New students: fill out index card

Size: px
Start display at page:

Download "New students: fill out index card"

Transcription

1 New students: fill out index card Please list: name what you wish to be called in class/ pronunciation phone number why are you taking this course? personal experience with manufacturing? 1

2 Mechanical Engineering 101 University of California, Berkeley Lecture #3 Key: Period before title: lec version Period after title: handout version 2

3 Today s lecture Review from last time inventory turns, throughput Constant demand inventory model Inventory tradeoffs Mfg system types, layout 3

4 Strategies Decrease inventory Reduce need for long term forecasts reduced lot size = manufacturable more quickly to fill orders for GE.found one extra inventory turn saves $1Billion Eliminate inventory (make products to order) e.g. Tesla negative working capital they have your $$ (long) before assembling product Let customer pull the mfg process (kanban) This is lean mfg ME 101 lec 2 6,

5 Today s lecture Review from last time Constant demand inventory model Inventory tradeoffs Mfg system types, layout 7

6 Inventory (constant demand). Q order size lead time to receive order D demand rate SS safety stock r reorder point (when to place order) Inventory position time 8

7 Average Inventory?. Inventory position time 10

8 Today s lecture Review from last time Constant demand inventory model Inventory tradeoffs Mfg system types, layout 13

9 Holding cost of inventory h = $/item/time Includes? opportunity cost of capital invested storage costs breakage/loss/pilferage taxes insurance refrigeration/special handling costs usually estimated as a portion iof item cost $C i usually.2 to.5 per year h = ic $/item/year 14

10 Holding costs vs. order costs order size tradeoff! more inventory for larger order sizes cost/time_period = h*(q/2) (zero safety stock) more orders for smaller order sizes cost/time_period = A*(D/Q) A = order cost D = demand rate (D/Q is inverse of inventory cycle length) 15

11 Holding costs vs. order costs costs ordering costs holding costs total costs Q* Order size, Q 16

12 Economic Order Quantity EOQ. Find order size Q* minimizing total costs costs = h*(q/2) + A*(D/Q) minimize costs relative to Q 18

13 Holding costs vs. order costs. Coincidence? costs ordering costs holding costs total costs Q* Order size, Q economic order quantity (EOQ), Q* = 20

14 Administrivia Clickers Section Fri 11am Are the funny periods in titles helpful? 21

15 Today s lecture Review from last time Constant demand inventory model Inventory tradeoffs Mfg system types, layout 22

16 Manufacturing vs. Ordering Assume single stage production Setup cost for each batch Exact same concept, formula 23

17 Inventory (constant demand) Q batch size (or order size) lead time to produce batch (or receive order) r reorder point when to start batch (or place order) D demand rate SS safety stock Inventory position Q lead time, r reorder point safety stock SS= r - D time cycle length = Q/demand rate, D 24

18 Holding costs vs. setup costs batch size tradeoff! more inventory for larger batch sizes cost/time = h*(q/2) (zero safety stock) more setups for smaller batch sizes cost/time = A*(D/Q) A = setup cost (order cost) D = demand rate (D/Q is inverse of inventory cycling time) 25

19 Holding costs vs. setup costs costs ordering setup costs holding costs total costs Q* Batch size, Q 26

20 Economic Order Quantity EOQ. Find batch size Q* minimizing total costs costs = h*(q/2) + A*(D/Q) minimize costs relative to Q 28

21 Holding costs vs. setup costs. costs ordering setup costs holding costs total costs Q* Batch size, Q economic order quantity (EOQ), Q* = 30

22 Today s lecture Review from last time Constant demand inventory model Inventory tradeoffs Mfg system types, layout 31

23 Production System Layouts fixed position process cellular product (assembly/flow/transfer line) 32

24 Production System Layouts fixed position part stationary workstations move Ref. M. P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Prentice-Hall, Englewood Cliffs NJ, 1987, p

25 Production System Layouts process organized by machine type Ref. M. P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Prentice-Hall, Englewood Cliffs NJ, 1987, p

26 Production System Layouts cellular part families shafts l/d > 5 wheels pins shafts l/d 5 prismatic parts a, b, c < x prismatic parts a, b, c x 35

27 Production System Layouts product a.k.a. assembly/flow/transfer line parts move stations fixed 36 Ref. M. P. Groover, 1987, p. 29.

28 Typical Production Systems low quantities products can be complex custom orders common infinite variability process or fixed position layout job shop 37

29 Typical Production Systems medium quantities (e.g ,000) limited variability CNC for increased MCE hard product variety (different product categories) process layout machines grouped by functions needed for batch/lot soft product variety (small differences between models) FMS or cellular layout group by similar parts to minimize changeover time 38

30 Typical Production Systems large quantities (e.g. >~10,000) = mass production no additional variability highly automated, hard system dedicated tooling quantity production process layout flow line/transfer line/assembly line sequence of workstations single model or mixed model 39

31 Which System Type? 40

32 Production System Type vs. Lot/Batch Size & Complexity Transfer Line Extension of FMS/Cell flexibility with agile/hmlv Batch size, Q FMS Cell Job Shop e.g. number of parts, number of processing steps Complexity 42

