREEK WATERSHED DISTRICT PERMIT REVIEW. Spring Lake Park Schools Westwood Middle School st Avenue NE, Spring Lake Park, MN 55432 PAN 16-112, Westwood Middle School, Page 1 of 6 COON CREEK WATERSHED DISTRICT PERMIT REVIEW MEETING DATE: August 22, 2016 AGENDA NUMBER: 10 FILE NUMBER: 16-112 ITEM: Westwood Middle School RECOMMENDATION:

More information

Unified Stormwater Design Guidelines

Unified Stormwater Design Guidelines Unified Stormwater Design Guidelines City of Bryan City of College Station February, 2007 Acknowledgements Appreciation is expressed to participants in the Bryan / College Station Drainage Design Guidelines

More information

DIVISION 5 STORM DRAINAGE CRITERIA

DIVISION 5 STORM DRAINAGE CRITERIA DIVISION 5 STORM DRAINAGE CRITERIA Section 5.01 GENERAL The following storm drainage design criteria shall apply to all storm drainage designs in the City. Additional design criteria are specified in the

More information

NEW CASTLE CONSERVATION DISTRICT. through. (Name of Municipality) PLAN REVIEW APPLICATION DRAINAGE, STORMWATER MANAGEMENT, EROSION & SEDIMENT CONTROL

NEW CASTLE CONSERVATION DISTRICT. through. (Name of Municipality) PLAN REVIEW APPLICATION DRAINAGE, STORMWATER MANAGEMENT, EROSION & SEDIMENT CONTROL NEW CASTLE CONSERVATION DISTRICT through (Name of Municipality) PLAN REVIEW APPLICATION DRAINAGE, STORMWATER MANAGEMENT, EROSION & SEDIMENT CONTROL Office use only: Received by Municipality: Received by

More information

Checklist for Joint Agency Review Stormwater Management / Erosion and Sediment Control

Checklist for Joint Agency Review Stormwater Management / Erosion and Sediment Control Page 1 of 7 Updated 12/28/2017 Checklist for Joint Agency Review Stormwater Management / Erosion and Sediment Control Project Name: Tax Map: Parcel: Lot: Disturbed Acreage: Engineering Firm: Phone Number:

More information

SECTION 4 SURFACE WATER MANAGEMENT DESIGN AND CONSTRUCTION REQUIREMENTS

SECTION 4 SURFACE WATER MANAGEMENT DESIGN AND CONSTRUCTION REQUIREMENTS SECTION 4 SURFACE WATER MANAGEMENT DESIGN AND CONSTRUCTION REQUIREMENTS Page 4-1 INTRODUCTION 4-3 4-1.01 Applicability of VMCs 14.24, 14.25, 14.26 4-4 4-1.02 Minimum Requirements - Projects Below Threshold

More information

Erosion Control and Stormwater Management Requirements

Erosion Control and Stormwater Management Requirements Report Erosion Control and Stormwater Management Requirements Town of Cedarburg, WI July 2008 Town of Cedarburg Erosion Control and Stormwater Management Requirements July 2008 TABLE OF CONTENTS Page No.

More information

CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL CITY UTILITIES DESIGN STANDARDS MANUAL Book 2 (SW) SW7 September 2017 SW7.01 Purpose The purpose of this Chapter is to establish a basis for inlet design utilizing City of Fort Wayne standard inlets and

More information

PRELIMINARY DRAINAGE STUDY

PRELIMINARY DRAINAGE STUDY PRELIMINARY DRAINAGE STUDY For 34 th & J Residences 3402 J St. San Diego, CA 92102 A.P.N 545-250-08 Prepared By: Kenneth J. Discenza, P.E. Site Design Associates, Inc. 1016 Broadway, Suite A El Cajon,

More information

MINNEHAHA CREEK WATERSHED DISTRICT BOARD OF MANAGERS REVISIONS PURSUANT TO MINNESOTA STATUTES 103D.341. Adopted April 24, 2014 Effective June 6, 2014

MINNEHAHA CREEK WATERSHED DISTRICT BOARD OF MANAGERS REVISIONS PURSUANT TO MINNESOTA STATUTES 103D.341. Adopted April 24, 2014 Effective June 6, 2014 MINNEHAHA CREEK WATERSHED DISTRICT BOARD OF MANAGERS REVISIONS PURSUANT TO MINNESOTA STATUTES 103D.341 Adopted April 24, 2014 Effective June 6, 2014 EROSION CONTROL RULE 1. POLICY. It is the policy of

