Research of performance prediction to energy on hydraulic turbine

Size: px
Start display at page:

Download "Research of performance prediction to energy on hydraulic turbine"

Transcription

1 IOP Conference Series: Earth and Environmental Science Research of performance prediction to energy on hydraulic turbine To cite this article: H Quan et al 2012 IOP Conf. Ser.: Earth Environ. Sci View the article online for updates and enhancements. Related content - The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance F X Shi, J H Yang, X H Wang et al. - Experimental and numerical study on inlet and outlet conditions of a bulb turbine with considering free surface Y P Zhao, W L Liao, H D Feng et al. - Numerical simulation of pressure pulsations in Francis turbines M V Magnoli and R Schilling This content was downloaded from IP address on 14/08/2018 at 20:23

2 Research of performance prediction to energy on hydraulic turbine H Quan 1, R N Li 1, Q F Li 1, W Han 1 and Q M Su 2 1. School of Energy and Power Engineering, Lanzhou Univ. of tech., Lanzhou , China 2. School of Petrochemical Technology, Lanzhou Univ. of tech., Lanzhou , China quanh2010@163.com Abstract. Refer to the low specific speed Francis turbine blade design principle and doublesuction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of overcurrent flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion. 1. Introduction In the existing petroleum, chemical industry, sea water desalination and high energy consumption production enterprise, general there is a process phenomenon that many high pressure fluid through pressure reducing valve to the required must be low voltage or direct emissions. In the process of pressure and discharge, a large amount of fluid pressure can be changed into heat energy that lost in the environment, which caused this part of the energy of the waste directly. Hydraulic turbine energy recovery device put fluid pressure can be transformed into mechanical energy, or electric power, working process is in the role of high pressure fluid turbine wheels, produce the output power of shaft, to drive the other mechanical energy consumption. All places exist poor liquid pressure have energy to recycle. Excess pressure in industrial production is renewable energy, using hydraulic turbine to replace pressure reducing valve can avoid the waste of complementary energy. If the hydraulic turbine will recycle this part of energy, more complementary energy can be used for reproduction,. so in the long term of the production process, the profit to the enterprise is very considerable. Published under licence by Ltd 1

3 Therefore, basing on the design principles of low mix-flow turbine blades and the structural models of double suction pump in this paper, the full port of the Hydraulic turbine was used by hydraulic design and 3d model, using Computational Fluid Dynamics (here in after referred to as CFD) to analyse the numerical simulation of software hydraulic turbine's full port complex turbulent in flow field. The numerical simulation is conducted on the base of performance prediction and achieve structure optimization, which replace the traditional model test. And the wheel was the core part of energy conversion, successfully carry on the forecast of hydraulic turbine runner energy performance. It also had a significant guidance to the energy recovery of hydraulic turbine machine. 2. The models description and calculation methods 2.1. The basic parameters and the models of the double passages hydraulic turbine machine model. Table 1. The basic technical parameters parameters Numerical value Design discharge Q/ m 3 /h 600 Design head H/m 70 Rotating speed n/r/min 2980 The guide vane numbers z o /n 16 Guide vane height b/m 44 Guide vane distribution cirle diameter D 0 /mm 215 Runner reel nominal D 0 /mm 180 Runner reel blade number z o /n 16 In this paper numerical simulation of the area of horizontal hydraulic turbine machine after combine actual situation Francis spiral case was imported to the half spiral pipe of the whole flow the export, mainly including the diffuser area, lead water agencies, wheel area and the area conduit export area. In Pro/E software platform, base the hydraulic turbine with CAD machine flow components of hydraulic turbine 2d graphics to complete the whole 3d model of the machine. Among them, the 3d model runner diagram and the hydraulic turbine machine 3d model and its whole cutting graph respectively as shown in figure 1 and figure 2 shows. Figure 1. The 3d model runner figure Figure 2. Hydraulic turbine machine 3d model and its whole cutting figure 2

4 2.2. Basic assumption The flow of the mix-flow turbine runner hydraulic machine actually is very complicated. But, in order to a variety of engineering problems, the researchers had to make some simplified and assumptions to the actual flow to the real fluid. At present, in the hydraulic design, the mix-flow turbine runner of hydraulic machine is still hypothesizing like this: First, the liquid is ideal. Second, the relative motion of the fluid in wheel is a constant movement. Third, the number of leaf number is infinite and the thickness the leaf is infinitely thin. Forth the flow in the runner is fluid in the axial symmetry The numerical method The import boundary conditions. The hydraulic turbine machine imported has a stable differential pressure, small flow characteristic, so use the pressure import boundary conditions in this paper The outlet boundary conditions. When the choose of the imported boundary conditions of the hydraulic turbine machine is pressure conditions, it cannot be used the assumption that flow in the diffusion fluxes of all variables for 0 the full development of the conditions (outflow), which will lead to the fluent out of work, so use the pressure outlet boundary The solid wall conditions. In the near wall flow near the area, take standard wall function, wheel and upstream and downstream flow components of the connection by setting up action coupling face realized. 3. The selection of the research scheme In order to discuss the influence of the structure of the hydraulic turbine machine to hydraulic performance, according to the analysis, hydraulic turbine in the water of the machine parts has no guide blade (scheme Ⅰ), add standard curvature guide blade (scheme Ⅱ), the retrofit of the curvature guide vane (scheme Ⅲ), negative curvature guide blade (scheme Ⅳ) and symmetric type guide blade (scheme Ⅴ) to study its properties. The airfoil profile is shown in figure 3 below. Figure 3. The airfoil profile 4. Performance prediction to energy on hydraulic turbine runner Under different conditions to complete the numerical simulation on complex turbulence flow through the full passage of a hydraulic turbine, the following formula can be applied to predict the runner s efficiency and power and then provided abundant reference for structural optimization of the installations. The runner efficiency is calculated by: η ( Γ Γ ) ω 2π gh 1 2 = (1) where η is hydraulic turbine runner efficiency, Г 1 and Г 2 are respectively the velocity circulation of the inlet and outlet, ω the angular velocity of the hydraulic turbine runner, g the acceleration of gravity, H the working head of hydraulic turbine. 3

