In-Situ Diagnostic Methods for SOFC G. Schiller, K.A. Friedrich, M. Lang, P. Metzger, N. Wagner

Size: px
Start display at page:

Download "In-Situ Diagnostic Methods for SOFC G. Schiller, K.A. Friedrich, M. Lang, P. Metzger, N. Wagner"

Transcription

1 In-Situ Diagnostic Methods for SOFC G. Schiller, K.A. Friedrich, M. Lang, P. Metzger, N. Wagner German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-48, D Stuttgart, Germany International Symposium on Diagnostic Tools for Fuel Cell Technologies, Trondheim, Norway, June 23-24, 2009

2 Outline Introduction Electrochemical Impedance Spectroscopy on Stacks Spatially Resolved Measurements: Current density Voltage Impedance Temperature Gas Composition Optical Spectroscopy X-Ray Tomography Conclusion

3 Investigation of Degradation and Cell Failures Insufficient understanding of cell degradation and cell failures in SOFC Extensive experimental experience is not generally available which would allow accurate analysis and improvements Long term experiments are demanding and expensive Only few tools and diagnostic methods available for developers due to the restrictions of the elevated temperatures

4 Conventional Test Stand Diagnostics Conventional test stand diagnostics: provide important and essential information about fuel cell performance and behaviour: U(i) characteristics, OCV EIS on single cells Current interrupt methods Performance degradation with time U(t); i(t) Cell voltage distribution U stack = U 1 + U 2 + U 3. Pressure loss / Gas tighness test Gas utilization measurement Temperature distribution and control

5 Sophisticated (non-traditional) in-situ Diagnostics Electrochemical impedance spectroscopy on stacks Spatially resolved measuring techniques for current, voltage, temperature and gas composition Optical imaging Optical spectroscopy Acoustic emission detection X-ray tomography

6 Challenges for EIS for Stack Investigations Large areas (e.g. 100 cm 2 ) lead to high current and low impedances of about 1 mohm. Electrochemical processes appear at high frequencies (up to 100 khz) due to the high reaction rates at high temperatures. Stacks generally contain metallic components leading to high frequency disturbances. Contacting of all cells and sensing in specific cells does not account for the voltage distribution in the stack. The sensor wires are at high temperatures: an optimization of the measurement system is not possible during operation. Strong overlapping of electrode processes; evaluation with equivalent circuits can be inaccurate. For system with current > 40 A no commercial equipment available.

7 Mitigation of EIS Problems Reduction of the high frequency disturbances by optimization of the wiring of the electrical sensing of the SOFC stack. Variation of the operating conditions (gases, temperature) in order to determine the different impedances of the electrode processes Modeling of the spectra by an equivalent circuit. Development of advanced EIS equipment for high currents / high frequencies in corporation with instrument manufacturer (Zahner Elektrik GmbH).

8 Experimental Set-up for EIS Measurements of Stacks at DLR

9 Performance of the 5-Cell Short Stack at 750 C (5 H 2 +5 N 2 +3%H 2 O / 20 air (SLPM), 94 h) Cell 1-4 : 1.10 V Cell 5 : 1.05 V cell voltage U [V] 1,2 1,0 0,8 0,6 0,4 0,2 cell 5 (top) cell 4 cell 3 cell 2 cell 1 (bottom) 3,5V Pstack = 184 W FU = 37% Cell 5: 404 mw/cm² Cell 4: 476 mw/cm² Cell 3: 447 mw/cm² Cell 2: 472 mw/cm² Cell 1: 415 mw/cm² p power density p [mw/cm²] 0,0 CSZ05-DGF09-CT, 750 C 5H2+5N2+3%H2O / 20air (SLPM) 94h current density i [ma/cm²]

10 Nyquist Plot of one Cell of a 5-Cell Short Stack at Different Current Densities (750 C, 2.5 H N 2 / 20 air (SLPM), 142 h) Im Z [Ohmcm²] 1,25 1 0,75 0,5 0,25 0 ma/cm2 60 ma/cm2 120 ma/cm2 180 ma/cm2 240 ma/cm2 300 ma/cm2 360 ma/cm2 420 ma/cm2 Anode 80 Hz Cathode 6 Hz Gas Concentration 1 Hz 5-Zellen Short Stack [CSZ CT], cell 5 T=750 C, Zellfl. 84cm² 0-0,25 50mHz 0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2, khz cm cm 2-0,5 Re Z [Ohm*cm²]

11 Equivalent Circuit for the Fitting of the Impedance Spectra C dl (A) C N (A) C dl (C) R Z L R P (A) R N (A) R p (C) Anode Gas Concentration Ohmic Cathode Inductivity

12 Voltage Losses at one Cell of a 5-cell Short Stack at Different Current Densities (750 C, 2.5 H N 2 / 20 air (SLPM), 142 h) 1,2 CSZ CT, 750 C 2,5H2+2,5N2 / 21 Air (SLPM) cell 5, 142 h 100 cell voltage U [V] 1,0 0,8 0,6 0,4 U cell ΔU (Anode) ΔU (Cathode) ΔU (Gas Concentr.) ΔU (Ohm) U cell 700mV : 380 mw/cm 2 ΔU voltage loss [mv] 0,2 0,0 Contact resistances current density i [ma/cm²] 20 Polarisation resistances

13 Motivation Strong local variation of gas composition, temperature, current density Distribution of electrical and chemical potential dependent on local concentrations of reactants and products Reduced efficiency Temperature gradients Thermo mechanical stress Degradation of electrodes O 2 O 2 O 2 H 2 H 2 HO 2 HO 2

