Magnetic Resonance Angiography. Techniques, Indications and Practical Applications

Size: px
Start display at page:

Download "Magnetic Resonance Angiography. Techniques, Indications and Practical Applications"

Transcription

1

2

3 Magnetic Resonance Angiography Techniques, Indications and Practical Applications

4 G.Schneider M.R.Prince J.F.M.Meaney V.B.Ho (Eds) Magnetic Resonance Angiography Techniques, Indications and Practical Applications Foreword by E. J. Potchen

5 Günther Schneider Department of Diagnostic and Interventional Radiology Saarland University Hospital Homburg/Saar, Germany Martin R. Prince Departments of Radiology Weill Medical College of Cornell University and Columbia College of Physicians and Surgeons New York, USA James F. M. Meaney MRI Department St. James s Hospital Dublin, Ireland Vincent B. Ho and Radiological Sciences Uniformed Services University of the Health Sciences Bethesda, USA Anatomical drawings by Nadia Simeoni (Turin, Italy) ISBN Springer Milan Berlin Heidelberg New York Library of Congress Control Number: This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the Italian Copyright Law in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the Italian Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com Springer-Verlag Italia 2005 Printed in Italy The use of general descriptive names, registered names, trademarks,etc. in this publication does not imply, even in the absence of a speci.c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Cover design: Simona Colombo, Milan Typesetting: Compostudio, Cernusco s/n (Milan) Printing and binding: Arti Grafiche Nidasio, Assago (Milan)

6 Foreword Those of us involved in the development of magnetic resonance angiography (MRA) in the late 1980 s could hardly envision the routine application of MRA in every MR facility everyday. In those years there was spectacular development of many new MR clinical applications. Many pioneering researchers investigated various strategies exploiting the effects of blood flow on the MR signal to optimize clinical MRA. Remarkable successes were demonstrated in rapid succession. It is very alluring to attempt to catalogue the significant contributions in the founding of clinical MRA here, but that comprehensive effort is best relegated to the careful authors of history chapters in MRA books. The following are a few milestones from the early years of MRA development. The first research meeting devoted to Magnetic Resonance Angiography was hosted by Roberto Passariello in L Aquila, Italy in This meeting gave rise to formation of the MR Angio Club, which then held its first meeting at Michigan State University in Those were the days when three-dimensional phase contrast MRA would take some 19 hours from the time the patient entered the magnet until images could be seen: one hour to acquire the image and 18 hours of overnight image post processing. Seeing vasculature for the first time in 3D display is when we all realized the future potential clinical utility of MRA. Computational capabilities of modern equipment have reduced the delay to a few seconds. Post processing now has taken a more central role in the communication of enormous amounts of data with less cumbersome two- or three-dimensional projections. Many variations on the MRA theme have been presented over the ensuing 15 years. For example, Dennis Parker developed the 3D multi-slab time-of-flight MRA technique which remains in routine clinical use to this day. Pulse sequence design plays a major role in the continuing advancements in the field, most notably as a consequence of more sophisticated and novel k-space filling strategies. The work of Kent Yucel and Martin Prince at the Massachusetts General Hospital in 1992 brought gadolinium-enhanced MR angiography to clinical utility. The first-pass dynamic contrast-enhanced MRA method provides robust and reproducible imaging results that have propelled the adoption of MRA into wider clinical use. This advance reliably produced images of sufficient quality to replace invasive catheter-based x-ray contrast angiography for most diagnostic purposes. Now it is possible to acquire a high quality MR angiography study in seconds. The advent of very high field clinical scanners operating at 3.0 Tesla is now reinvigorating earlier non-contrast methods. 3.0 T MRA benefits from two key phenomena: (1) the signal to noise of 3.0 T is twice that of the 1.5 T, offering the opportunity to either increase the spatial resolution or to shorten scan times by up to a factor of four, and, (2) the longer T1 s of tissues at 3.0 T, ~20-40% higher than 1.5T, provides better background suppression, additional inflow enhancement, and improved contrast-to-noise. Magnetization transfer would normally be considered SAR prohibitive at 3.0 T, but novel pulse sequence design has overcome this challenge. The appropriate choice of imaging parameters can minimize artifacts and exploit T1 prolongation at higher fields for better quality MRA. The availability of scanners capable of parallel imaging along with growing availability of multi-channel coils is coincident with the arrival of these very high field scanners. The future potential is bright. Early results using these combined advancements for intracranial MRA yield spatial resolution exceeding invasive DSA and provide breathtaking visualization of small arteries such as the lenticulostriate vasculature. The efficiency of the parallel imaging approach will also compliment the quality of time resolved MR techniques.