5 The hydraulic turbine runner power can be expressed as: N = M ω =ΔP Q η (2) The working head of hydraulic turbine can be expressed as: 2 2 P1 P2 V1 V2 H = ( Z1 Z2) + + (3) ρg 2g where Z 1,Z 2 are respectively the inlet and outlet position height which relative to a datum. P 1,P 2 are respectively the pressure of the inlet and outlet. V 1,V 2 are respectively the average absolute velocity of the flow cross sections at the inlet and outlet The performance prediction calculation conditions table According to the hydraulic turbine design parameters and possible range of operation, and in the case of maintaining unit velocity unchanged, the paper s numerical analysis of interior flow field of hydraulic turbine is in the hydraulic turbine without guide vanes and adds four different airfoil guide vanes under the 70m-head, and select five operating points respectively which under the different gate openings, then the detailed numerical simulation of internal flow in hydraulic turbine under all conditions was carried out which obtained flow characteristics of the flow passage components. The operating point parameters showed in Table 2. Table 2. Numerical analysis of hydraulic turbine calculation conditions table scheme working head H/m number Ⅰ 70 guide vane a0/mm Ⅱ Ⅲ Ⅳ Ⅴ Performance prediction results and working characteristic curve According to the performance prediction results in different operating points of the design scheme from table2,the flow and efficiency working characteristics curve of the hydraulic turbine which in different programs can be drawn, and as shown in figure 4. As can be seen from the figure, optimum operating point flow of the design scheme is basically the design flow which meets the design requirements. In the large flow conditions, the relation curve distribution between flow and efficiency is almost in line which during the scheme Ⅲ Ⅳ Ⅴ, only the efficiency of the schemeⅠis more than a percentage point lower which compared to other programs, but when the deviation from the optimum operating point flow about 30%, the efficiency of the schemeⅡis higher than other programs, which indicates that the standard form of the positive curvature vane is more suitable for the large flow conditions; In the small flow conditions, the degrade gradient in the efficiency of the schemeⅡis large, while in other design schemes, especially the scheme Ⅱ, with the flow reduction, the decreased amplitude of efficiency is very small, and which indicates that the section of highest hydraulic efficiency of hydraulic turbine is wide under this design and suitable for the practical application of hydraulic turbine. The highest efficiency of the hydraulic turbine in the scheme Ⅳ is 88% when H=70 m, Q= m 3 /s, and the efficiency of the main operating point are above 80%, basically meet the design requirements of the hydraulic turbine. 4

6 Figure 4. The Flow Working Characteristics Curve of the Hydraulic Turbine 4.3. Analysis of the hydraulic loss Since this paper makes a multi-program design comparison about the guide components of the hydraulic turbine to search for the most appropriate design program, and then analyzes the hydraulic loss of the diversion components and the guide components of the hydraulic turbine under the design scheme, which is defined as: e loss ein eout = 100% (4) ρgh where e in is total energy at the spiral case inlet, e out is total energy at runner blade inlet and also the total energy at guide apparatus outlet, H is specified calculation head. For the diversion components and the guide components of the hydraulic turbine, the hydraulic losses basically from eddy loss, impact loss generated when the flow around the guide vane, skin friction loss and wake loss etc. Especially in non-optimum operating point, impingement loss of the guide vane head occupies the dominant position in the hydraulic losses of the diversion components and the guide components. For the convenience of computing, the gross energy at import and export was substituted by the total pressure at import and export.the follows show the hydraulic losses of the diversion components and the guide components in the optimum working conditions of the design scheme, as shown in Table 3. Table 3. The hydraulic loss of the diversion components and the guide components comparison scheme number total pressure of volute inlet (Pa) total pressure of runner blade (Pa) hydraulic losses eloss(%) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ As can be seen from the table, the hydraulic losses of the diversion components and the guide components of the hydraulic turbine without guide vanes are very small, while in several programs of adding guide vanes, the loss of scheme Ⅱ higher than the other three programs 0.7%~1.13% by adding head thicker guide vanes, and the hydraulic loss of scheme Ⅳ is the minimum which contribute to achieving the purpose of maximizing energy recovery. 5

7 4.4. The numerical simulation results and analysis In order to explore the effects of presence or absence of the guide vane on the hydraulic performance of hydraulic turbine, following in respective optimum operating conditions, the feasibility of hydraulic turbine of without guide vane (scheme I) and adding the standard form of the positive curvature vane(scheme II)were explored on pressure distribution, velocity distribution, current line and other aspects in some computational domain. Figure 5 are the numerical simulation results of both schemes. The pressure and suction surface velocity vector of scheme Ⅰand Ⅱ The pressure and suction surface pressure contours of scheme Ⅰand Ⅱ Figure 5. Pressure Surface and Suction Surface Velocity Vector Figure 6. Scheme I and II Pressure Surface and Suction Surface Pressure Distribution In the same boundary condition, the efficiency of a variety of designs in respective optimum operating conditions as shown in figure 5 See from Table 3 that in the case of identical or similar flow, with guide vanes and without guide vanes of hydraulic turbine efficiency are not alike, the former maximum efficiency of the energy recovery is 82.78% which higher than the latter 8.57%, and vastly improved the efficiency of hydraulic turbine energy recovery. The reasons as following: (1) In hydraulic turbine runner blade imported torus, whose radius is a constant, so the distribution of tangential velocity reflects the velocity circulation distribution and it is an important index of energy conversion performance. Because the diversion of guide vanes, the runner blade import flows along the circumferential circulation distribution improved greatly, overall import surfaces tangential velocity cloud chart becomes clearer, the tangential velocity circulation Г=2π v u r along the blade imported torus, whose extreme value disparities have eased into uniform. It shows that guide vane can improve the circumferential heterogeneity of the flow, plays the partial amendment to circulation role, and is conducive to flow evenly into the runner blades, so as to achieve the efficient and stable running. 6