14 Measurement Setup for Segmented Cells 16 galvanically isolated segments Local and global i-v characteristics Local and global impedance measurements Local temperature measurements Local fuel concentrations Flexible design: substrate-, anode-, and electrolyte-supported cells Co- and counter-flow

15 Cell design and Testing Station GC measurement Assembly and contacts From a simple cell design with manually controlled features Flexible housing, impedance spectra with reduced interferences All cell concepts Improved contacting Reliable assembly Impedance measurement Temperature measurement

16 Schematic Lay-out of the Electrical Circuit of the Segmented Cell Configuration Internal cell resistances: Ri,j, current busbar equipotential line current busbar equipotential line Resistances of the wires contacting the anode: RLA,j Resistances of the wires contacting the cathode: RLK,j Only segments 1, 2, 3, 16 are illustrated

17 OCV Voltage Measurement for Determination of Humidity Voltage distribution at standard flow rates: 48.5% H 2, 48.5% N 2 + 3% H 2 O, 0.08 SlpM/cm² air fuel gas air U rev Nernst equation: U 0 rev RT zf ln p p H 2O O2 p H 2 Produced water: S4: 0.61%, S8: 0.72%, S12: 0.78%, S16: 3.30%

18 Variation of Load - Reformate p(i) 100 ma/cm² p(i) 200 ma/cm² p(i) 400 ma/cm² p(i) 435 ma/cm² fu 100 ma/cm² fu 200 ma/cm² fu 400 ma/cm² fu 435 ma/cm² 300,0 250, f u , ,0 power density p [mw/cm²] Power density mw/cm 2 200,0 150,0 100,0 50, ,0 45,0 30, ,0 fuel utilisation fu [%] Fuel utilisation (%) 0,0 Segment 9 Segment 10 Segment 11 Segment 12 Anode supported cell, LSCF cathode, 73,96 cm², gas concentrations (current density equivalent): 54.9% N 2, 16.7% H 2, 16.5% CO, 6,6% CH 4, 2.2% CO 2, 3.2% H 2 O (0.552 A/cm²), 0.02 SlpM/cm² air 0,0

19 0,3 Reformate: Changes of the Gas Composition at 0 ma/cm² H2 CO CH4 CO2 H2O 0,25 H 2 Concentration Gaskonzentration / % / % 0,2 0,15 0,1 0,05 CO H 2 O Metallic KS4X housing, anode in Metallischem substrate, Gehäuse; active area Substrat: Anodensubstrat, cm² Anode: aktive 542 Zellfläche:73,78 µm NiO/YSZ, cm²,a: Electrolyte: 542 µm NiO/YSZ, 14 µm YSZ E: 14 + µm YDC, YSZ + YDC, Cathode: 28 K: µm 28 µm LSCF LSCF, Kontaktierung: 30 µm LSP16+Pt3600, Operation Integral, Gasflüsse: conditions: 0, A/cm² A/cm² Stromdichteäquivalent - Anode = 5.52(54,9% N 2, 16,7% H 2, (54.9% 16,5% N CO, 6,6%CH 4, 2,2%CO 2, 3,2% H 2 0) // 0,08 SlpM/cm² Luft, 2, 16.7% H 2, 16.5% CO, 6.6% CH 4, 2.2% CO 2, 3.2% H 2 O 0.08 Nlpm/cm² Air, 800 C) 800 C, 0 ma/cm² CH 4 CO Segment 9 Segment 10 Segment 11 Segment 12

20 Alteration of the gas composition at 435 ma/cm² 0,3 H2 CO CH4 CO2 H2O 0,25 Concentration / % Gaskonzentration / % 0,2 0,15 0,1 CO H 2 H 2 O CO 2 0,05 CH Segment 9 Segment 10 Segment 11 Segment 12

21 Combined Experimental and Modeling Approach Objectives of the study: Better understanding of the local variations Identification of critical conditions Optimisation of cell components interconnector H 2 H 2 /CO CH 4 H 2 O CO 2 gas z anode electrolyte elyt elde cathode y O 2 /N 2 N 2 x interconnector Experiments on single segmented SOFC Electrochemical model of local distributions

22 Potential for Optical Spectroscopies a) In situ microscopy b) In situ Raman laser diagnostics Digital CCD camera Distance microscope (resolution1 µm) Quarz window Imaging spectrograph Heat & radiation shield Lenses/filter 15 cm Transparent flow field SOFC Pulsed Nd:YAG laser (532 nm, 10 ns) Raman spectroscopy Laser Doppler Anemometry (LDA) Particle Image Velocimetry (PIV) Fast-Fourier Infrared (FTIR) Coherent Anti-Stokes Raman Spectroscopy (CARS) Electronic Speckle Pattern Interferometry (ESPI) Open tube (5 mm)

23 Tomography Diagnosis of PEM Fuel Cells in-situ synchrotron radiography neutron tomography in-situ neutron radiography Investigation of water management under operating conditions

24 X-Ray Tomography (CT) Facility at DLR 3 dimensional non intrusive imaging of SOFC cassette X-Ray CT Facility v tome x L450 at DLR Stuttgart

25 Summary The operating conditions (elevated temperature) reduce significantly the possibilities for in-situ SOFC diagnostic methods. EIS will remain the main diagnostic probe of the state of SOFC. Non-traditional in-situ diagnostics methods can provide additional important information: Spatially resolved measurements to obtain local distribution of cell properties (current, voltage, impedance, gas composition, temperature) Combined analytical and modeling approach Large future potential for optical spectroscopies (e.g. Raman spectroscopy) and x-ray tomography.