33 Choice of Manufacturing System usually based on [Ayres] product complexity batch/lot size and run length diversity of lots precision mass or linear dimensions 43

34 .Summary: Balance 44

Mechanical Engineering 101

Mechanical Engineering 101 Mechanical Engineering 101 University of California, Berkeley Lecture #2 Key: Period before title: lec version Period after title: handout version 2 Today s lecture... Process... WIP, flow Money Overhead,

More information

MANUFACTURING SYSTEM BETP 3814 INTRODUCTION TO MANUFACTURING SYSTEM

MANUFACTURING SYSTEM BETP 3814 INTRODUCTION TO MANUFACTURING SYSTEM MANUFACTURING SYSTEM BETP 3814 INTRODUCTION TO MANUFACTURING SYSTEM Tan Hauw Sen Rimo 1, Engr. Mohd Soufhwee bin Abd Rahman 2, 1 tanhauwsr@utem.edu.my, 2 soufhwee@utem.edu.my LESSON OUTCOMES At the end

More information

Kanban Applied to Reduce WIP in Chipper Assembly for Lawn Mower Industries

Kanban Applied to Reduce WIP in Chipper Assembly for Lawn Mower Industries Kanban Applied to Reduce WIP in Chipper Assembly for Lawn Mower Industries Author Rahman, A., Chattopadhyay, G., Wah, Simon Published 2006 Conference Title Condition Monitoring and Diagnostic Engineering

More information

Lecture 12. Introductory Production Control

Lecture 12. Introductory Production Control Lecture 12 Introductory Production Control 167 Where we ve come from: Models of Manufacturing Systems: Deterministic, Queuing, Simulation Key ideas: Some WIP useful for buffering stations, but More WIP

More information

CAD/CAM CHAPTER ONE INTRODUCTION. Dr. Ibrahim Naimi

CAD/CAM CHAPTER ONE INTRODUCTION. Dr. Ibrahim Naimi CAD/CAM CHAPTER ONE INTRODUCTION Dr. Ibrahim Naimi Production System Facilities The facilities in the production system are the factory, production machines and tooling, material handling equipment,

More information

7/8/2017 CAD/CAM. Dr. Ibrahim Al-Naimi. Chapter one. Introduction

7/8/2017 CAD/CAM. Dr. Ibrahim Al-Naimi. Chapter one. Introduction CAD/CAM Dr. Ibrahim Al-Naimi Chapter one Introduction 1 2 3 Production System Facilities The facilities in the production system are the factory, production machines and tooling, material handling equipment,

More information

MM 323 MANUFACTURING SYSTEMS PRODUCTION AND LAYOUT TYPES

MM 323 MANUFACTURING SYSTEMS PRODUCTION AND LAYOUT TYPES MM 323 MANUFACTURING SYSTEMS PRODUCTION AND LAYOUT TYPES THERE ARE TWO INDUSTRY TYPES THAT FACTORIES ARE LOCATED IN 1) Process industries, e.g., chemicals, petroleum, basic metals, foods and beverages,

More information

INTRODUCTION TO FMS. Type of Automation. 1. Fixed automation 2. Programmable automation 3. Flexible automation Fixed Automation

INTRODUCTION TO FMS. Type of Automation. 1. Fixed automation 2. Programmable automation 3. Flexible automation Fixed Automation Type of Automation 1. Fixed automation 2. Programmable automation 3. Flexible automation Fixed Automation INTRODUCTION TO FMS Sequence of processing (or assembly) operations is fixed by the equipment configuration

More information

JIT and Lean Operations. JIT/Lean Operations

JIT and Lean Operations. JIT/Lean Operations 5/7/2011 16 JIT and Lean Operations By : Sa Ed M. Salhieh, Salhieh, Ph.D. 16-1 JIT/Lean Operations Good production systems require that managers address three issues that are pervasive and fundamental

More information

Chapter 11. In-Time and Lean Production

Chapter 11. In-Time and Lean Production Chapter 11 Just-In In-Time and Lean Production What is JIT? Producing only what is needed, when it is needed A philosophy An integrated management system JIT s mandate: Eliminate all waste Basic Elements

More information

LEAN PRODUCTION FACILITY LAYOUT.

LEAN PRODUCTION FACILITY LAYOUT. LEAN PRODUCTION FACILITY LAYOUT www.fourprinciples.com BACKGROUND The production facility layout is as important as the technology it houses and has a significant impact on business performance. The layout

More information

Planning. Dr. Richard Jerz rjerz.com

Planning. Dr. Richard Jerz rjerz.com Planning Dr. Richard Jerz 1 Planning Horizon Aggregate planning: Intermediate range capacity planning, usually covering 2 to 12 months. Long range Short range Intermediate range Now 2 months 1 Year 2 Stages

More information

Planning. Planning Horizon. Stages of Planning. Dr. Richard Jerz

Planning. Planning Horizon. Stages of Planning. Dr. Richard Jerz Planning Dr. Richard Jerz 1 Planning Horizon Aggregate planning: Intermediate range capacity planning, usually covering 2 to 12 months. Long range Short range Intermediate range Now 2 months 1 Year 2 Stages