8 (2) Hydraulic turbine runner is the work parts. Energy conversion was carried out between the runner with blade and the medium of continuous flow around the blade, the advantages and disadvantages of velocity and pressure distribution on the surface of runner blade is related to the level of energy conversion index of the hydraulic turbine, the fail-safe operation of the unit and its service life. In scheme I, Since there is no drainage of guide vanes to the water current which out from the volute case, leading to impingement on the pressure surface inlet produced by water current, thus giving rise to uneven distribution of pressure surface velocity, forming vortex, increasing the hydraulic losses, resulting in reduced efficiency. As shown in Figure 3;In scheme II, whether it is pressure or suction surface the velocity distribution is relatively uniform, which from the inlet edge of blade flows evenly to the outlet have no clear separation, back flow, lateral flow etc. other secondary flow phenomenon, overall flows smoothly, as shown in Figure 5,6 shows: Without the guide vane, the pressure distributes unevenly on the pressure surface and suction surface, the high-pressure region as shown formed in the cutwater of the pressure surface, while at the inlet edge of blade, the pressure surface pressure is less than the suction surface pressure and is not conducive to energy conversion; In scheme II, the pressure are gradually reduced from the pressure surface to suction surface, which also presented a regular downward trend from the inlet to the outlet, consistent with principles of hydraulic turbine accomplish work and conducive to the efficient conversion of energy. 5. Conclusions Through the numerical analysis for the running operating points of several programs of adding different airfoil guide vanes on the guide components and without guide vanes concludes that the hydraulic losses of the diversion components and the guide components of the hydraulic turbine without guide vanes are very small, and that in the case of identical or similar flow, with guide vanes and without guide vanes of hydraulic turbine efficiency are not alike, the former maximum efficiency of the energy recovery is higher than the latter, which vastly improved the efficiency of hydraulic turbine energy recovery and contribute to achieving the purpose of maximizing energy recovery. References [1] Thompson J F, Warsi Z V A and Mastin C W 1982 Journal of Computational Physics 47(1) [2] Hakan N and Lars D 2001 A validation of Parallel multiblock CFD against the GAMM Francis water turbine runner at best efficiency and off-design operating conditions (Goteborg,Sweden,2001) [3] Jacoben O, et al Three-Dimensional turbulent flow simulation in hydraulic machinery Proc.of 15th IAHR Symp. Paper C [4] Hellstroem J G I, Marjavaara B D and Lundstroem T S 2007 Advances in Engineering Software 38(5) [5] Liu S H, Wu Y L, Zhang L, Xu Y and Tsujimoto Y 2009 International Journal of Nonlinear Sciences and Numerical Simulation

The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance IOP Conference Series: Earth and Environmental Science The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance To cite this article: F X Shi et

More information

Research on the cavitation characteristic of Kaplan turbine under sediment flow condition

Research on the cavitation characteristic of Kaplan turbine under sediment flow condition IOP Conference Series: Earth and Environmental Science Research on the cavitation characteristic of Kaplan turbine under sediment flow condition To cite this article: L Weili et al 2010 IOP Conf. Ser.:

More information

Hydraulic analysis and optimization design in Guri rehabilitation project

Hydraulic analysis and optimization design in Guri rehabilitation project IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Hydraulic analysis and optimization design in Guri rehabilitation project To cite this article: H Cheng et al 2016 IOP Conf. Ser.:

More information

Performance of a bulb turbine suitable for low prototype head: model test and transient numerical simulation

Performance of a bulb turbine suitable for low prototype head: model test and transient numerical simulation IOP Conference Series: Earth and Environmental Science Performance of a bulb turbine suitable for low prototype head: model test and transient numerical simulation To cite this article: L Zhu et al IOP

More information

NUMERICAL ANALYSIS OF THE EFFECT OF SPLITTER BLADES ON DRAFT TUBE CAVITATION OF A LOW SPECIFIC SPEED FRANCIS TURBINE

NUMERICAL ANALYSIS OF THE EFFECT OF SPLITTER BLADES ON DRAFT TUBE CAVITATION OF A LOW SPECIFIC SPEED FRANCIS TURBINE 6 th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, September 9-11, 2015, Ljubljana, Slovenia NUMERICAL ANALYSIS OF THE EFFECT OF SPLITTER

More information

Analysis on the influence of rotational speed to aerodynamic performance of vertical axis wind turbine

Analysis on the influence of rotational speed to aerodynamic performance of vertical axis wind turbine Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 245 250 International Conference on Advances in Computational Modeling and Simulation Analysis on the influence of rotational speed

More information

Impellers of low specific speed centrifugal pump based on the draughting technology

Impellers of low specific speed centrifugal pump based on the draughting technology IOP Conference Series: Earth and Environmental Science Impellers of low specific speed centrifugal pump based on the draughting technology To cite this article: C Hongxun et al 2010 IOP Conf. Ser.: Earth

More information

Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability

Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability IOP Conference Series: Earth and Environmental Science Hydraulic design of Three Gorges right bank powerhouse turbine for improvement of hydraulic stability To cite this article: Q Shi 2010 IOP Conf. Ser.:

More information

Computational Fluid Dynamics-based Simulation to Francis Turbine under a Runaway Condition

Computational Fluid Dynamics-based Simulation to Francis Turbine under a Runaway Condition Computational Fluid Dynamics-based Simulation to Francis Turbine under a Runaway Condition Liying Wang, Bingyao Li, Weiguo Zhao and Qingjiao Cao Abstract When the turbine operates in a runaway condition,

More information

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern)

T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) *4063218* [4063] 218 T.E. (Mech., Mech. S/W) (Semester II) Examination, 2011 TURBOMACHINES (New) (2008 Pattern) Time : 3 Hours Marks : 100 Instructions : 1) Answer any three questions from each Section.