More information

To: From: Date: Subject: Sherwood Lakes Drainage Alternatives Analysis 1

To: From: Date: Subject: Sherwood Lakes Drainage Alternatives Analysis 1 To: From: The City of Virginia Beach Lewis White and Rachael Johnson on behalf of WSP Date: June 6, 2017 Subject: s Drainage Alternatives Analysis This memorandum represents the summary of findings from

More information

Chapter 11 Drainage Improvements

Chapter 11 Drainage Improvements Chapter 11 Drainage Improvements U30011.docx 04/14/17 Chapter 11 Drainage Improvements 11.1 Requirements for Storm Drainage Plans... 1 11.1.1 General... 1 11.1.2 Minor and Major Design Storms... 2 11.1.3

More information

ARTICLE V: STORMWATER MANAGEMENT AND DRAINAGE SYSTEMS

ARTICLE V: STORMWATER MANAGEMENT AND DRAINAGE SYSTEMS ARTICLE V: STORMWATER MANAGEMENT AND DRAINAGE SYSTEMS Section 501: Purpose An adequate drainage system including necessary ditches, pipes, culverts, drains, inlets, bridges, detention ponds, etc. shall

More information

iswm TM Criteria Manual City of Azle Section 14 City of Azle Subdivision Ordinance DRAFT-June Chapter 1

iswm TM Criteria Manual City of Azle Section 14 City of Azle Subdivision Ordinance DRAFT-June Chapter 1 City of Azle Section 14 City of Azle Subdivision Ordinance DRAFT-June 2010... Chapter 1 i CITY OF AZLE iswm CRITERIA MANUAL FOR SITE DEVELOPMENT AND CONSTRUCTION Incorporating the Regional NCTCOG Integrated

More information

ARTICLE A. POST-DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT AND REDEVELOPMENT

ARTICLE A. POST-DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT AND REDEVELOPMENT CHAPTER 11. STORMWATER MANAGEMENT ARTICLE A. POST-DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT AND REDEVELOPMENT DIVISION 1. GENERALLY Sec. 10-11001. FINDINGS It is hereby determined that: (1)

More information

Incorporating Restoration Planning and Transportation Controls into the Valley Creek Watershed Act 167 Stormwater Management Plan

Incorporating Restoration Planning and Transportation Controls into the Valley Creek Watershed Act 167 Stormwater Management Plan Incorporating Restoration Planning and Transportation Controls into the Valley Creek Watershed Act 167 Stormwater Management Plan Pennsylvania State Section American Water Resources Association Fall 2011

More information

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART 257.82 PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY EPA s Disposal of Coal Combustion Residuals from Electric Utilities Final Rule (40 C.F.R.

More information

CONSTRUCTION PLAN CHECKLIST

CONSTRUCTION PLAN CHECKLIST CONSTRUCTION PLAN CHECKLIST The design engineer is responsible for ensuring that plans submitted for city review are in accordance with this checklist. It is requested that the executed checklist be submitted

More information

CHECKLIST FOR STREETS, INLETS, AND STORM SEWER DESIGN

CHECKLIST FOR STREETS, INLETS, AND STORM SEWER DESIGN CHECKLIST FOR STREETS, INLETS, I. STREET CLASSIFICATION AND DESIGN CRITERIA A. Determine drainage classification for the roadway section using Table 7-1 or Table 7-2. B. Determine the allowable flow depth

More information

4.4.5 Grassed Swale (also known as Enhanced Swale or Biofiltration Swale)

4.4.5 Grassed Swale (also known as Enhanced Swale or Biofiltration Swale) Signs of trespass or unauthorized traffic Sediment buildup Additionally, a program of regular monitoring of the aquatic environment for a permanent wet detention basin should be established to allow for

More information

Extended Detention Basin Design

Extended Detention Basin Design Extended Detention Basin Design 1 Extended Detention 2 Ohio Department of Transportation 1 Extended Detention Basin L&D Vol. 2 Section 1117.3 Provides quality and quantity treatment 3 Extended Detention

More information

3.11 Sand Filter Basin

3.11 Sand Filter Basin 3.11 Sand Filter Basin Type of BMP Priority Level Treatment Mechanisms Maximum Drainage Area Flow-Through Treatment Priority 3 Treatment Control BMP Filtration 25 acres Description The Sand Filter Basin

More information

COON CREEK WATERSHED DISTRICT PERMIT REVIEW Mississippi Dr Coon Rapids, MN SQ FT Residence on 0.64 Acre Lot