More information

MANUFACTURING PROCESSES (SME

MANUFACTURING PROCESSES (SME MANUFACTURING PROCESSES (SME 2713 ) Introduction 2 Dept. of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia 1. Methods of Production

More information

Outline. Push-Pull Systems Global Company Profile: Toyota Motor Corporation Just-in-Time, the Toyota Production System, and Lean Operations

Outline. Push-Pull Systems Global Company Profile: Toyota Motor Corporation Just-in-Time, the Toyota Production System, and Lean Operations JIT and Lean Operations Outline Push-Pull Systems Global Company Profile: Toyota Motor Corporation Just-in-Time, the Toyota Production System, and Lean Operations Eliminate Waste Remove Variability Improve

More information

Flow and Pull Systems

Flow and Pull Systems Online Student Guide Flow and Pull Systems OpusWorks 2016, All Rights Reserved 1 Table of Contents LEARNING OBJECTIVES... 4 INTRODUCTION... 4 BENEFITS OF FLOW AND PULL... 5 CLEARING ROADBLOCKS... 5 APPROACH

More information

use lean lot sizing to prepare for economic recovery

use lean lot sizing to prepare for economic recovery ANtiCiPAtiNg the reemergence of demand use lean lot sizing to prepare for economic recovery By Steve CiMorelli, CfPiM Over the past 12 to 18 months, much has been written about manufacturers cutting inventories

More information

Flexible Manufacturing System (FMS) IE447

Flexible Manufacturing System (FMS) IE447 Flexible Manufacturing System (FMS) A Closer Look IE447 Spring2011 At the turn of the century FMS did not exist. There was not a big enough need for efficiency because the markets were national and there

More information

Process Selection and Design Dr. Richard Jerz

Process Selection and Design Dr. Richard Jerz Process Selection and Design Dr. Richard Jerz 1 Learning Objectives Explain the strategic importance of process selection. Explain the influence that process selection has on an organization. Explore process

More information

LEAN MANUFACTURING & TPM.

LEAN MANUFACTURING & TPM. LEAN MANUFACTURING & TPM www.fourprinciples.com BACKGROUND The core area of any manufacturing facility is the shop floor. Manufacturing is most often also the largest function within an organisation. In

More information

Mechanical Engineering 101

Mechanical Engineering 101 Mechanical Engineering 101 University of California, Berkeley Lecture #10 1 Today s lecture Supply Chain Management (SCM) Variance acceleration Safety stock Raw materials factory wholesaler retailer customer

More information

JIT AND Lean Operations 14-1

JIT AND Lean Operations 14-1 Chapter 15 JIT AND Lean Operations 14-1 Product Structure Tree = Shop floor layouts A B(4) C(2) D(2) E(1) D(3) F(2) MRP vs. JIT 14-2 JIT/Lean Production Just-in-time: Repetitive production system in which

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS. Cambridge International Diploma in Management Professional Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS. Cambridge International Diploma in Management Professional Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS www.xtremepapers.com Cambridge International Diploma in Management Professional Level Scheme of Work 4250 Managing Operations Optional Module MODULE NUMBER

More information

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa. JIT --Intro 02/11/03 page 1 of 28

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa. JIT --Intro 02/11/03 page 1 of 28 Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa JIT --Intro 02/11/03 page 1 of 28 Pull/Push Systems Pull system: System for moving work where a workstation pulls output

More information

CLASSIFICATION OF PRODUCTION SYSTEMS

CLASSIFICATION OF PRODUCTION SYSTEMS CLASSIFICATION OF PRODUCTION SYSTEMS Assistant Professor Industrial Engineering Branch Department of Production Engineering and Metallurgy University of Technology Baghdad - Iraq dr.mahmoudalnaimi@uotechnology.edu.iq

More information

Case on Manufacturing Cell Formation Using Production Flow Analysis

Case on Manufacturing Cell Formation Using Production Flow Analysis Case on Manufacturing Cell Formation Using Production Flow Analysis Vladimír Modrák Abstract This paper offers a case study, in which methodological aspects of cell design for transformation the production

More information

Inventory Management. Dr. Richard Jerz rjerz.com

Inventory Management. Dr. Richard Jerz rjerz.com Inventory Management Dr. Richard Jerz 1 Learning Objectives Describe The functions of inventory and basic inventory models Define ABC analysis Record accuracy Cycle counting Independent and dependent demand

More information

Inventory Management. Learning Objectives. Inventory. Dr. Richard Jerz

Inventory Management. Learning Objectives. Inventory. Dr. Richard Jerz Inventory Management Dr. Richard Jerz 1 Learning Objectives Describe The functions of inventory and basic inventory models Define ABC analysis Record accuracy Cycle counting Independent and dependent demand

More information

Flexible Manufacturing Systems

Flexible Manufacturing Systems Flexible Manufacturing Systems FMS is: Machine Cell used to implement the Group Technology Composed of Multiple automated stations Capable of Variable Routings (Type IIA) Integrate CNC, Computer Control,

More information

Manufacturing Systems Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Manufacturing Systems Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Manufacturing Systems Management Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 28 Basic elements of JIT, Kanban systems In this lecture we see some

More information

Ch 19 Flexible Manufacturing Systems

Ch 19 Flexible Manufacturing Systems Ch 19 Flexible Manufacturing Systems Sections: 1. What is a Flexible Manufacturing System? 2. FMS Components 3. FMS Applications and Benefits 4. FMS Planning and Implementation Issues 5. Quantitative Analysis

More information

Process Strategy. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Process Strategy. Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. 2 Process Strategy Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. 2 1 Operations As a Competitive Weapon Operations Strategy Project Management Process Strategy Process Analysis Process

More information

Heijunka Walkthrough. This article is written as a walkthrough for the understanding of what is Heijunka and its use in production.