More information

Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades

Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades IOP Conference Series: Materials Science and Engineering OPEN ACCESS Hydraulic performance of a low specific speed centrifugal pump with Spanwise-Slotted Blades To cite this article: D X Ye et al 2013

More information

Analysis of the Kaplan turbine draft tube effect

Analysis of the Kaplan turbine draft tube effect IOP Conference Series: Earth and Environmental Science Analysis of the Kaplan turbine draft tube effect To cite this article: L Motycak et al 2010 IOP Conf. Ser.: Earth Environ. Sci. 12 012038 View the

More information

Performance of an Open Ducted Type Very Low Head Cross- Flow Turbine

Performance of an Open Ducted Type Very Low Head Cross- Flow Turbine Performance of an Open Ducted Type Very Low Head Cross- Flow Turbine Zhenmu Chen, Van Thanh Tien Nguyen, Morihito Inagaki, and Young-Do Choi * Abstract Cross Flow Turbine (CFT) known as a Banki turbine

More information

Effects of shaft supporting structure on performance test of axial flow fan

Effects of shaft supporting structure on performance test of axial flow fan IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effects of shaft supporting structure on performance test of axial flow fan To cite this article: R Ma et al 2016 IOP Conf. Ser.:

More information

Investigation on pressure fluctuation in a Francis turbine with improvement measures

Investigation on pressure fluctuation in a Francis turbine with improvement measures IOP Conference Series: Earth and Environmental Science OPEN ACCESS Investigation on pressure fluctuation in a Francis turbine with improvement measures To cite this article: J J Feng et al 2014 IOP Conf.

More information

Hydraulic Machines, K. Subramanya

Hydraulic Machines, K. Subramanya Hydraulic Machines power point presentation Slides has been adapted from Hydraulic Machines, K. Subramanya 2016-2017 Prepared by Dr. Assim Al-Daraje 1 Chapter (1 Part 1) Prepared by Dr. Assim Al-Daraje

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM VI(ME-61,62,63 & 64)] QUIZ TEST-1 Q-1). A jet strikes a smooth curved vane moving in the same direction as the jet and the jet get reversed in the direction. Show that the maximum efficiency

More information

Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD

Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD IOP Conference Series: Earth and Environmental Science Performance analysis of a counter-rotating tubular type micro-turbine by experiment and CFD To cite this article: N J Lee et al 2012 IOP Conf. Ser.:

More information

Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system

Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system IOP Conference Series: Earth and Environmental Science OPEN ACCESS Effects of turbine's selection on hydraulic transients in the long pressurized water conveyance system To cite this article: J X Zhou

More information

Optimum design on impeller blade of mixed-flow pump based on CFD

Optimum design on impeller blade of mixed-flow pump based on CFD Available online at www.sciencedirect.com Procedia Engineering 31 (2012) 187 195 International Conference on Advances in Computational Modeling and Simulation Optimum design on impeller blade of mixed-flow

More information

Alpha College of Engineering

Alpha College of Engineering Alpha College of Engineering Department of Mechanical Engineering TURBO MACHINE (10ME56) QUESTION BANK PART-A UNIT-1 1. Define a turbomahcine. Write a schematic diagram showing principal parts of a turbo

More information

Optimal design of multi-conditions for axial flow pump

Optimal design of multi-conditions for axial flow pump IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Optimal design of multi-conditions for axial flow pump To cite this article: L J Shi et al 2016 IOP Conf. Ser.: Earth Environ. Sci.

More information

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar

Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD. Ruchi Khare, Vishnu Prasad and Sushil Kumar Derivation of Global Parametric Performance of Mixed Flow Hydraulic Turbine Using CFD Ruchi Khare, Vishnu Prasad and Sushil Kumar Ruchi Khare Vishnu Prasad Sushil Kumar Abstract: The testing of physical

More information

CFD analysis of high speed Francis hydraulic turbines

CFD analysis of high speed Francis hydraulic turbines TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 131, 2016, 111 120 Maciej Kaniecki a, Zbigniew Krzemianowski b CFD analysis of high speed Francis hydraulic turbines a Research and Development

More information

Design and Analysis of 3D Blades for Wells Turbine

Design and Analysis of 3D Blades for Wells Turbine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Design and Analysis of 3D Blades for Wells Turbine Shyjo Johnson Saintgits

More information

The comparative analysis of model and prototype test results of Bulb turbine

The comparative analysis of model and prototype test results of Bulb turbine IOP Conference Series: Earth and Environmental Science The comparative analysis of model and prototype test results of Bulb turbine To cite this article: M Benišek et al 2010 IOP Conf. Ser.: Earth Environ.

More information

Numerical Simulation on Effects of Electromagnetic Force on the Centrifugal Casting Process of High Speed Steel Roll

Numerical Simulation on Effects of Electromagnetic Force on the Centrifugal Casting Process of High Speed Steel Roll Modeling and Numerical Simulation of Material Science, 2014, 4, 20-24 Published Online January 2014 (http://www.scirp.org/journal/mnsms) http://dx.doi.org/10.4236/mnsms.2014.41004 Numerical Simulation

More information

Specific speed and impeller diameter

Specific speed and impeller diameter Technical Bulletin Minerals Number 37, June 2015 Optimising the Warman WBH pump design Introduction The fundamental design brief for the Warman WBH slurry pump range was that it must be better than the

More information

UNIT I: UNIFORM FLOW PART B

UNIT I: UNIFORM FLOW PART B UNIT I: UNIFORM FLOW PART-A 1 Define open channel flow with example BT-1-1 2 Distinguish between open channel flow and pipe flow. BT-4-1 3 Compute the hydraulic mean depth of a small channel 1m wide, 0.5m

More information

DEPARTMENT OF CIVIL ENGINEERING CE6403/ APPLIED HYDRAULIC ENGINEERING QUESTION BANK TWO MARKS UNIT I UNIFORM FLOW 1. Differentiate open channel flow from pipe flow. 2. What is specific energy and is the