COON CREEK WATERSHED DISTRICT PERMIT REVIEW Mississippi Dr Coon Rapids, MN SQ FT Residence on 0.64 Acre Lot 17-082 Van Sloun Residence, Page 1 of 5 COON CREEK WATERSHED DISTRICT PERMIT REVIEW MEETING DATE: May 8, 2017 AGENDA NUMBER: 17 FILE NUMBER: 17-082 ITEM: Van Sloun Residence RECOMMENDATION: Approve with

More information

III. INVENTORY OF EXISTING FACILITIES

III. INVENTORY OF EXISTING FACILITIES III. INVENTORY OF EXISTING FACILITIES Within the Growth Management Boundary, the existing storm drainage facilities are largely associated with development that has historically occurred in the ten drainage

More information

Typical Local Erosion Control Requirements (Storm Water Management Authority, Inc.)

Typical Local Erosion Control Requirements (Storm Water Management Authority, Inc.) Module 2: Selection of Controls and Site Planning for Construction Site Erosion Prevention Robert Pitt Department of Civil, Construction, and Environmental Engineering University of Alabama Tuscaloosa,

More information

Preliminary Drainage Study: Town of Hillsboro Pedestrian & Traffic Safety Project Traffic Calming Project UPC# 70587

Preliminary Drainage Study: Town of Hillsboro Pedestrian & Traffic Safety Project Traffic Calming Project UPC# 70587 Preliminary Drainage Study: Town of Hillsboro Pedestrian & Traffic Safety Project Traffic Calming Project UPC# 70587 Introduction: The intent of this study was to perform a preliminary drainage study of

More information

6 STORMWATER IMPROVEMENTS

6 STORMWATER IMPROVEMENTS 6 STORMWATER IMPROVEMENTS 6.01 General Requirements a. In addition to the standards contained in this, the design of stormwater systems is also governed by several ordinances and regulations. (1) Projects

More information

Highway Drainage 1- Storm Frequency and Runoff 1.1- Runoff Determination

Highway Drainage 1- Storm Frequency and Runoff 1.1- Runoff Determination Highway Drainage Proper drainage is a very important consideration in design of a highway. Inadequate drainage facilities can lead to premature deterioration of the highway and the development of adverse

More information

V. DRAINAGE IMPROVEMENTS

V. DRAINAGE IMPROVEMENTS V. DRAINAGE IMPROVEMENTS 5.1 Formulation of Drainage Improvements As indicated in Chapter 4, following the completion of the hydrologic analysis associated with future land use conditions, drainage improvements

More information

CUYAHOGA COUNTY DEPARTMENT OF PUBLIC WORKS CUYAHOGA COUNTY ENGINEER DRAINAGE MANUAL

CUYAHOGA COUNTY DEPARTMENT OF PUBLIC WORKS CUYAHOGA COUNTY ENGINEER DRAINAGE MANUAL CUYAHOGA COUNTY DEPARTMENT OF PUBLIC WORKS CUYAHOGA COUNTY ENGINEER DRAINAGE MANUAL Supplement to O.D.O.T. LOCATION and DESIGN MANUAL, Volume 2, Drainage Design, Section 1000 and 1100 July 29, 2011 Revisions

More information

6 STORMWATER IMPROVEMENTS

6 STORMWATER IMPROVEMENTS 6 STORMWATER IMPROVEMENTS 6.01 General Requirements a. In addition to the standards contained in this, the design of stormwater systems is also governed by several ordinances and regulations. (1) Projects

More information

CITY UTILITIES DESIGN STANDARDS MANUAL

CITY UTILITIES DESIGN STANDARDS MANUAL CITY UTILITIES DESIGN STANDARDS MANUAL () September 2017 Page Chapter 1 Acronyms and Definitions 1.01 Purpose 1 1.02 Acronyms 1 1.03 Definitions 3 Chapter 2 Introduction 2.01 Purpose 1 2.02 Applicability

More information

TOWN OF BETHLEHEM SWPPP APPLICATION REVIEW CHECKLIST

TOWN OF BETHLEHEM SWPPP APPLICATION REVIEW CHECKLIST TOWN OF BETHLEHEM SWPPP APPLICATION REVIEW CHECKLIST Instructions: This form must be included with an initial submittal of a Site Plan or Subdivision Application. Use the column to indicate if the SWPPP

More information

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond)

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond) Chapter 10 Design Examples Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond) Example 2: Filter Design in a commercial development