Heijunka Walkthrough. This article is written as a walkthrough for the understanding of what is Heijunka and its use in production. By, Dr. Satnam Singh. MBizM Sdn Bhd satnam@mbizm.com Heijunka Walkthrough This article is written as a walkthrough for the understanding of what is Heijunka and its use in production. The slide above shows

More information

Flexible Manufacturing Systems (FMS)

Flexible Manufacturing Systems (FMS) Computers in Manufacturing Enterprises Flexible ManufacturingSystems: Automation, ProductionSystemsand CIM bym.p. Groover August 27, 2015 Vandana Srivastava Flexible Manufacturing Systems (FMS) one of

More information

GOOD MORNING AND WELCOME

GOOD MORNING AND WELCOME GOOD MORNING AND WELCOME Intro Patrick Carlson Consolidated Precision Products (Minneapolis Operation) Responsible Level 3 for Non-Destructive Testing LEAN MANUFACTURING IN AN ALUMINUM / MAGNESIUM FOUNDRY

More information

Operations Management

Operations Management Operations Management Chapter 16 JIT and Lean Operations PowerPoint presentation to accompany Heizer/Render Operations Management, 11ed Some additions and deletions have been made by Ömer Yağız to this

More information

Operations Management - 5 th Edition

Operations Management - 5 th Edition Chapter 15 Lean Production Operations Management - 5 th Edition Roberta Russell & Bernard W. Taylor, III Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Lecture

More information

A typical manufacturing plant

A typical manufacturing plant CHAPTER6: PRODUCTION PLANNING & CONTROL Production planning is concerned with the determination of production, inventory, and work force levels to meet fluctuating demand A typical manufacturing plant

More information

The Realities of Modern Manufacturing

The Realities of Modern Manufacturing Ch 1 Introduction Sections: 1. Production Systems 2. Automation in Production Systems 3. Manual Labor in Production Systems 4. Automation Principles and Strategies 5. Organization of the Book The Realities

More information

Flexible Manufacturing systems. Lec 4. Dr. Mirza Jahanzaib

Flexible Manufacturing systems. Lec 4. Dr. Mirza Jahanzaib Flexible Manufacturing systems AB A. Bottleneck kmdl Model Lec 4 Dr. Mirza Jahanzaib Where to Apply FMS Technology The plant presently either: Produces parts in batches or Uses manned GT cells and management

More information

TEN STEPS to Lean Electrical Controls

TEN STEPS to Lean Electrical Controls Complements of: TEN STEPS to Lean Electrical Controls EXECUTIVE SUMMARY Globalization is forcing companies to constantly become more efficient. To drive efficiencies, many companies are implementing Lean

More information

LEAN ADMINISTRATION.

LEAN ADMINISTRATION. LEAN ADMINISTRATION www.fourprinciples.com BACKGROUND Administrative functions like government processes, finance, human resources, regional, international and global procurement, IT and other non-manufacturing

More information

Outline. Pull Manufacturing. Push Vs. Pull Scheduling. Inventory Hides Problems. Lowering Inventory Reveals Problems

Outline. Pull Manufacturing. Push Vs. Pull Scheduling. Inventory Hides Problems. Lowering Inventory Reveals Problems Outline Pull Manufacturing Why Pull Manufacturing? The Problem of Inventory Just In Time Kanban One Piece Flow Demand / Pull Standard Work & Takt Time Production Smoothing 1 2 Why Pull Manufacturing? Push

More information

Measurements That Count (and Some That Don t) Hank IT DEPENDS Barr CFPIM, CSCP, CLTD, CSCM, 6σBB, C.P.M., CLA/CLT Vancouver BC November 1, 2018

Measurements That Count (and Some That Don t) Hank IT DEPENDS Barr CFPIM, CSCP, CLTD, CSCM, 6σBB, C.P.M., CLA/CLT Vancouver BC November 1, 2018 Measurements That Count (and Some That Don t) Hank IT DEPENDS Barr CFPIM, CSCP, CLTD, CSCM, 6σBB, C.P.M., CLA/CLT Vancouver BC November 1, 2018 Introduction The Goal Is To Make Money Managers Want To Manage

More information

ME 6703 - COMPUTER INTEGRATED MANUFACTURING UNIT 1 INTRODUCTION 1 Mention few elements of CIM. M/J 16 2 State the objectives of implementation of CIM. M/J 16 3 Mention the reasons for implementing CAD?