7 VI Magnetic Resonance Angiography Where are we going from here? Highest on the cardiovascular unresolved diagnostic problem list is the localization and assessment of unstable plaques. Specifically designed contrast agent(s) targeted to a characteristic within the unstable plaque will comprise a Molecular MRA procedure. Clearly, the domain of MRA is embracing this pursuit. It is remarkable that, after 15 years, we are still searching for the MRA technique to completely assess atherosclerotic disease in the carotid artery. Insights into bifurcation disease drive the quest for ever higher spatial resolution and SNR to assess plaque structure and stability. In this regard, carotid MRA will require integrating the newly available technologies to achieve the necessary spatial resolution. Fusion MRA can refer to integrated multidimensional presentations of the MRA anatomy merged with other anatomical and functional modalities. We are now beginning to see presentations of MR and CT coronary angiography fused with PET myocardial perfusion images, or short-axis MR cardiac function images, or MR perfusion reserve images. Fusing MRA images to MRI, MR CSI, PET, nuclear medicine, and CT will be a direction that this field will take. How do we optimize the present value of this potential? The persistent need for comprehensive outcome studies for MRA endures.a persistent challenge, however, is that by the time these studies are completed, the best methods may well have changed. We, who are students of changing technologies and best practices, need to further develop methodologies to measure the merits of alternative diagnostic procedures. MRA has the probability of becoming the standard for future non-invasive technologies. This book presents an up-to-date treatise, a much needed presentation of the current practice of clinical MRA fully exploiting the benefits of dynamic contrast-enhanced MRA. I compliment Drs. Schneider, Prince, Meaney, and Ho on producing a definitive work on a rapidly moving target. This book provides the benchmark against which future MRA developments will be measured. E. James Potchen, M.D. Michigan State University, USA

8 Contents SECTION I Technical Background I.1. Unenhanced MR Angiography M. Backens, B. Schmitz I.2. Contrast-Enhanced MR Angiography: Theory and Technical Optimization V.B.Ho,W.R.Corse,J.H.Maki I.3. Time-resolved MR Angiography F. S. Pereles,V. B. Ho I.4. Image Processing in Contrast-Enhanced MR Angiography P. C. Douek, M. Hernández-Hoyos, M. Orkisz SECTION II Contrast Agents II. Contrast Agents for MR Angiography: Current Status and Future Perspectives M. V. Knopp, M. A. Kirchin SECTION III Head and Neck Vessels III.1. MR Angiography of Extracranial Carotid and Vertebral Arteries K. R. Maravilla, B. Chu III.2. Intracranial MR Angiography N. Anzalone, A. Tartaro SECTION IV Thorax IV.1. MR Angiography of the Thoracic Aorta G. Schneider IV.2. MR Angiography of the Pulmonary Vasculature J. P. Goldman SECTION V Coronary Arteries V. MR Angiography of the Coronary Arteries M.Y.Desai,M.Stuber

9 VIII Contents SECTION VI Abdomen VI.1. Contrast-Enhanced MR Angiography of the Abdominal Aorta P. C. Douek VI.2. MR Angiography of the Renal Arteries H. Zhang, S. Schoenberg, M. R. Prince VI.3. MR Angiography of the Mesenteric Arteries M. Goyen VI.4. MR Angiography of the Portal Venous System M. Goyen SECTION VII Peripheral Arteries VII.1. MR Angiography of Peripheral Arteries: Upper Extremities M. N. Wasser VII.2. MR Angiography of Peripheral Arteries: Lower Extremities J. F. M. Meaney VII.3. Pedal MR Angiography J. H. Maki VII.4. Whole Body 3D MR Angiography M. Goyen SECTION VIII MR Angiography in Pediatrics VIII. MR Angiography in Pediatric Patients P. Fries, R. Seidel, G. Schneider SECTION IX MR Venography IX. MR Venography S. G. Ruehm SECTION X Clinical Implications X. Impact of MR Angiography on Endovascular Therapy R. A. Lookstein SUBJECT INDEX