More information

POST-DEVELOPMENT STORMWATER MANAGEMENT. FOR NEW DEVELOPMENT and REDEVELOPMENT

POST-DEVELOPMENT STORMWATER MANAGEMENT. FOR NEW DEVELOPMENT and REDEVELOPMENT ORDINANCE # 222 POST-DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT and REDEVELOPMENT Table of Contents Page Introduction 3 Section 1 General Provisions 4 Section 2 Definitions 6 Section 3 Permit

More information

COON CREEK WATERSHED DISTRICT PERMIT REVIEW th Ave NE Ham Lake, MN 55304

COON CREEK WATERSHED DISTRICT PERMIT REVIEW th Ave NE Ham Lake, MN 55304 18-151 Meyer Garage, Page 1 of 5 COON CREEK WATERSHED DISTRICT PERMIT REVIEW MEETING DATE: January 28, 2019 AGENDA NUMBER: 9 FILE NUMBER: 18-151 ITEM: Meyer Garage RECOMMENDATION: Approve with 2 Stipulations

More information

Location Drainage Study

Location Drainage Study Location Drainage Study PROJECT ROUTE: LIMITS: MUNICIPALITY/COUNTY: JOB NUMBER: IL 47 at Burlington Road 750ft NW to 750ft SE of IL 47(Burlington), & 1000ft S to 1000ft N of Burlington (IL47) Kane County

More information

Fort Collins Amendments to the Urban Drainage and Flood Control District Criteria Manual

Fort Collins Amendments to the Urban Drainage and Flood Control District Criteria Manual Fort Collins Amendments to the Urban Drainage and Flood Control District Criteria Manual Fort Collins Amendments to the Urban Drainage and Flood Control District Criteria Manual, adopted by the City Council

More information

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges Detention Pond Design Considering Varying Design Storms Land Development Results in Increased Peak Flow Rates and Runoff Volumes Developed area Robert Pitt Department of Civil, Construction and Environmental

More information

CHAPTER 4 - EROSION & SEDIMENT CONTROL AND STORMWATER MANAGEMENT ORDINANCE OF DUBUQUE COUNTY, IOWA. Adopted March 29, 2010.

CHAPTER 4 - EROSION & SEDIMENT CONTROL AND STORMWATER MANAGEMENT ORDINANCE OF DUBUQUE COUNTY, IOWA. Adopted March 29, 2010. CHAPTER 4 - EROSION & SEDIMENT CONTROL AND STORMWATER MANAGEMENT ORDINANCE OF DUBUQUE COUNTY, IOWA Adopted March 29, 2010 Table of Contents Page Part 1 Introduction...3 4-1 Title..................3 4-2

More information

ARTICLE 11 STORMWATER MANAGEMENT

ARTICLE 11 STORMWATER MANAGEMENT Division I. General Provisions. Sec. 11-1. Findings. Sec. 11-2. Purpose and Objectives. Sec. 11-3. Title. Sec. 11-4. Definitions. Sec. 11-5. Applicability. Sec. 11-6. Exemptions. Sec. 11-7. Designation

More information

DRAINAGE REPORT. Project Name: PG&E Gas Operations Technical Training Center Winters, CA. Date: February 4, Prepared by: BKF Engineers

DRAINAGE REPORT. Project Name: PG&E Gas Operations Technical Training Center Winters, CA. Date: February 4, Prepared by: BKF Engineers DRAINAGE REPORT Project Name: PG&E Gas Operations Technical Training Center Winters, CA Date: February 4, 2015 Prepared by: BKF Engineers Client: Pacific Gas & Electric Company This report has been prepared

More information

Submittal Requirements. Post Construction Verification Document Plan Requirements

Submittal Requirements. Post Construction Verification Document Plan Requirements Submittal Requirements Post Construction Verification Document survey plan in accordance with the items of this Checklist Supporting calculations in accordance with the items of this Checklist A copy of

More information

MODEL ORDINANCE FOR POST- DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT AND REDEVELOPMENT

MODEL ORDINANCE FOR POST- DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT AND REDEVELOPMENT MODEL ORDINANCE FOR POST- DEVELOPMENT STORMWATER MANAGEMENT FOR NEW DEVELOPMENT AND REDEVELOPMENT Description: This model ordinance addresses post-development stormwater management requirements for new

More information

Chapter 8. Inlets. 8.0 Introduction. 8.1 General

Chapter 8. Inlets. 8.0 Introduction. 8.1 General . Introduction This chapter provides criteria and design guides for evaluating and designing storm sewer inlets in the City of Centennial. The review of all planning submittals will be based on the criteria

More information