More information

Numerical Simulation of the Aerodynamic Performance of a H-type Wind Turbine during Self-Starting

Numerical Simulation of the Aerodynamic Performance of a H-type Wind Turbine during Self-Starting Numerical Simulation of the Aerodynamic Performance of a H-type Wind Turbine during Self-Starting Wei Zuo a, Shun Kang b Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

Numerical analysis on the effect of varying number of diffuser vanes on impeller - diffuser flow interaction in a centrifugal fan

Numerical analysis on the effect of varying number of diffuser vanes on impeller - diffuser flow interaction in a centrifugal fan ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 63-71 Numerical analysis on the effect of varying number of diffuser vanes on impeller - diffuser flow interaction

More information

Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study

Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study Francis Turbine Upgrade for the Lushui Generating Station by Using Computational Fluid Dynamics - A Case Study J. Huang, Ph.D., Hydraulic Energy Group, Sustainable Buildings and Communities, CANMET Energy

More information

Hydroelectric power plants

Hydroelectric power plants Hydroelectric power plants Hydroelectric power plants can drive from a water stream or accumulation reservoir. Run-of-river hydroelectric plants (those without accumulation reservoirs) built along a river

More information

INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications,

INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications, INCOMPRESSIBLE FLOW TURBOMACHINES Design, Selection, Applications, George F. Round Professor Emeritus McMaster University Hamilton, Ontario Canada ELSEVIER BUTTERWORTH HEINEMANN Amsterdam Boston Heidelberg

More information

UNIT 5 HYDRAULIC MACHINES. Lecture-01

UNIT 5 HYDRAULIC MACHINES. Lecture-01 1 UNIT 5 HYDRAULIC MACHINES Lecture-01 Turbines Hydraulic machines which convert hydraulic energy into mechanical energy. This mechanical energy is used to run electric generator which is directly coupled

More information

NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE

NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE S643 NUMERICAL STUDY ON FILM COOLING AND CONVECTIVE HEAT TRANSFER CHARACTERISTICS IN THE CUTBACK REGION OF TURBINE BLADE TRAILING EDGE by Yong-Hui XIE *, Dong-Ting YE, and Zhong-Yang SHEN School of Energy

More information

2. (a) How do you classify water turbines? (b) Define and explain different efficiencies of a water turbine. [8+8]

2. (a) How do you classify water turbines? (b) Define and explain different efficiencies of a water turbine. [8+8] Code No: RR310302 Set No. 1 III B.Tech I Semester Supplementary Examinations, February 2007 HYDRAULIC MACHINERY AND SYSTEMS ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours

More information

Research Article Research on Pump Volute Design Method Using CFD

Research Article Research on Pump Volute Design Method Using CFD Rotating Machinery Volume 211, Article ID 136, 7 pages doi:1.1155/211/136 Research Article Research on Pump Volute Design Method Using CFD Sunsheng Yang, Fanyu Kong, and Bin Chen Research Center of Fluid

More information

Turbo Machines Pumps and Turbines ME 268

Turbo Machines Pumps and Turbines ME 268 Turbo Machines Pumps and Turbines ME 268 Turbo Machines Turbo machines are dynamic fluid machines that either extract energy from a fluid (turbine) or add energy to a fluid (pump) as a result of dynamic

More information

Simulation Analysis and Engineering Application Research of swirl flow limiting Valve based on XFLow

Simulation Analysis and Engineering Application Research of swirl flow limiting Valve based on XFLow Simulation Analysis and Engineering Application Research of swirl flow limiting Valve based on XFLow Yan Shi a, Kang Liu b, Yun Xu c, Yinghua Liao d and Gan Bin e Sichuan University of Science and Engineering,

More information

Turbine hydraulic assessment and optimization in rehabilitation projects

Turbine hydraulic assessment and optimization in rehabilitation projects IOP Conference Series: Earth and Environmental Science OPEN ACCESS Turbine hydraulic assessment and optimization in rehabilitation projects To cite this article: L Bornard et al 2014 IOP Conf. Ser.: Earth

More information

Numerical analysis of eccentric orifice plate using ANSYS Fluent software

Numerical analysis of eccentric orifice plate using ANSYS Fluent software IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical analysis of eccentric orifice plate using ANSYS Fluent software To cite this article: D Zahariea 2016 IOP Conf. Ser.:

More information

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering MODIFICATIONS TO THE RUNNER BLADE TO IMPROVE OFF-DESIGN EFFICIENCIES OF HYDRAULIC TURBINES A Thesis

More information

00046 Term-End Examination June, 2015

00046 Term-End Examination June, 2015 No. of Printed Pages : 5 BIME-013 B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) 00046 Term-End Examination June, 2015 BIME-013 : TURBO MACHINES Time : 3 hours Maximum Marks : 70 Note : Answer any five

More information

CRHT VII. Design and CFD analysis of Pico- hydro Turgo turbine. Paper no. CRHT17-11

CRHT VII. Design and CFD analysis of Pico- hydro Turgo turbine. Paper no. CRHT17-11 Proceedings of the International Symposium on Current Research in Hydraulic Turbines CRHT VII April 04, 2016, Turbine Testing Lab, Kathmandu University, Dhulikhel, Nepal Paper no. CRHT17-11 Design and

More information

Flow simulation and efficiency hill chart prediction for a Propeller turbine

Flow simulation and efficiency hill chart prediction for a Propeller turbine IOP Conference Series: Earth and Environmental Science Flow simulation and efficiency hill chart prediction for a Propeller turbine To cite this article: T C Vu et al 2010 IOP Conf. Ser.: Earth Environ.