10 Contributors Nicoletta Anzalone Department of Neuroradiology Scientific Institute and University H. S. Raffaele Milan, Italy Martin Backens Centre for Radiology Work Group Magnetic Resonance Imaging Saarland University Hospital Homburg/Saar, Germany Baocheng Chu University of Washington Seattle, USA William R. Corse Doylestown Hospital Doylestown, USA Jeffrey P. Goldman Mount Sinai School of Medicine Dept. of Radiology New York, USA Mathias Goyen University Medical Center Hamburg-Eppendorf Hamburg, Germany Marcela Hernández-Hoyos CREATIS, CNRS Research Unit (UMR 5515) affiliated to INSERM Lyon, France Vincent B. Ho and Radiological Sciences Uniformed Services University of the Health Sciences Bethesda, USA Milind Y. Desai Departments of Medicine and Radiology Johns Hopkins University Baltimore, USA Philippe C. Douek CREATIS, CNRS Research Unit (UMR 5515) affiliated to INSERM Lyon, France Peter Fries Department of Diagnostic and Interventional Radiology Saarland University Hospital Homburg/Saar, Germany Robert A. Lookstein Division of Interventional Radiology Mount Sinai Medical Center New York, USA Miles A. Kirchin Worldwide Medical Affairs Bracco Imaging SpA Milan, Italy Michael V. Knopp Ohio State University Hospital Columbus, USA

11 X Contributors Jeffrey H. Maki University of Washington Seattle, USA Kenneth R. Maravilla University of Washington Seattle, USA James F. M. Meaney MRI Department St. James s Hospital Dublin, Ireland Maciej Orkisz CREATIS, CNRS Research Unit (UMR 5515) affiliated to INSERM Lyon, France F. Scott Pereles Feinberg School of Medicine Northwestern University Chicago, USA Martin R. Prince Departments of Radiology Weill Medical College of Cornell University and Columbia College of Physicians and Surgeons New York, USA Stefan G. Ruehm David Geffen School of Medicine at UCLA Los Angeles, USA Bernd Schmitz University Hospitals Ulm Ulm, Germany Günther Schneider Department of Diagnostic and Interventional Radiology Saarland University Hospital Homburg/Saar, Germany Stefan Schoenberg Institute of Clinical Radiology University Hospitals Grosshadern Munich, Germany Roland Seidel Department of Diagnostic and Interventional Radiology Saarland University Hospital Homburg/Saar, Germany Matthias Stuber Departments of Medicine, Radiology and Electrical Engineering Johns Hopkins University Baltimore, USA Armando Tartaro Department of Clinical Sciences and Bioimaging Section of Radiological Sciences G. D Annunzio Foundation University of Chieti (Pescara), Italy Martin N. Wasser Leiden University Medical Center Leiden, The Netherlands Honglei Zhang Weill Medical College of Cornell University New York, USA

12 SECTION I Technical Background

13 I.1 Unenhanced MR Angiography Martin Backens and Bernd Schmitz Introduction In conventional x-ray digital subtraction angiography (DSA), administration of contrast agent is necessary in order to depict blood vessels. After arterial catheterization and injection of an iodinated contrast agent, two-dimensional projection images of the lumen of the vessel are acquired from chosen angles. For every new projection this procedure has to be repeated. The availability of 3D rotational angiography and CT angiography may help to overcome this problem but at the expense of high radiation doses. Unenhanced MR angiography (MRA) differs from DSA and other angiographic techniques in that blood vessels are depicted non-invasively in the absence of contrast agent injection. Unenhanced MR techniques allow the acquisition of 3D datasets or stacks of 2D images that contain all vessels in the volume of interest. The acquired images included in the 3D data set are called source images. Projectional angiographic displays of the vessel are subsequently reconstructed from the data using the maximum intensity projection (MIP) postprocessing algorithm, which generates angiogram-like images from the entire dataset or a subset from any desired viewing angle without the need for further measurement. Another advantage of MRA versus x-ray angiography derives from the fact that extravascular tissue is depicted together with the vessels, thereby permitting the correlation of blood flow abnormalities with associated soft tissue pathologies (Table 1). Contrast in MR images depends principally on static tissue parameters: longitudinal relaxation time T1, transverse relaxation time T2, and proton density. In addition, the MR signal is sensitive to flow and movement which frequently leads to artifacts in MR imaging. MR angiographic sequences, however, use flow-induced signal variations to depict blood vessels or even to obtain quantitative information about blood flow in terms of velocity and direction. Unenhanced MRA comprises those MR techniques that rely solely on flow effects. Unlike contrast-enhanced MRA (CE MRA) and x-ray angiography, which depict the vessel lumen filled with contrast agent, it is just the movement of blood that is seen in the unenhanced MR-angiogram. Flow effects can be grouped into two fundamentally different categories: Amplitude effects (time-of-flight) Blood flowing into or out of a chosen slice has a different longitudinal magnetization compared to stationary spins, depending on the duration of stay (time-of-flight) in the slice. Phase effects Blood flowing along the direction of a magnetic field gradient is subject to changes of its transverse magnetization compared to stationary spins. In principle, both flow phenomena are effective simultaneously leading either to a decrease or an increase of the MR signal depending on the type of sequence used. Appropriate sequence techniques have been developed which emphasize one of the flow effects and suppress the other. Typically, MR angiography techniques are designed in such a way that flowing blood produces hyperintense signal while the background signal from stationary tissue remains largely suppressed ( bright-blood angiography). Alternatively, flowing spins can be Table 1. Advantages of MR angiography Advantages of MR angiography No ionizing radiation Non-invasive Any projection can be reconstructed from 3D datasets Depiction of extravascular tissue Flow quantification in terms of velocity and direction