Study of SOFC Operational Behavior by Applying Diagnostic Methods

Study of SOFC Operational Behavior by Applying Diagnostic Methods Study of SOFC Operational Behavior by Applying In-Situ Diagnostic Methods Günter Schiller, Wolfgang Bessler, Caroline Willich, K. Andreas Friedrich Deutsches Zentrum für Luft- und Raumfahrt, Institut für

More information

SOFC Development and Characterisation at DLR Stuttgart

SOFC Development and Characterisation at DLR Stuttgart SOFC Development and Characterisation at DLR Stuttgart G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics 2nd Indo-German Workshop on Fuel Cells and Hydrogen Energy, Karlsruhe,

More information

Spatially resolved measurement of SOFC by using segmented cells

Spatially resolved measurement of SOFC by using segmented cells Degradation mechanisms and advanced characterization and testing (II) Spatially resolved measurement of SOFC by using segmented cells P. Szabo German Aerospace Center (DLR) Pfaffenwaldring 38-40, D-70569

More information

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A.

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Wagner N., Schiller G., Friedrich K.A. Deutsches Zentrum für Luft- und Raumfahrt e.v. (DLR) Institut für

More information

Development of Nano-Structured Solid Oxide Fuel Cell Electrodes

Development of Nano-Structured Solid Oxide Fuel Cell Electrodes Development of Nano-Structured Solid Oxide Fuel Cell Electrodes G. Schiller, S.A. Ansar, M. Müller German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring 38-48, D-70569 Stuttgart,

More information

High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells

High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells G. Schiller, A. Ansar, O. Patz Deutsches Zentrum für Luft- und Raumfahrt (DLR) Pfaffenwaldring 38-4, D-7569 Stuttgart,

More information

Study of SOFC Stabilisation under Load Using EIS Analysis and Polarisation Curves

Study of SOFC Stabilisation under Load Using EIS Analysis and Polarisation Curves Department Of Mechanical Engineering Study of SOFC Stabilisation under Load Using EIS Analysis and Polarisation Curves Abdolkarim Sheikhansari (a.sheikhansari@sheffield.ac.uk) Jonathan Paragreen Simon

More information

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Norbert Wagner, Andreas K.

Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Norbert Wagner, Andreas K. Theory and Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Norbert Wagner, Andreas K. Friedrich German Aerospace Center, Institute for Technical Thermodynamics Pfaffenwaldring

More information

Current Activities on Solid Oxide Cells at DLR

Current Activities on Solid Oxide Cells at DLR Current Activities on Solid Oxide Cells at DLR Asif Ansar, Rémi Costa, Michael Hörlein, and Günter Schiller German Aerospace Center Institute of Engineering Thermodynamics Stuttgart, Germany Outline Brief

More information

FUEL CELL DIAGNOSTICS FOR AUTOMOTIVE APPLICATION

FUEL CELL DIAGNOSTICS FOR AUTOMOTIVE APPLICATION FUEL CELL DIAGNOSTICS FOR AUTOMOTIVE APPLICATION DR. SEBASTIAN KIRSCH, DR. MAREN RAMONA KIRCHHOFF 13TH INT. AVL SYMPOSIUM ON PROPULSION DIAGNOSTICS BADEN-BADEN 26.06.2018 ZOOMING INTO A FUEL CELL SYSTEM

More information

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering

Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering Development of LSCF: CGO Composite Cathodes for SOFCs by Suspension Spraying and Sintering R. Costa *, R. Spotorno, Z. Ilhan, A. Ansar German Aerospace Center, Institute of Technical Thermodynamics, Pfaffenwaldring

More information

Degradation behavior of PEMFC

Degradation behavior of PEMFC DLR.de Chart 1 Degradation behavior of PEMFC P. Gazdzicki, J. Mitzel, A. Dreizler, M. Schulze, K.A. Friedrich German Aerospace Center (DLR), Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40,

More information

On-line In-situ Diagnostics of Processes within PEM Fuel Cells by the Application of a Raman Fiber Technique

On-line In-situ Diagnostics of Processes within PEM Fuel Cells by the Application of a Raman Fiber Technique On-line In-situ Diagnostics of Processes within PEM Fuel Cells by the Application of a Raman Fiber Technique H. Bettermann, P. Fischer This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th

More information

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Hematite photoanode with gradient structure shows an unprecedentedly

More information

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application

Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Screen-printed La 0.1 Sr 0.9 TiO 3-δ - Ce 1-x Gd x O 2-δ anodes for SOFC application Elisa Mercadelli (1), A.Gondolini (1), G. Constantin (2,3), L. Dessemond (2,3), V. Yurkiv (4), R. Costa (4) and A. Sanson

More information

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte

Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Preparation and characterization of metal supported solid oxide fuel cells with screen-printed electrodes and thin-film electrolyte Feng HAN 1 *, Robert SEMERAD 2, Patric SZABO 1, Rémi COSTA 1 feng.han@dlr.de

More information

Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC

Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC Solid State Ionics 177 (2006) 2075 2079 www.elsevier.com/locate/ssi Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC Andreas O. Stoermer a,, Jennifer L.M. Rupp b, Ludwig J. Gauckler

More information

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa*, G. Schiller, K. A. Friedrich & R.Costa 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa*, G. Schiller, K. A.