More information

Evaluating Performance of Steam Turbine using CFD

Evaluating Performance of Steam Turbine using CFD Evaluating Performance of Steam Turbine using CFD Sivakumar Pennaturu Department of Mechanical Engineering KL University, Vaddeswaram, Guntur,AP, India Dr P Issac prasad Department of Mechanical Engineering

More information

Principles of. Turbomachinery. Seppo A. Korpela. The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION

Principles of. Turbomachinery. Seppo A. Korpela. The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION Principles of Turbomachinery Seppo A. Korpela The Ohio State University WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Foreword xiii Acknowledgments xv 1 Introduction 1 1.1 Energy and fluid machines

More information

UNIT I FLUID PROPERTIES AND FLUID STATICS

UNIT I FLUID PROPERTIES AND FLUID STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM & HM (16CE112) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

More information

Hydraulic Resistance and Flow Pattern at Design and Off Design Flow Rates Among Axial Flow Machines

Hydraulic Resistance and Flow Pattern at Design and Off Design Flow Rates Among Axial Flow Machines Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1998 Hydraulic Resistance and Flow Pattern at Design and Off Design Flow Rates Among Axial

More information

Analysis of Uniformity and Energy Consumption in. Supermarket installed DurkeeSox Air Dispersion System. with PE Air Dispersion Model

Analysis of Uniformity and Energy Consumption in. Supermarket installed DurkeeSox Air Dispersion System. with PE Air Dispersion Model Analysis of Uniformity and Energy Consumption in Supermarket installed DurkeeSox Air Dispersion System with PE Air Dispersion Model Summary: Taking partial area of a large supermarket for example, to simulate

More information

NUMERICAL SIMULATION AND OPTIMIZATION OF SOLID-LIQUID TWO-PHASE FLOW IN A BACK-SWEPT AXIAL FLOW PUMP

NUMERICAL SIMULATION AND OPTIMIZATION OF SOLID-LIQUID TWO-PHASE FLOW IN A BACK-SWEPT AXIAL FLOW PUMP THERMAL SCIENCE, Year 2017, Vol. 21, No. 4, pp. 1751-1757 1751 NUMERICAL SIMULATION AND OPTIMIZATION OF SOLID-LIQUID TWO-PHASE FLOW IN A BACK-SWEPT AXIAL FLOW PUMP by De-Sheng ZHANG *, Qiang PAN, Hu ZHANG,

More information

Experience of an assessment of the vertical Francis hydroturbines vibration state at heads from 40 to 300 m

Experience of an assessment of the vertical Francis hydroturbines vibration state at heads from 40 to 300 m IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Experience of an assessment of the vertical Francis hydroturbines vibration state at heads from 40 to 300 m To cite this article:

More information

η P/ρ/ρg Then substituting for P and rearranging gives For a pump

η P/ρ/ρg Then substituting for P and rearranging gives For a pump Benha University College of Engineering at Benha Department of Mechanical Eng. Subject : Turbo machine Date20/5/2013 Model Answer of the Final Exam Elaborated by: Dr. Mohamed Elsharnoby المادة : أالت تربينية

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 232 Numerical Simulation for Unsteady Flow Analysis of Kaplan Turbine Vaibhav Chandrakar 1, Dr. Ruchi Khare 2

More information

3- Hydropower. Energy conversion and hydropower principles

3- Hydropower. Energy conversion and hydropower principles 3- Hydropower The hydraulic power is one of the oldest energy sources of the mankind, namely for irrigation and industry. Nowadays, small hydro is one of the most valuable answers to the question of how

More information

= Guide angle = angle between direction of jet and direction of motion of vane/bucket.

= Guide angle = angle between direction of jet and direction of motion of vane/bucket. GEC223: FLUID MECHANICS MODULE 4: HYDROPOWER SYSTEMS TOPIC: IMPULSE TURBINES-PELTON WHEEL DEPARTMENT OF CIVIL ENGINEERING, LANDMARK UNIVERSITY, KWARA STATE, NIGERIA CONSTRUCTION AND WORKING OF A PELTON

More information

Three-Dimensional Numerical Simulation of a Model Wind Turbine

Three-Dimensional Numerical Simulation of a Model Wind Turbine Three-Dimensional Numerical Simulation of a Model Wind Turbine N. Tabatabaei 1, M.J. Cervantes 1,2, C. Trivedi 2, J-O Aidanpää 1 1 Luleå University of Technology, Sweden 2 Norwegian University of Science

More information

Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel

Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel IOP Conference Series: Earth and Environmental Science OPEN ACCESS Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel To cite this article: D Matsushita et

More information

(Refer Slide Time: 6: 22)

(Refer Slide Time: 6: 22) Fluid Machines. Professor Sankar Kumar Som. Department Of Mechanical Engineering. Indian Institute Of Technology Kharagpur. Lecture-17. Governing of Reaction Turbine. Good morning and welcome you all to

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R050210201 Set No. 1 II B.Tech I Semester Regular Examinations, November 2006 FLUID MECHANICS & HYDRAULIC MACHINERY (Electrical & Electronic Engineering) Time: 3 hours Max Marks: 80 Answer any

More information

(a) the inlet and exit vane angles, (b) work done (c) Efficiency of the system. [16]

(a) the inlet and exit vane angles, (b) work done (c) Efficiency of the system. [16] Code No: R05310302 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 HYDRAULIC MACHINERY AND SYSTEMS ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks:

More information

DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE

DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE DESIGN OPTIMISATION OF CONICAL DRAFT TUBE OF HYDRAULIC TURBINE Dr. Ruchi Khare, Dr. Vishnu Prasad, Mitrasen Verma Department of Civil Engineering M.A. National Institute of Technology Bhopal,India ruchif4@rediffmail.com

More information

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE`

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE` EXPERIMENTAL AND NUMERICAL INVESTIGATION OF CENTRIFUGAL PUMP PERFORMANCE IN REVERSE MODE` Jayendra B Patel 1, R.N.Mevada 2, Dheeraj Sardana 3, Vinod P. Rajput 4 1, 2, 3,4 Department of Mechanical Engineering,

More information

Method for experimental investigation of transient operation on Laval test stand for model size turbines