14 4 Magnetic Resonance Angiography Table 2. Techniques of unenhanced MR angiography Time-of-Flight (TOF) angiography: Flow changes longitudinal magnetization Phase-contrast (PC) angiography: Flow changes transverse magnetization made to appear hypointense compared to the stationary background ( black-blood angiography). In the clinical setting bright-blood MRA is the more widely accepted of the two techniques. There are two approaches to performing bright-blood MRA: time-of-flight (TOF) and phase-contrast (PC) angiography (Table 2). Although intravenous contrast administration is not required in TOF and PC MRA, it can be applied in certain situations to improve vessel contrast. Since unenhanced MRA is based on complex flow phenomena, physiological conditions of flow in the vascular territory of interest are of major importance for the applicability of the method. Advantageous conditions are found especially in the vessels of the brain because of the nearly laminar flow in this territory. Moreover, flow is largely constant during the heart cycle (Fig. 1), making ECG triggering unnecessary for imaging of brain vessels. The high velocity of arterial flow ( cm/sec) provides good vessel-background contrast and moderate acquisition times. In clinical routine, unenhanced MRA has proven to be a robust and versatile method for non-invasively imaging of brain vessels (circle of wilis, sagittal sinus). In addition, this technique is also suitable for depicting extracranial carotid arteries and short segments of peripheral vessels (e.g. lower leg). A major limitation of unenhanced MRA, however, is a susceptibility to signal loss in areas of turbulent or very slow flow. In severe cases, this may lead to a misdiagnosis of the pathologic condition (stenosis, aneurysm). Additionally, TOF and PC angiography are highly sensitive to motion artifacts. Although motion artifacts often arise due to patient movement because of the need for relatively long acquisition times, they may also occur in areas of very pulsatile flow such as that occurring in the carotids, aorta, and especially, in the peripheral arteries, and in the thoracic and abdominal regions due to breathing and heart actions. Whereas ECG triggering may reduce or eliminate those artifacts associated with pulsatile flow, the availability of contrast-enhanced MR angiography (CE MRA) has largely made unenhanced MRA redundant for most vascular territories outside of the brain. However if unenhanced MRA techniques are performed, a thorough understanding of the underlying physical and technical mechanisms is prerequisite to performing imaging and to correctly interpreting the acquired angiograms. Understanding Flow Effects Outflow-related Signal Loss (washout effect, T2 flow void) When images are obtained with a spin-echo (SE) pulse sequence, blood flowing at a high velocity perpendicular to the imaging plane produces a weaker signal than the surrounding stationary tissue. This phenomenon is caused by the washout of flowing spins from the slice during the imaging process. Spin-echo techniques are characterized by a sequence of slice-selective 90 and 180 radio frequency (RF) pulses. Only those tissue components that are affected by both pulses can provide an MR signal. Moving material, such as blood in the vessels, flowing through the excited slice at a suffi- Fig. 1. Comparison of flow profiles in the external carotid artery (ECA), the internal carotid artery (ICA) and the middle cerebral artery (MCA). There is very pulsatile flow in the ECA. However, in the intracranial vessels, the variation of flow during heart cycle is much less pronounced [Courtesy of Steffi Behnke, MD, Dept. of Neurology, Saarland University Hospitals]