More information

Beyond Lean Manufacturing

Beyond Lean Manufacturing PRODUCT CONFIGURATION MANAGEMENT Beyond Lean Manufacturing www.infor.com/solutions/pcm 1 Agenda State of discrete manufacturing productivity Strategies for competitive advantage Suggestions for getting

More information

IT 470a Six Sigma Chapter X

IT 470a Six Sigma Chapter X Chapter X Lean Enterprise IT 470a Six Sigma Chapter X Definitions Raw Materials component items purchased and received from suppliers WIP work in process, items that are in production on the factory floor

More information

MgtOp 340 Professor Munson Washington State University Sample Exam for Exam 2

MgtOp 340 Professor Munson Washington State University Sample Exam for Exam 2 MgtOp 340 Professor Munson Washington State University Sample Exam for Exam 2 Multiple Choice 1. Suppose that the annual EOQ cost (setup plus inventory holding) for a product stored in a warehouse is $10,000.

More information

Chapter 13. Lean and Sustainable Supply Chains

Chapter 13. Lean and Sustainable Supply Chains 1 Chapter 13 Lean and Sustainable Supply Chains 2 OBJECTIVES Lean Production Defined The Toyota Production System Lean Implementation Requirements Lean Services Lean Production 3 Lean Production can be

More information

Push and Pull Production Systems

Push and Pull Production Systems Push and Pull Production Systems The Key Difference Between Push and Pull You say yes. I say no. You say stop. and I say go, go, go! Push Systems: schedule work releases based on demand. inherently due-date

More information

LECTURE 41: SCHEDULING

LECTURE 41: SCHEDULING LECTURE 41: SCHEDULING Learning Objectives After completing the introductory discussion on Scheduling, the students would be able to understand what scheduling is and how important it is to high volume

More information

Just-In-Time (JIT) Manufacturing. Overview

Just-In-Time (JIT) Manufacturing. Overview Just-In-Time (JIT) Manufacturing Overview The Just-in-Time (JIT) Manufacturing Philosophy Prerequisites for JIT Manufacturing Elements of JIT Manufacturing Benefits of JIT Manufacturing Success and JIT

More information

2. What are the typical problems with Manufacturing Resources Planning (MRP)? Indicate how one can overcome each problem. 4 points

2. What are the typical problems with Manufacturing Resources Planning (MRP)? Indicate how one can overcome each problem. 4 points EXAM: PRODUCTIO MAAGEMET -- 35V6A5 Date: 12 May 2010 Part 1: Closed Book You have ± 45 minutes to answer the following questions. Write your answers short, clear and to the point (max. 8 lines per question).

More information

STUDY NO 5 INTRODUCTION TO FLEXIBLE MANUFACTURING SYSTEM

STUDY NO 5 INTRODUCTION TO FLEXIBLE MANUFACTURING SYSTEM STUDY NO 5 INTRODUCTION TO FLEXIBLE MANUFACTURING SYSTEM A flexible manufacturing system (FMS) is in which there is some amount of flexibility that allows the system to react in case of changes, whether

More information

Answer Key Testname: M1 06

Answer Key Testname: M1 06 Testname: M1-06 1) B 2) D 3) A 4) B 5) C 6) C 7) B 8) A 9) D 10) B 11) A 12) D 13) B 14) A 15) B 16) B 17) B 18) D 19) A 20) B 21) B 22) D 23) B 24) B 25) A 26) With the pull method, customer demand (an

More information

Slide Chapter 12 Inventory management

Slide Chapter 12 Inventory management Slide 12.1 Chapter 12 Inventory management Slide 12.2 Inventory management Direct Design Operations management Develop Inventory management Deliver The market requires a quantity of products and services

More information

Ch 26 Just-In-Time and Lean Production. What is Lean Production? Structure of Lean Production System. Activities in Manufacturing.

Ch 26 Just-In-Time and Lean Production. What is Lean Production? Structure of Lean Production System. Activities in Manufacturing. Ch 26 Just-In-Time and Lean Production Sections: 1. Lean Production and Waste in Manufacturing 2. Just-in-time Production Systems 3. Autonomation 4. Worker Involvement What is Lean Production? Lean production

More information

Mechanical Engineering 101

Mechanical Engineering 101 Mechanical Engineering 101 University of alifornia, Berkeley Lecture #17 1 Today s lecture apacity planning Kanban intro 2 MRP Last lecture: MRP scheduling Materials Requirements Planning: MRP This lecture:

More information

Accounting Information Systems, 12e (Romney/Steinbart) Chapter 14 The Production Cycle

Accounting Information Systems, 12e (Romney/Steinbart) Chapter 14 The Production Cycle Accounting Information Systems, 12e (Romney/Steinbart) Chapter 14 The Production Cycle 1) The AIS compiles and feeds information among the business cycles. What is the relationship between the revenue

More information

Manufacturing Environment

Manufacturing Environment Contents Chapter 1 Introduction 1.1 Meaning and Definition... 1 Operations Management in Organization Chart... 2 Objectives of Operations Management... 3 Functions of Operations Management... 3 1.2 Operations