More information

Application of advanced and non destructive testing in solid oxide fuel cells

Application of advanced and non destructive testing in solid oxide fuel cells Materials Science & Technology Application of advanced and non destructive testing in solid oxide fuel cells Peter Wyss, Erwin Hack Laboratory for Electronics/Metrology/Reliability Artur Braun, Lorenz

More information

Supporting information

Supporting information Supporting information Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers P. Lettenmeier 1, R. Wang 2, R. Abouatallah 2, B. Saruhan 3, O. Freitag 3, P. Gazdzicki 1, T. Morawietz

More information

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it?

Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? Accelerated Stress Tests in PEM Fuel Cells: What can we learn from it? D.P. Wilkinson 1,3, W. Merida 2,3 1 st Workshop : Durability and Degradation Issues in PEM Electrolysis Cells and its Components Fraunhofer

More information

In-situ laser-induced contamination monitoring using long-distance microscopy

In-situ laser-induced contamination monitoring using long-distance microscopy In-situ laser-induced contamination monitoring using long-distance microscopy Paul Wagner a, Helmut Schröder* a, Wolfgang Riede a a German Aerospace Center (DLR), Institute of Technical Physics, Pfaffenwaldring

More information

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions

Progress in the Understanding of PEFC Degradation related to Liquid Water interactions Progress in the Understanding of PEFC Degradation related to Liquid Water interactions K. Andreas Friedrich, German Aerospace Center (DLR), Institute of Technical Thermodynamics Outline Introduction to

More information

Zentrum für BrennstoffzellenTechnik GmbH Influence of operation strategies on the life time of PEM fuel cells

Zentrum für BrennstoffzellenTechnik GmbH Influence of operation strategies on the life time of PEM fuel cells Zentrum für BrennstoffzellenTechnik GmbH Influence of operation strategies on the life time of PEM fuel cells Dr.-Ing. Peter Beckhaus, head of group fuel cells and systems F-Cell, Stuttgart, 30.09.-02.10.2013

More information

Study of Current Interruptions in Direct-Methane Solid Oxide Fuel Cells Zach Patterson

Study of Current Interruptions in Direct-Methane Solid Oxide Fuel Cells Zach Patterson Study of Current Interruptions in Direct-Methane Solid Oxide Fuel Cells Zach Patterson The purpose of the summer project was to investigate the effects of repeated current interruptions on solid oxide

More information

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage

Christodoulos Chatzichristodoulou Technical University of Denmark, Department of Energy Conversion and Storage Fuel Cell & Hydrogen Technologies JP SP2: Catalyst and Electrodes Borovetz, Bulgaria June 2 nd and 3 rd 2014 The need for localized electrochemical measurements and the promise of Controlled Atmosphere

More information

Kinetic Characteristics of Different Materials used for Bolting Applications

Kinetic Characteristics of Different Materials used for Bolting Applications Kinetic Characteristics of Different Materials used for Bolting Applications Report Kinetic Characteristics of Different Materials used for Bolting Applications Overview One of the most common problems

More information

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells

Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Novel Mn 1.5 Co 1.5 O 4 spinel cathodes for intermediate temperature solid oxide fuel cells Huanying Liu, a, b Xuefeng Zhu, a * Mojie Cheng, c You Cong, a Weishen Yang a * a State Key Laboratory of Catalysis,

More information

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang

SOFC Powders and Unit Cell Research at NIMTE. Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang 595 10.1149/1.3205571 The Electrochemical Society SOFC Powders and Unit Cell Research at NIMTE Jian Xin Wang, Jing Shao, You Kun Tao, Wei Guo Wang Division of Fuel Cell and Energy Technology Ningbo Institute

More information

Poisoning of Solid Oxide Electrolysis Cells by Impurities

Poisoning of Solid Oxide Electrolysis Cells by Impurities Downloaded Sep 1 to 19.38.67.11. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp Journal of The Electrochemical Society, 157 1 1419-149 1 13-4651/1/157 1 /1419/11/$8.

More information

Fuel Cell Systems: an Introduction for the Chemical Engineer

Fuel Cell Systems: an Introduction for the Chemical Engineer Fuel Cell Systems: an Introduction for the Chemical Engineer Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the Chicago

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supplementary Information CO 2 -to-co Conversion on Layered Persovskite

More information

Characterization of ageing of solid electrolyte sensors by impedance spectroscopy

Characterization of ageing of solid electrolyte sensors by impedance spectroscopy D1.3 Characterization of ageing of solid electrolyte sensors by impedance spectroscopy J. Zosel 1, A. Solbach, D. Tuchtenhagen, C. Treu 3, H. Heelemann 3, F. Gerlach 1, K. Ahlborn 1, U. Guth 1, 1 Meinsberg

More information

Electrochemical characterization and performance evaluation

Electrochemical characterization and performance evaluation Electrochemical characterization and performance evaluation Mogens Mogensen Fuel Cells and Solid State Chemistry Risø National Laboratory Technical University of Denmark P.O. 49, DK-4000 Roskilde, Denmark

More information

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number )

METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number ) METSAPP Metal supported SOFC technology for stationary and mobile applications (GA number 278257) Niels Christiansen Topsoe Fuel Cell A/S Project & Partnership General Overview Metal supported SOFC technology

More information

Re-building Daniell Cell with a Li-Ion exchange Film

Re-building Daniell Cell with a Li-Ion exchange Film Supplementary Information Re-building Daniell Cell with a Li-Ion exchange Film Xiaoli Dong, Yonggang Wang*, Yongyao Xia Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative

More information

GENeric diagnosis Instrument for SOFC Systems (245128) Philippe MOÇOTÉGUY EIFER/Project Manager