15 I.1 Unenhanced MRA 5 Fig. 2. In spin-echo sequences, blood flowing out of the measured slice in the time between 90 - and 180 -radiofrequency pulses leads to signal loss ciently high velocity, is affected by only one of these pulses, and therefore does not contribute to the MR signal. This is the so-called flow void (Fig. 2). The intensity of the vascular signal declines with decreasing slice thickness, s, increasing echo time, TE, increasing flow velocity, v. If the blood flow velocity is so high that all spins leave the slice between the 90 - and 180 pulses (v s/(te/2)), there will be no signal at all and the vessel will appear dark. Spins flowing within the imaging plane are not affected by this phenomenon. The washout effect is observed only for SE sequences and is most pronounced on T2- weighted imaging because of the long echo times used. With gradient-echo (GRE) techniques, the echo is refocused without a 180 pulse simply by reversing the imaging gradients. Since only one RF pulse is needed to form an echo, the washout effect does not occur. With standard SE sequences the washout effect provides valuable and reliable information about blood flow. The absence of a flow void on T2- weighted imaging should be considered as indicative of very slow flow or even occlusion of the vessel (Fig. 3). On the other hand, occlusion of the vessel can be excluded if a flow void is present. Fig. 3. Axial T2-weighted spin-echo image of the pons region. Left: Missing flow void in the basilar artery indicates thrombosis of the vessel. Right: After thrombolysis, the vessel (arrow) appears dark due to restored flow

Clinical Applications. ImagingRite. Interventional Radiology

Clinical Applications. ImagingRite. Interventional Radiology Clinical Applications ImagingRite Interventional Radiology ImagingRite, a comprehensive suite of imaging tools offered with Infinix -i angiographic systems, was designed to assist clinicians in optimizing

More information

PRINCIPLES OF CT AND MR IMAGING Marc-André d Anjou, DMV, DACVR Faculty of Veterinary Medicine, University of Montreal Saint-Hyacinthe, Quebec, Canada

PRINCIPLES OF CT AND MR IMAGING Marc-André d Anjou, DMV, DACVR Faculty of Veterinary Medicine, University of Montreal Saint-Hyacinthe, Quebec, Canada PRINCIPLES OF CT AND MR IMAGING Marc-André d Anjou, DMV, DACVR Faculty of Veterinary Medicine, University of Montreal Saint-Hyacinthe, Quebec, Canada CT and MR imaging offer superior diagnostic possibilities

More information

The Unique, New MRI Philips Ingenia 3 Tesla is now in Ayios Therissos! The first-ever digital broadband MR system has been installed in Ayios

The Unique, New MRI Philips Ingenia 3 Tesla is now in Ayios Therissos! The first-ever digital broadband MR system has been installed in Ayios The Unique, New MRI Philips Ingenia 3 Tesla is now in Ayios Therissos! The first-ever digital broadband MR system has been installed in Ayios Therissos-Nicosia that delivers crystal clear images, remarkable

More information

Power of BRANSIST safire in Neuroendovascular Therapy

Power of BRANSIST safire in Neuroendovascular Therapy Vascular Power of BRANSIST safire in Neuroendovascular Therapy Department of Radiology, Kinki University Hospital Suguru Ueda Mr. Suguru Ueda 1. Introduction Kinki University Hospital is located in the

More information

The first MR with IQ Philips Intera 1.5T With SmartExam

The first MR with IQ Philips Intera 1.5T With SmartExam The first MR with IQ Philips Intera 1.5T With SmartExam Smart Exam reproducibility 2 consistency, and efficiency Philips Intera 1.5T gives you the image quality, patient comfort and range of clinical applications

More information

Clinical Applications. ImagingRite. Neuro Intervention. 1 ImagingRite

Clinical Applications. ImagingRite. Neuro Intervention. 1 ImagingRite Clinical Applications ImagingRite Neuro Intervention 1 ImagingRite ImagingRite, a comprehensive suite of imaging tools offered with Infinix -i angiographic systems, was designed to assist clinicians in

More information

Time-resolved 4D TWIST MR angiography of congenital heart and vessel anomalies: image quality and added diagnostic value compared to 3D MRA

Time-resolved 4D TWIST MR angiography of congenital heart and vessel anomalies: image quality and added diagnostic value compared to 3D MRA Time-resolved 4D TWIST MR angiography of congenital heart and vessel anomalies: image quality and added diagnostic value compared to 3D MRA Poster No.: C-1663 Congress: ECR 2012 Type: Scientific Paper

More information

INTRODUCTION. Best Practices in MR Imaging: State-of-the-Art Protocols. 5th Edition. MR Protocols for GE Healthcare Scanners.