Method for experimental investigation of transient operation on Laval test stand for model size turbines IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Method for experimental investigation of transient operation on Laval test stand for model size turbines To cite this article: R

More information

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps

Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps Computational Fluid Dynamic Analysis in De-staging of Centrifugal Pumps Vishnu R Nair 1, Shinas K V 2, Souganth Sugathan Manjhiparambil 3 Student, Department of Mechanical Engineering, IES College of Engineering,

More information

Development of Design Tool for Low-Head Francis Turbine. * Corresponding author

Development of Design Tool for Low-Head Francis Turbine. * Corresponding author Proceedings of the International Symposium on Current Research in Hydraulic Turbines CRHT VI March 14, 2016, Turbine Testing Lab, Kathmandu University, Dhulikhel, Nepal Paper no. CRHT2016-20 Development

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310302 Set No. 1 III B.Tech I Semester Regular Examinations, November 2008 HYDRAULIC MACHINERY AND SYSTEMS ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks:

More information

Download From:

Download From: Fluid Mechanics 1. A single acting reciprocating pump, running at 60 r.p.m, delivers 0.01 m2/sec of water. The area of the piston is0.05m2 and stroke length is 40 cm. Then theoretical discharge of the

More information

Study on Characteristics of Special Turbine in Hydrodynamic Cooling Tower

Study on Characteristics of Special Turbine in Hydrodynamic Cooling Tower Research Journal of Applied Sciences, Engineering and Technology 4(21): 4432-4437, 212 ISSN: 24-7467 Maxwell Scientific Organization, 212 Submitted: May 1, 212 Accepted: June 15, 212 Published: November

More information

Design and Simulation of Very Low Head Axial Hydraulic Turbine with Variation of Swirl Velocity Criterion

Design and Simulation of Very Low Head Axial Hydraulic Turbine with Variation of Swirl Velocity Criterion International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/ijfms.2014.7.2.068 Vol. 7, No. 2, April-June 2014 ISSN (Online): 1882-9554 Original Paper (Invited) Design and Simulation

More information

Research on Stabilization of Blade Vibration of Wind Turbine Based on Intelligent Control Theory

Research on Stabilization of Blade Vibration of Wind Turbine Based on Intelligent Control Theory , pp.83-88 http://dx.doi.org/10.14257/astl.2015.83.16 Research on Stabilization of Blade Vibration of Wind Turbine Based on Intelligent Control Theory Shu Liu 1, Minghao Zhang 2, Zisong Xiao 3, Zhiyou

More information

International Journal of Scientific and Research Publications, Volume 8, Issue 8, August ISSN

International Journal of Scientific and Research Publications, Volume 8, Issue 8, August ISSN International Journal of Scientific and Research Publications, Volume 8, Issue 8, August 2018 314 Flow Analysis of Turgo Impulse Turbine for Low Head Power Plant Hnin Hnin Ei *, Myat Myat Soe ** * Department

More information

Ejectors in a Compressible Network for Gas Turbine Extended Operability

Ejectors in a Compressible Network for Gas Turbine Extended Operability Ejectors in a Compressible Network for Gas Turbine Extended Operability Stefano Rossin, Debora Sassetti GE Oil & Gas, Via Felice Matteucci 2, Florence, Italy Email: stefano.rossin@ge.com; debora.sassetti@ge.com

More information

Design and Optimization of Downhole Oil-water Separation System for High Volume in Oil Recovery

Design and Optimization of Downhole Oil-water Separation System for High Volume in Oil Recovery Sensors & Transducers 13 by IFSA http://www.sensorsportal.com Design and Optimization of Downhole Oil-water Separation System for High Volume in Oil Recovery Tingjun Yan, Haoqiang Ti, Ri Cui College of

More information

Blade number effect for a ducted wind turbine

Blade number effect for a ducted wind turbine Journal of Mechanical Science and Technology (8) 984~99 Journal of Mechanical Science and Technology www.springerlink.com/content/738-494x DOI.7/s6-8-743-8 Blade number effect for a ducted wind turbine

More information

An Experience with Simulation Modelling for Radial Flow Pump

An Experience with Simulation Modelling for Radial Flow Pump International Journal of Emerging Engineering Research and Technology Volume 3, Issue 11, November 2015, PP 23-28 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) An Experience with Simulation Modelling

More information

1033. Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station

1033. Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station 1033. Effects of guide vane thickness on pressure pulsation of mixed-flow pump in pumped-storage power station Wei Li, Weidong Shi, Yandong Xu, Ling Zhou, Pingping Zou 1033. EFFECTS OF GUIDE VANE THICKNESS

More information

Numerical Investigation of the Air Flow in a Novel PV-Trombe Wall Based on CFD Method

Numerical Investigation of the Air Flow in a Novel PV-Trombe Wall Based on CFD Method 1489 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

RRB TECHNICAL EXAM QUESTIONS

RRB TECHNICAL EXAM QUESTIONS RRB TECHNICAL EXAM QUESTIONS Fluid Mechanics 1. A single acting reciprocating pump, running at 60 r.p.m, delivers 0.01 m2/sec of water. The area of the piston is0.05m2 and stroke length is 40 cm. Then

More information

CFD Investigation on Long-Haul Passenger Bus

CFD Investigation on Long-Haul Passenger Bus IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS CFD Investigation on Long-Haul Passenger Bus To cite this article: C F Tan et al 2015 IOP Conf. Ser.: Mater. Sci. Eng. 88 012025

More information

Hydraulics Laboratory Experiment Report

Hydraulics Laboratory Experiment Report Hydraulics Laboratory Experiment Report Name: Ahmed Essam Mansour Section: Title: "1", Monday 2-5 pm Centrifugal Pumps Date: 27 November, 2006 Objectives: To study the performance of a centrifugal pumps

More information

A New Analytical Approach to Improving the Aerodynamic Performance of the Gyromill Wind Turbine