GENeric diagnosis Instrument for SOFC Systems (245128) Philippe MOÇOTÉGUY EIFER/Project Manager GENeric diagnosis Instrument for SOFC Systems (245128) Philippe MOÇOTÉGUY EIFER/Project Manager Genius Partnership & Budget 3 years collaboration project: 01-02-2010 to 31-01-2013 Total budget: 3928 k

More information

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars

Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Experimental study assessment of mitigation of carbon formation on Ni/YSZ and Ni/CGO SOFC anodes operating on gasification syngas and tars Clean Coal Technologies Conference 2009 19 May 2009 Joshua Mermelstein

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4

R. Costa* 1, F. Han 1, P. Szabo 1, V. Yurkiv 2, R. Semerad 3, L.Dessemond 4 DLR.de Chart 1 Performances and limitations of metal supported cells with strontium titanate based fuel electrode: a step towards the next generation of solid oxide cells R. Costa* 1, F. Han 1, P. Szabo

More information

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells Final Report Reporting Period: October 1, 2004 to December 31, 2008 DOE Contract No.: DOE - DE-FC26-04NT42219 DOE Project Manager: Dr. Briggs White

More information

TRIBOCORROSION EVALUATION OF PROTECTIVE COATING

TRIBOCORROSION EVALUATION OF PROTECTIVE COATING TRIBOCORROSION EVALUATION OF PROTECTIVE COATING Prepared by Duanjie Li, PhD 6 Morgan, Ste156, Irvine CA 92618 P: 949.461.9292 F: 949.461.9232 nanovea.com Today's standard for tomorrow's materials. 2014

More information

Fundamentals of Electro-Chemistry, Electrochemical Kinetics & Solid State Chemistry

Fundamentals of Electro-Chemistry, Electrochemical Kinetics & Solid State Chemistry Mitglied der Helmholtz-Gemeinschaft Joint European Summer School for Fuel Cell and Hydrogen Technology Viterbo, Italy August 22nd 2011 Introduction to SOFC Technologies Fundamentals of Electro-Chemistry,

More information

Electro-catalysts for Hydrogen Production from Ethanol for Use in SOFC Anodes

Electro-catalysts for Hydrogen Production from Ethanol for Use in SOFC Anodes Electro-catalysts for Hydrogen Production from Ethanol for Use in SOFC Anodes M.A. da Silva, R. da Paz Fiuza, B.C. Guedes, L.A. Pontes, J.S. Boaventura This document appeared in Detlef Stolten, Thomas

More information

EVALUATION OF INTERCONNECT ALLOYS AND CATHODE CONTACT COATINGS FOR SOFC STACKS

EVALUATION OF INTERCONNECT ALLOYS AND CATHODE CONTACT COATINGS FOR SOFC STACKS ECN-RX--05-084 EVALUATION OF INTERCONNECT ALLOYS AND CATHODE CONTACT COATINGS FOR SOFC STACKS Nico Dekker and Bert Rietveld (ECN), Joachim Laatsch and Frank Tietz (Forschungszentrum Jülich, Germany) Published

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

Testing SOFCs with Blends of Hydrogen and Methane

Testing SOFCs with Blends of Hydrogen and Methane Testing SOFCs with Blends of Hydrogen and Methane Gerhard Buchinger 1,2, Thomas Raab 1, Stefan Griesser 1, Vincent Lawlor 1, Jürgen Kraut 3, Renate Hiesgen 3, Dieter Meissner 1 1 Upper Austrian University

More information

Development of Composite Bipolar Plates for PEMFC

Development of Composite Bipolar Plates for PEMFC Development of Composite Bipolar Plates for PEMFC 1. Introduction Polymer electrolyte membrane fuel cell (PEMFC) is a very promising power source for residential and mobile applications with its favorable

More information

2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece

2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece Overview of the FP7 Project Results and Recommendations K. Andreas Friedrich 2 nd International Workshop on Degradation Issues of Fuel Cells Thessaloniki, Greece Degradation Workshop, Thessaloniki, 21

More information

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL

VISUALIZATION STUDY OF CATHODE FLOODING WITH DIFFERENT OPERATING CONDITIONS IN A PEM UNIT FUEL CELL Proceedings of FUELCELL2005 Third International Conference on Fuel Cell Science, Engineering and Technology May 23-25, 2005, Ypsilanti, Michigan FUELCELL2005-74113 VISUALIZATION STUDY OF CATHODE FLOODING

More information

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers 1> Titanium coatings - A73 > A. S. Gago et al. ECFC 213 > July 4, 213 Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolysers A. S. Gago, A. S. Ansar, N. Wagner, J. Arnold,

More information

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers

Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers 1 > Titanium coatings - ise13147 > A. S. Gago et al. ISE 213 > September 9, 213 Titanium coatings deposited by thermal spraying for bipolar plates of PEM electrolyzers A. S. Gago, A. S. Ansar, N. Wagner,

More information

Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units. NEXT ENERGY EWE Forschungszentrum für Energietechnologie e.v.

Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units. NEXT ENERGY EWE Forschungszentrum für Energietechnologie e.v. FCH JU Grant Agreement number: 325262 Project acronym: CISTEM Project title: Construction of Improved HT-PEM MEAs and Stacks for Long Term Stable Modular CHP Units Work package: 2 - Materials beyond State

More information

How initial nucleation influences discharge capacities of Li-O 2 cells

How initial nucleation influences discharge capacities of Li-O 2 cells How initial nucleation influences discharge capacities of Li-O 2 cells Ali Rinaldi 1, Olivia Wijaya 1, Denis Yu 2, Harry.E. Hoster 1 1TUM CREATE Centre for Electromobility #10-02 CREATE Tower, Singapore

More information

Impedance Behavior of LSCF/YDC/LSCF Symmetrical Half Cell Prepared by Plasma Spray

Impedance Behavior of LSCF/YDC/LSCF Symmetrical Half Cell Prepared by Plasma Spray Impedance Behavior of /YDC/ Symmetrical Half Cell Prepared by Plasma Spray Z. Stoynov 1, D. Vladikova 1, G. Raikova 1*, D. Soysal 2, Z. Ilhan 2, S. Ansar 2 1 Institute of Electrochemistry and Energy Systems

More information

CHARACTERIZATION OF AUTOMOTIVE FUEL CELLS

CHARACTERIZATION OF AUTOMOTIVE FUEL CELLS CHARACTERIZATION OF AUTOMOTIVE FUEL CELLS Dietmar Gerteisen, Ulf Groos, Stefan Keller, Nada Zamel Fraunhofer-Institut für Solare Energiesysteme ISE October 7th, 2014 F-Cell 2014, Stuttgart www.h2-ise.de

More information

Application Note. Application Note. Electrochemical Impedance Spectroscopy - A Battery Monitoring and Fault Diagnostic Tool Introduction

Application Note. Application Note. Electrochemical Impedance Spectroscopy - A Battery Monitoring and Fault Diagnostic Tool Introduction Application Note Electrochemical Impedance Spectroscopy - A Battery Monitoring and Fault Diagnostic Tool Introduction Application Note Integration of new battery technologies for portable devices and automotive

More information

X-ray and Electrochemical Impedance Spectroscopy Diagnostic. Investigations of Liquid Water in Polymer Electrolyte Membrane

X-ray and Electrochemical Impedance Spectroscopy Diagnostic. Investigations of Liquid Water in Polymer Electrolyte Membrane X-ray and Electrochemical Impedance Spectroscopy Diagnostic Investigations of Liquid Water in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers by Patrick Antonacci A thesis submitted in conformity

More information

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method Journal of the Korean Ceramic Society Vol. 53, No. 5, pp. 478~482, 2016. http://dx.doi.org/10.4191/kcers.2016.53.5.478 Review A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining

More information

Galvanic corrosion evaluation of 6061 aluminum coupled to CVD coated stainless steel Elizabeth Sikora and Barbara Shaw 6/9/2016

Galvanic corrosion evaluation of 6061 aluminum coupled to CVD coated stainless steel Elizabeth Sikora and Barbara Shaw 6/9/2016 SHAW AND ASSOCIATES CONSULTING Galvanic corrosion evaluation of 6061 aluminum coupled to CVD coated stainless steel Elizabeth Sikora and Barbara Shaw 6/9/2016 Evaluation of galvanic corrosion of aluminum

More information

Effect of Precorrosion and Temperature on the Formation Rate of Iron Carbonate Film

Effect of Precorrosion and Temperature on the Formation Rate of Iron Carbonate Film 7th Pipeline Technology Conference 2012 Effect of Precorrosion and Temperature on the Formation Rate of Iron Carbonate Film Winia Farida a,b, Tor Hemmingsen b, Tonje Berntsen b,c, Patrick Rabindran a a

More information

Electrochemical Impedance Studies of SOFC Cathodes

Electrochemical Impedance Studies of SOFC Cathodes Downloaded from orbit.dtu.dk on: Jul 02, 2018 Electrochemical Impedance Studies of SOFC Cathodes Hjelm, Johan; Søgaard, Martin; Wandel, Marie; Mogensen, Mogens Bjerg; Menon, Mohan; Hagen, Anke Published

More information

Nitrogen-Doped Graphdiyne Applied for Lithium-

Nitrogen-Doped Graphdiyne Applied for Lithium- Supporting Information for Nitrogen-Doped Graphdiyne Applied for Lithium- Ion Storage Shengliang Zhang,, Huiping Du,, Jianjiang He,, Changshui Huang,*, Huibiao Liu, Guanglei Cui and Yuliang Li Qingdao

More information

High Temperature Fuel Cells (SOFC) Status

High Temperature Fuel Cells (SOFC) Status High Temperature Fuel Cells (SOFC) Status Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory Roskilde, Denmark 2 nd International Hydrogen Train and Hydrail Conference,

More information

SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS

SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS ECN-RX--05-083 SOLID OXIDE FUEL CELL PERFORMANCE UNDER SEVERE OPERATING CONDITIONS Søren Koch, Peter Vang Hendriksen and Mogens Mogensen (Risø National Laboratory, Denmark), Nico Dekker and Bert Rietveld

More information

An Electricity and Value-added Gases Co-generation via Solid Oxide Fuel Cells

An Electricity and Value-added Gases Co-generation via Solid Oxide Fuel Cells Paper # 070MI-0012 Topic: Microcombustion and New Combustion Devices 8 th U. S. National Combustion Meeting Organized by the Western States Section of the Combustion Institute and hosted by the University

More information

Designing and Building Fuel Cells

Designing and Building Fuel Cells Designing and Building Fuel Cells Colleen Spiegel Me Grauv Hill NewYork Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Foreword xii Chapter

More information

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance

Chapter 7. Evaluation of Electrode Performance by. Electrochemical Impedance Chapter 7 Evaluation of Electrode Performance by Electrochemical Impedance Spectroscopy (EIS) 7.1 Introduction A significant fraction of internal resistance of a cell comes from the interfacial polarization