More information

Version FE/2 EGT2: IIA ENGINEERING TRIPOS PART IIA. Module 3E10 OPERATIONS MANAGEMENT FOR ENGINEERS - CRIB. Page 1 of 12

Version FE/2 EGT2: IIA ENGINEERING TRIPOS PART IIA. Module 3E10 OPERATIONS MANAGEMENT FOR ENGINEERS - CRIB. Page 1 of 12 EGT2: IIA ENGINEERING TRIPOS PART IIA Module 3E10 OPERATIONS MANAGEMENT FOR ENGINEERS - CRIB Page 1 of 12 1 (a) The trend is the long-term sweep or general direction of movement in a time series. Seasonality

More information

Introduction to the Toyota Production System (TPS)

Introduction to the Toyota Production System (TPS) COST VS DEFECTS Introduction to the Toyota Production System (TPS) 2.810 T. Gutowski 1 Three Major Mfg Systems from 1800 to 2000 Machine tools, specialized machine tools, Taylorism, SPC, CNC, CAD/CAM 1800

More information

DEPARTMENT OF MECHANICAL ENGINEERING YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY FARIDABAD

DEPARTMENT OF MECHANICAL ENGINEERING YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY FARIDABAD SYLLABI OF PhD (Mechanical) 2010-2011 DEPARTMENT OF MECHANICAL ENGINEERING YMCA UNIVERSITY OF SCIENCE & TECHNOLOGY FARIDABAD-121006 QUALITY MANAGEMENT: A SYSTEMS PERSPECTIVE Attributes of Quality, Evolution

More information

A Decision-Making Process for a Single Item EOQ NLP Model with Two Constraints

A Decision-Making Process for a Single Item EOQ NLP Model with Two Constraints American Journal of Business, Economics and Management 205; 3(5): 266-270 Published online September 7, 205 (http://www.openscienceonline.com/journal/ajbem) A Decision-Making Process for a Single Item

More information

Lean and Agile Systems. Rajiv Gupta FORE School of Management October 2013 Session 6

Lean and Agile Systems. Rajiv Gupta FORE School of Management October 2013 Session 6 Lean and Agile Systems Rajiv Gupta FORE School of Management October 2013 Session 6 Module 1 Recap of Session 5 Module 2 Pull Production Rules of Kanban Module 3 Small Batch Production Level Production

More information

Numerical investigation of tradeoffs in production-inventory control policies with advance demand information

Numerical investigation of tradeoffs in production-inventory control policies with advance demand information Numerical investigation of tradeoffs in production-inventory control policies with advance demand information George Liberopoulos and telios oukoumialos University of Thessaly, Department of Mechanical

More information

MFS605/EE605 Systems for Factory Information and Control

MFS605/EE605 Systems for Factory Information and Control MFS605/EE605 Systems for Factory Information and Control Fall 2004 Larry Holloway Dept. of Electrical Engineering and Center for Robotics and Manufacturing Systems 1 Collect info on name, major, MS/PhD,

More information

2009 Pearson Prentice Hall. All rights reserved. Job Costing Systems

2009 Pearson Prentice Hall. All rights reserved. Job Costing Systems Job Costing Systems Types of Product-Costing Systems Process Costing Job-Order Costing Used for production of large, unique, high-cost items. Built to order rather than mass produced. Many costs can be

More information

Chapter 12 Inventory Management. Inventory Management

Chapter 12 Inventory Management. Inventory Management Chapter 12 Inventory Management 2006 Prentice Hall, Inc. Outline Global Company Profile: Amazon.Com Functions Of Inventory Types of Inventory Inventory Management ABC Analysis Record Accuracy Cycle Counting

More information

Student: 2. As a general rule, continuous processing systems produce products for inventory rather than for customer order.

Student: 2. As a general rule, continuous processing systems produce products for inventory rather than for customer order. ch6ch6 Student: 1. Continuous processing is the best way to produce customized output. True False 2. As a general rule, continuous processing systems produce products for inventory rather than for customer

More information

Unit WorkBook 1 Level 5 ENG U48 Manufacturing Systems Engineering UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 1 Level 5 ENG U48 Manufacturing Systems Engineering UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Levels 5 Higher Nationals in Engineering (RQF) Unit 48: Manufacturing Systems Engineering Unit Workbook 1 in a series of 1 for this unit Learning Outcome LO1 to LO4 Manufacturing Systems Engineering

More information

ACTIVITY 8: QUESTION. Identify some ways in which businesses can lose stock. ACTIVITY 8: ANSWER

ACTIVITY 8: QUESTION. Identify some ways in which businesses can lose stock. ACTIVITY 8: ANSWER The weekly schedule will be adjusted for stock in plant. There are various models for calculating the reorder quantity for stock which takes into account various practical issues. For example, a manufacturer

More information

Lean Principles. Jerry D. Kilpatrick. This article was originally written for and published by MEP Utah in 2003 (

Lean Principles. Jerry D. Kilpatrick. This article was originally written for and published by MEP Utah in 2003 ( Lean Principles By Jerry D. Kilpatrick This article was originally written for and published by MEP Utah in 2003 (www.mep.org) Page 1 of 6 Introduction Lean operating principles began in manufacturing