A New Analytical Approach to Improving the Aerodynamic Performance of the Gyromill Wind Turbine A New Analytical Approach to Improving the Aerodynamic Performance of the Gyromill Wind Turbine Eiji Ejiri 1,*, Tomoya Iwadate 2 1 Department of Mechanical Science and Engineering, Chiba Institute of Technology,

More information

DESIGN OF A PELTON WHEEL TURBINE FOR A MICRO HYDRO POWER PLANT

DESIGN OF A PELTON WHEEL TURBINE FOR A MICRO HYDRO POWER PLANT DESIGN OF A PELTON WHEEL TURBINE FOR A MICRO HYDRO POWER PLANT Manjunatha N 1, Kuldeepak Kumar 2, Dr. Thammaih Gowda 3 1, 2 Assistant Professor, Dept. of Mechanical Engineering, N.D.R.K.I.T, Hassan, Karnataka

More information

NUMERICAL MODELING AND INVESTIGATION OF HYDROKINETIC TURBINE WITH ADDITIONAL STEERING BLADE USING CFD

NUMERICAL MODELING AND INVESTIGATION OF HYDROKINETIC TURBINE WITH ADDITIONAL STEERING BLADE USING CFD NUMERICAL MODELING AND INVESTIGATION OF HYDROKINETIC TURBINE WITH ADDITIONAL STEERING BLADE USING CFD Rudy Soenoko, Putu Hadi Setyarini and Femiana Gapsari Mechanical Engineering Department, Engineering

More information

Study of a Supercritical CO 2 Turbine with TIT of 1350 K for Brayton Cycle with 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane

Study of a Supercritical CO 2 Turbine with TIT of 1350 K for Brayton Cycle with 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane Study of a Supercritical CO 2 Turbine with TIT of 1350 K for Brayton Cycle with 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane Joshua Schmitt, Rachel Willis, David Amos, Jay Kapat Center for

More information

EXERGY LOSS ANALYSIS OF THE REGENERATOR IN A SOLAR STIRLING ENGINE

EXERGY LOSS ANALYSIS OF THE REGENERATOR IN A SOLAR STIRLING ENGINE S729 EXERGY LOSS ANALYSIS OF THE REGENERATOR IN A SOLAR STIRLING ENGINE by Wenlian YE a, b, Zhe YANG a, and Yingwen LIU a* a Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy

More information

Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics

Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics Development in Performance of Impeller used in Centrifugal Pump by using Computational Fluid Dynamics Nilesh N Patil Student Department Mechanical of Engineering D.K.T.E S Textile and Engineering Institute,

More information

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257. Fluid Dynamics. Answer FOUR out of SIX questions

SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257. Fluid Dynamics. Answer FOUR out of SIX questions s SCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 1 EXAMINATIONS 2014/2015 ME257 Fluid Dynamics Time allowed: TWO hours Answer: Answer FOUR out of SIX questions Items permitted: Any approved

More information

Simulation and Design of Mixing Mechanism in Fertilizer Automated Proportioning Equipment Based on Pro/E and CFD

Simulation and Design of Mixing Mechanism in Fertilizer Automated Proportioning Equipment Based on Pro/E and CFD Simulation and Design of Mixing Mechanism in Fertilizer Automated Proportioning Equipment Based on Pro/E and CFD Liming Chen and Liming Xu * College of Engineering, China Agricultural University, 17 Tsinghua

More information

Fabrication and Installation of Mini Kaplan Turbine

Fabrication and Installation of Mini Kaplan Turbine Fabrication and Installation of Mini Kaplan Turbine Sasidhar Gurugubelli 1, Chandu Gummalla 2, Prasanth Gunipalli 3, Venkatesh balasa 4, Md Shafi 5 1 Assistant professor, lendi institute of engineering

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING CE6451-FLUID MECHANICS AND MACHINERY UNIT- I: FLUID PROPERTIES AND FLOW CHARACTERISTICS PART-A 1. Find the surface tension in a soap

More information

Advanced Electric Submersible Pump Design Tool for Geothermal Applications

Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Resources Council s 36 th Annual Meeting Reno, Nevada, USA September 30 October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist,

More information

CH 6.docx CH 1.docx CH 2.docx CH 3.docx CH 4.docx CH 5.docx

CH 6.docx CH 1.docx CH 2.docx CH 3.docx CH 4.docx CH 5.docx CH 6.docx CH 1.docx CH 2.docx CH 3.docx CH 4.docx CH 5.docx CH 6 MISCELLANEOUS MACHINES THEORY (1) With neat sketch explain construction and working of hydraulic torque Convertor [643] (2) Write short

More information

Study of flow through combustion swirler with the effect of diffuser on the recirculation zone

Study of flow through combustion swirler with the effect of diffuser on the recirculation zone International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 6 (September 2012), PP. 68-73 Study of flow through combustion swirler

More information

FLUID FLOW - PUMPS. Discharge Section. Section. Two main types of pumps: Positive Displacement pumps Centrifugal pumps.

FLUID FLOW - PUMPS. Discharge Section. Section. Two main types of pumps: Positive Displacement pumps Centrifugal pumps. FLUID FLOW - PUMPS 4 3 Control valve Suction Section Discharge Section Two main types of pumps: Positive Displacement pumps Centrifugal pumps ChE 453 - Design I FLUID FLOW - PUMP PERFORMANCE Mechanical

More information

Study on the Characteristic of External Conformal Turbine for Underwater Moving Body Measurement

Study on the Characteristic of External Conformal Turbine for Underwater Moving Body Measurement Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 2016 Paper No. HTFF 143 DOI: 10.11159/htff16.143 Study on the Characteristic

More information

Experimental study on performance of contra-rotating axial flow fan

Experimental study on performance of contra-rotating axial flow fan Int J Coal Sci Technol (2015) 2(3):232 236 DOI 10.1007/s40789-015-0073-2 Experimental study on performance of contra-rotating axial flow fan Shizhai Zhang 1 Received: 2 February 2015 / Revised: 2 June

More information