More information

Analysis of individual PEM fuel cell operating parameters for design of optimal measurement and control instrumentation. Davor Živko 1, Vedran Bilas 2

Analysis of individual PEM fuel cell operating parameters for design of optimal measurement and control instrumentation. Davor Živko 1, Vedran Bilas 2 Analysis of individual PEM fuel cell operating parameters for design of optimal measurement and control instrumentation Davor Živko 1, Vedran Bilas 1 Koncar Electrical Engineering Institute, Fallerovo

More information

Iron Cation Contamination Effect on the Performance and Lifetime of the MEA

Iron Cation Contamination Effect on the Performance and Lifetime of the MEA Iron Cation Contamination Effect on the Performance and Lifetime of the MEA Dr Ahmad El-kharouf Centre for Hydrogen and Fuel Cells Research www.fuelcells.bham.ac.uk Hydrogen Days 2016, Prague Content Motivation

More information

Lignite as a fuel for direct carbon solid oxide fuel cell

Lignite as a fuel for direct carbon solid oxide fuel cell Lignite as a fuel for direct carbon solid oxide fuel cell Janusz Jewulski, Marek Skrzypkiewicz, Michał Struzik, Iwona Lubarska-Radziejewska Institute of Power Engineering Fuel Cell Department Augustowka

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Surface graphited carbon scaffold enables simple

More information

Supporting Information

Supporting Information Supporting Information Garnet electrolyte with an ultra-low interfacial resistance for Li-metal batteries Yutao Li, Xi Chen, Andrei Dolocan, Zhiming Cui, Sen Xin, Leigang Xue, Henghui Xu, Kyusung Park,

More information

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER

Josef Schefold, 21/09/17. Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER Josef Schefold, 21/09/17 Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER 1 Steam electrolysis with electrolyte supported solid oxide cell (SOC) Cell SOC

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information An amorphous material with sponge-like structure as anode for Liion and

More information

WDX Studies on Ceramic Diffusion Barrier Layers of Metal Supported SOECs

WDX Studies on Ceramic Diffusion Barrier Layers of Metal Supported SOECs Published in "Fuel Cells (2009): doi: 10.1002/fuce.200800118" which should be cited to refer to this work. WDX Studies on Ceramic Diffusion Barrier Layers of Metal Supported SOECs D. Wiedenmann 1,2 *,

More information

Element diffusion in SOFCs: multi-technique characterization approach

Element diffusion in SOFCs: multi-technique characterization approach Degradation mechanisms and advanced characterization and testing (II) Element diffusion in SOFCs: multi-technique characterization approach M. Morales 1, A. Slodczyk 1, A. Pesce 2, A. Tarancón 1, M. Torrell

More information

Investigations on Fatigue of Li-ion batteries

Investigations on Fatigue of Li-ion batteries Investigations on Fatigue of Li-ion batteries HELMUT EHRENBERG INSTITUTE FOR APPLIED MATERIALS ENERGY STORAGE SYSTEMS (IAM-ESS) KIT University of the State of Baden-Wuerttemberg and National Research Center

More information

Songwut Nirunsin 1, *, and Yottana Khunatorn 1

Songwut Nirunsin 1, *, and Yottana Khunatorn 1 The 23 rd Conference of the Mechanical Engineering Network of Thailand November 4 7, 29, Chiang Mai Quantification of Liquid Water Saturation in a Transparent Single-Serpentine Cathode Flow Channels of

More information

Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels

Development of Intermediate-Temperature Solid Oxide Fuel Cells for Direct Utilization of Hydrocarbon Fuels University of Pennsylvania ScholarlyCommons Departmental Papers (CBE) Department of Chemical & Biomolecular Engineering November 2004 Development of Intermediate-Temperature Solid Oxide Fuel Cells for

More information

Characteristic and efficiency of PEM fuel cell and PEM electrolyser

Characteristic and efficiency of PEM fuel cell and PEM electrolyser Related topics Electrolysis, electrode polarisation, decomposition voltage, galvanic elements, Faraday s law. Principle and task In a PEM electrolyser, the electrolyte consists of a protonconducting membrane

More information

Effects of On/Off Cycles on the Degradation of PEMFCs

Effects of On/Off Cycles on the Degradation of PEMFCs Effects of On/Off Cycles on the Degradation of PEMFCs Recently, it was reported that degradation of the MEAs could be attributed to chemical attack of hydrogen peroxide on Nafion membrane and ionomer in

More information

IN SITU X-RAY AND ELECTROCHEMICAL STUDIES OF SOLID OXIDE FUEL CELL / ELECTROLYZER OXYGEN ELECTRODES

IN SITU X-RAY AND ELECTROCHEMICAL STUDIES OF SOLID OXIDE FUEL CELL / ELECTROLYZER OXYGEN ELECTRODES IN SITU X-RAY AND ELECTROCHEMICAL STUDIES OF SOLID OXIDE FUEL CELL / ELECTROLYZER OXYGEN ELECTRODES Bilge Yildiz, Deborah J. Myers, J. David Carter, Kee-Chul Chang, and Hoydoo You Argonne National Laboratory

More information

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System)

Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) Characterization of the Corrosion Scenarios on the Trans-Canada Pipeline (Alberta System) (Interim Report: Dec. 20, 2005 - Feb. 28, 2006) P. Q. Wu, Z. Qin, and D. W. Shoesmith The University of Western