More information

TYPICAL FACTORY LAYOUT vs THE TOYOTA APPROACH

TYPICAL FACTORY LAYOUT vs THE TOYOTA APPROACH TYPICAL FACTORY LAYOUT vs WHAT IS THE TYPICAL FACTORY LAYOUT IN MASS MANUFACTURING APPROACH? WHAT IS THE APPROACH TO FACTORY LAYOUT IN TOYOTA? RACHEL TATE @00441881 VALERIE CARDOZ @00442956 5/1/16 LEAN

More information

One-off Batch High volume production (mass production) One-off: Custom - built kitchen Batch: Olympic medals High volume: Garden table / chairs

One-off Batch High volume production (mass production) One-off: Custom - built kitchen Batch: Olympic medals High volume: Garden table / chairs The selection of materials and components is determined by the manufacturing processes involved and the scale of production. However, in an attempt to reduce manufacturing costs and overall costs, products

More information

INVENTORY THEORY INVENTORY PLANNING AND CONTROL SCIENTIFIC INVENTORY MANAGEMENT

INVENTORY THEORY INVENTORY PLANNING AND CONTROL SCIENTIFIC INVENTORY MANAGEMENT INVENTORY THEORY INVENTORY PLANNING AND CONTROL SCIENTIFIC INVENTORY MANAGEMENT INVENTORY (STOCKS OF MATERIALS) Because there is difference in the timing or rate of supply and demand What would happen

More information

Yuji Yamamoto PPU411. Today s topic. What is MPS and MRP Developing MPS How to make MRP Enterprise Resource Planning Kanban system

Yuji Yamamoto PPU411. Today s topic. What is MPS and MRP Developing MPS How to make MRP Enterprise Resource Planning Kanban system Yuji Yamamoto PPU411 Today s topic What is MPS and MRP Developing MPS How to make MRP Enterprise Resource Planning Kanban system 1 Production planning and scheduling Demand Production planning 1,400pcs/m

More information

Yuji Yamamoto PPU411 VT 2017

Yuji Yamamoto PPU411 VT 2017 Yuji Yamamoto PPU411 VT 2017 1 Continuous review (Q) system A continuous review (Q) system, sometimes called a reorder point (ROP) system or fixed order-quantity system, tracks the remaining inventory

More information

July 14, MODULE 2 OPERATIONS STRATEGY

July 14, MODULE 2 OPERATIONS STRATEGY July 14, 2014-2 MODULE 2 OPERATIONS STRATEGY OVERVIEW MODULE 2 Business (corporate strategy) Operations strategy Competitiveness Productivity MISSION STATEMENT Marketplace Mission Statement Defines the

More information

Inventory Management [10] Outline. Inventory Models. Operations Management, 8e. Heizer/Render. ABC Analysis 2 / Prentice Hall, Inc.

Inventory Management [10] Outline. Inventory Models. Operations Management, 8e. Heizer/Render. ABC Analysis 2 / Prentice Hall, Inc. Inventory Management [10] Heizer/Render Operations Management, 8e Outline Functions Of Inventory Types of Inventory Inventory Management ABC Analysis Record Accuracy Cycle Counting Control of Service Inventories

More information

Hybrid Manufacturing Methods

Hybrid Manufacturing Methods Hybrid Manufacturing Methods The following manufacturing execution and costing methods are supported in SyteLine. These methods can be combined in a single environment so that the optimal method is used

More information

Introduction. Introduction. Introduction LEARNING OBJECTIVES LEARNING OBJECTIVES

Introduction. Introduction. Introduction LEARNING OBJECTIVES LEARNING OBJECTIVES Valua%on and pricing (November 5, 2013) LEARNING OBJECTIVES Lecture 9 Control 1. Understand the importance of inventory control and ABC analysis. 2. Use the economic order quantity (EOQ) to determine how

More information

JUST IN TIME. Manuel Rincón, M.Sc. October 22nd, 2004

JUST IN TIME. Manuel Rincón, M.Sc. October 22nd, 2004 JUST IN TIME Manuel Rincón, M.Sc. October 22nd, 2004 Lecture Outline 1. Just-in-Time Philosophy 2. Suppliers Goals of JIT Partnerships Concerns of Suppliers 3. JIT Layout Distance Reduction Increased Flexibility

More information

Lecture 9 MBF2213 Operations Management Prepared by Dr Khairul Anuar. L9: Lean synchronization

Lecture 9 MBF2213 Operations Management Prepared by Dr Khairul Anuar. L9: Lean synchronization Lecture 9 MBF2213 Operations Management Prepared by Dr Khairul Anuar L9: Lean synchronization 1 Lean operations Operations strategy Design Improvement Lean operations Planning and control The market requires

More information

Simulation of Lean Principles Impact in a Multi-Product Supply Chain

Simulation of Lean Principles Impact in a Multi-Product Supply Chain Simulation of Lean Principles Impact in a Multi-Product Supply Chain M. Rossini, A. Portioli Studacher Abstract The market competition is moving from the single firm to the whole supply chain because of