More information

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS

DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS REPORT OF THE FINAL PROJECT ENTITLED: DEVELOPMENT OF ELECTROLESS PROCESS FOR DEPOSITION OF ZN SILICATE COATINGS by Veeraraghavan S Basker Department of Chemical Engineering University of South Carolina

More information

FUEL CELL CHARGE TRANSPORT

FUEL CELL CHARGE TRANSPORT FUEL CELL CHARGE TRANSPORT M. OLIVIER marjorie.olivier@fpms.ac.be 19/05/2008 INTRODUCTION Charge transport completes the circuit in an electrochemical system, moving charges from the electrode where they

More information

Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs

Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs Downloaded from orbit.dtu.dk on: Jul 01, 2018 Effect of Humidity in Air on Performance and Long-Term Durability of SOFCs Hagen, Anke; Chen, Ming; Neufeld, Kai; Liu, Yi-Lin Published in: E C S Transactions

More information

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive Electronic Supplementary Information (ESI) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization Xiaoru Wen, a Dengsong

More information

Corrosion. Lab. of Energy Conversion & Storage Materials. Produced by K. B. Kim

Corrosion. Lab. of Energy Conversion & Storage Materials. Produced by K. B. Kim Corrosion 대기환경에의한금속소재 (organic film coated steel) 의퇴화현상평가연구 Lab. of Energy Conversion & Storage Materials Produced by K. B. Kim Introduction AC Impedance Spectroscopy Application of AC Impedance to Corrosion

More information

Fuel Cell Systems: an Introduction for the Engineer (and others)

Fuel Cell Systems: an Introduction for the Engineer (and others) Fuel Cell Systems: an Introduction for the Engineer (and others) Professor Donald J. Chmielewski Center for Electrochemical Science and Engineering Illinois Institute of Technology Presented to the E 3

More information

Fabrication of 1D Nickel Sulfide Nanocrystals with High

Fabrication of 1D Nickel Sulfide Nanocrystals with High Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Fabrication of 1D Nickel Sulfide Nanocrystals with High Capacitances and Remarkable Durability

More information

Neural network based control for PEM fuel cells

Neural network based control for PEM fuel cells IOSR Journal of Electronics & Communication Engineering (IOSR-JECE) ISSN(e) : 2278-1684 ISSN(p) : 2320-334X, PP 47-52 www.iosrjournals.org Neural network based control for PEM fuel cells Vinu.R 1, Dr.Varghese

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

SYNTHESIS AND ELECTRICAL PROPERTIES OF Sr 3 NiNb 2 O 9 MATERIALS FOR SOFCs

SYNTHESIS AND ELECTRICAL PROPERTIES OF Sr 3 NiNb 2 O 9 MATERIALS FOR SOFCs Journal of Ovonic Research Vol. 12, No. 2, March April 2016, p. 81-86 SYNTHESIS AND ELECTRICAL PROPERTIES OF MATERIALS FOR SOFCs Q. LI *, Z. P. LIU, R. YAN, L. M. DONG College of Materials Science and

More information

Fault Detection in Polymer Electrolyte Membrane Fuel Cells by Variable Behavior Analysis

Fault Detection in Polymer Electrolyte Membrane Fuel Cells by Variable Behavior Analysis Int. J. Mech. Eng. Autom. Volume 1, Number 3, 2014, pp. 182-192 Received: May 27, 2014; Published: September 25, 2014 International Journal of Mechanical Engineering and Automation Fault Detection in Polymer

More information

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ON THERMAL AGEING EVALUATION OF EPOXY COATING CONTAINING ZINC RICH PRIMER

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ON THERMAL AGEING EVALUATION OF EPOXY COATING CONTAINING ZINC RICH PRIMER ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ON THERMAL AGEING EVALUATION OF EPOXY COATING CONTAINING ZINC RICH PRIMER Zalilah Sharer 1, John Sykes 2 1 UTM-MPRC, Institute for Oil and Gas, Universiti Teknologi

More information

Fuel Cells. 1 Introduction. 2 Fuel cell thermodynamics. Grolik Benno,KoppJoachim. November, 29th Temperature effects

Fuel Cells. 1 Introduction. 2 Fuel cell thermodynamics. Grolik Benno,KoppJoachim. November, 29th Temperature effects Fuel Cells Grolik Benno,KoppJoachim November, 29th 23 1 Introduction In consideration of environmental problems and several energy crisis in the 2th century, much effort has been put into research on new

More information

HIGH PRESSURE CO 2 CORROSION ELECTROCHEMISTRY AND THE EFFECT OF ACETIC ACID

HIGH PRESSURE CO 2 CORROSION ELECTROCHEMISTRY AND THE EFFECT OF ACETIC ACID HIGH PRESSURE CO 2 CORROSION ELECTROCHEMISTRY AND THE EFFECT OF ACETIC ACID Shihuai Wang, Keith George and Srdjan Nesic Institute for Corrosion and Multiphase Technology Ohio University, Athens, OH 71

More information

MATERIAL CHALLENGES FOR PEM FUEL CELLS AND ELECTROLYSERS Degradation mitigation and cost reduction

MATERIAL CHALLENGES FOR PEM FUEL CELLS AND ELECTROLYSERS Degradation mitigation and cost reduction MATERIAL CHALLENGES FOR PEM FUEL CELLS AND ELECTROLYSERS Degradation mitigation and cost reduction Magnus Thomassen Senior Scientist, SINTEF Materials and Chemistry PEM fuel cell status and cost 2 https://www.hydrogen.energy.gov/pdfs/review15/fc018_james_2015_o.pdf

More information