More information

Just In Time (JIT) Quality and Reliability Engg. (171906) H I T. Hit suyo na mono O Iru toki iru dake Tasukuran

Just In Time (JIT) Quality and Reliability Engg. (171906) H I T. Hit suyo na mono O Iru toki iru dake Tasukuran Just In Time (JIT) H I T Hit suyo na mono O Iru toki iru dake Tasukuran (What is needed) (When it is needed and in what quantity) (Make) The crux is, if you cannot use it now do not make it now. Quality

More information

Virtual Pull Systems. Don Guild, Synchronous Management INTRODUCTION

Virtual Pull Systems. Don Guild, Synchronous Management INTRODUCTION INTRODUCTION Have you implemented kanban yet? Have you been unable to roll it out or just abandoned it? Most companies who begin kanban implementation struggle to finish the job. In too many cases, the

More information

OM (Fall 2016) Outline

OM (Fall 2016) Outline Lean Operations Outline Global Company Profile: Toyota Motor Corporation Lean Operations Lean and Just-in-Time Lean and the Toyota Production System Lean Organizations Lean in Services 2 Toyota Motor Corporation

More information

IT 445 Computer-Aided Manufacturing Spring 2013

IT 445 Computer-Aided Manufacturing Spring 2013 IT 445 Computer-Aided Manufacturing Spring 2013 Instructor Information Instructor: Dr. Feng-Chang Roger Chang Class Meeting Times: 8:00-9:15am, TR Course Location: EGRA111 Office Hours: 1:30-4:30pm, TR

More information

COMPUTER INTEGRATED MANUFACTURING

COMPUTER INTEGRATED MANUFACTURING COMPUTER INTEGRATED MANUFACTURING A. ALAVUDEEN N. VENKATESHWARAN COMPUTER INTEGRATED MANUFACTURING COMPUTER INTEGRATED MANUFACTURING A. Alavudeen Assistant Professor Department of Mechanical Engineering

More information

Lean Six Sigma Assembly Transformation

Lean Six Sigma Assembly Transformation Lean Six Sigma Assembly Transformation Assembly Operation converted to one piece flow assembly lines to improve throughput and efficiency. Problem Statement The first issue was ramping production to meet

More information

Setup Reduction Removing the Rocks

Setup Reduction Removing the Rocks Setup Reduction Removing the Rocks Paul W. Critchley, President, New England Lean Consulting PRESENTED BY Why is Setup Reduction Important? Water (inventory) covers up the rocks: Lack of standard work

More information

Johan Oscar Ong, ST, MT

Johan Oscar Ong, ST, MT INVENTORY CONTROL Johan Oscar Ong, ST, MT I.1 DEFINITION Inventory are material held in an idle or incomplete state awaiting future sale, use, or transformation. (Tersine) Inventory are a stock of goods.

More information

PERFORMANCE MODELING OF AUTOMATED MANUFACTURING SYSTEMS

PERFORMANCE MODELING OF AUTOMATED MANUFACTURING SYSTEMS PERFORMANCE MODELING OF AUTOMATED MANUFACTURING SYSTEMS N. VISWANADHAM Department of Computer Science and Automation Indian Institute of Science Y NARAHARI Department of Computer Science and Automation

More information

ME 375K Production Engineering Management First Test, Spring 1998 Each problem is 20 points

ME 375K Production Engineering Management First Test, Spring 1998 Each problem is 20 points Name ME 375K Production Engineering Management First Test, Spring 1998 Each problem is 2 points 1. A raw material inventory holds an expensive product that costs $1 for each item. The annual demand for

More information

2

2 1 2 3 4 5 6 7 8 9 10 A process layout groups machinery and equipment according to their functions. The work in process moves around the plant to reach different workstations. A process layout often facilitates

More information

PLUS VALUE STREAM MAPPING

PLUS VALUE STREAM MAPPING LEAN PRINCIPLES PLUS VALUE STREAM MAPPING Lean Principles for the Job Shop (v. Aug 06) 1 Lean Principles for the Job Shop (v. Aug 06) 2 Lean Principles for the Job Shop (v. Aug 06) 3 Lean Principles for

More information

MGT613 Current papers

MGT613 Current papers 10 Subjective Paper: Paper 1 What are the reasons that support the use of process layout? (3 M) 1. Can handle a variety of processing requirements. 2. Not particularly vulnerable to equipment failures.

More information

LECTURE 8: MANAGING DEMAND

LECTURE 8: MANAGING DEMAND LECTURE 8: MANAGING DEMAND AND SUPPLY IN A SUPPLY CHAIN INSE 6300: Quality Assurance in Supply Chain Management 1 RESPONDING TO PREDICTABLE VARIABILITY 1. Managing Supply Process of managing production

More information

Planning. Planning Horizon. Stages of Planning. Dr. Richard Jerz

Planning. Planning Horizon. Stages of Planning. Dr. Richard Jerz Planning Dr. Richard Jerz 1 Planning Horizon Aggregate planning: Intermediate-range capacity planning, usually covering 2 to 12 months. Long range Short range Intermediate range Now 2 months 1 Year 2 Stages

More information