INTRODUCTION. Best Practices in MR Imaging: State-of-the-Art Protocols. 5th Edition. MR Protocols for GE Healthcare Scanners. INTRODUCTION These magnetic resonance (MR) protocols were developed by an expert consensus panel for use on General Electric (GE) MR imaging machines, and were developed for high-end platform scanners

More information

MAGNETIC RESONANCE IMAGING OF IN VIVO FLOW PHENOMENA

MAGNETIC RESONANCE IMAGING OF IN VIVO FLOW PHENOMENA MAGNETIC RESONANCE IMAGING OF IN VIVO FLOW PHENOMENA So far we have seen that magnetic resonance can Locate the positions of spins (mainly water) with the aid of one or multiple field gradient: MRI Characterize

More information

Emerging Applications and Trends Across Medical Imaging

Emerging Applications and Trends Across Medical Imaging MEDICAL DEVICES PHARMACEUTICALS CHEMICALS FOOD & BEVERAGE ELECTRONICS Emerging Applications and Trends Across Medical Imaging VPG Publications, Consulting, Clients www.vpgcorp.com VPG Market Research Reports

More information

The time has come. Philips GEMINI TF PET/CT with TruFlight technology

The time has come. Philips GEMINI TF PET/CT with TruFlight technology The time has come Philips GEMINI TF PET/CT with TruFlight technology TruFlight has arrived Time-of-flight technology has always held the promise of better PET imaging. But it took Philips to harness its

More information

Publication for the Philips MRI Community Issue 40 May 2010

Publication for the Philips MRI Community Issue 40 May 2010 FieldStrength Publication for the Philips MRI Community Issue 40 May 2010 MRI scanner at Manipal Hospital gets a new lease on life New coils and upgrade to release 12 bring Manipal Hospital s aging Intera

More information

Low-dose and High-resolution Cardiovascular Imaging with Revolution* CT

Low-dose and High-resolution Cardiovascular Imaging with Revolution* CT GE Healthcare Case study Low-dose and High-resolution Cardiovascular Imaging with Revolution* CT Jean-Louis Sablayrolles, M.D. Laurent Macron, M.D. Jacques Feignoux, M.D. Centre Cardiologique du Nord,

More information

Preclinical MRI. Solutions for Small Animal Imaging. Molecular Imaging

Preclinical MRI. Solutions for Small Animal Imaging. Molecular Imaging Preclinical MRI Solutions for Small Animal Imaging Molecular Imaging The Power of Imaging Applications Resolution Typical resolution in MRI is less than 200μm, to more than 20μm with 2D slices or full

More information

Clarity CT Technology

Clarity CT Technology Clarity CT Technology WHITE PAPER January 2013 Using state of the art algorithms Sapheneia Clarity CT allows physicians to lower radiation dose when acquiring CT data while maintaining image quality. The

More information

Interventional Radiology

Interventional Radiology Angiography Systems Interventional Radiology *Pictured system is INFX-8000C Unprecedented Flexibility and Integration. Today s radiology interventions require speed, flexibility and high performance. Canon

More information

Translational & Molecular Imaging Institute

Translational & Molecular Imaging Institute Translational & Molecular Imaging Institute tmii.mssm.edu Summer 2015 CARDIOVASCULAR IMAGING The Imaging Research Center is the backbone of the Translational & Molecular Imaging Institute at Mount Sinai

More information

Georg Will Powder Diffraction The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data

Georg Will Powder Diffraction The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data Georg Will Powder Diffraction The Rietveld Method and the Two Stage Method to Determine and Refine Crystal Structures from Powder Diffraction Data Georg Will Powder Diffraction The Rietveld Method and

More information

Magnetic Resonance Imaging at 7T in Glasgow. A unique opportunity!

Magnetic Resonance Imaging at 7T in Glasgow. A unique opportunity! Magnetic Resonance Imaging at 7T in Glasgow A unique opportunity! An NHS MR Physicist's perspective... What is different about 7T scanners? What has already been achieved? Imaging Centre of Excellence

More information

MR Cholangiopancreatography

MR Cholangiopancreatography MR Cholangiopancreatography Springer-Verlag Berlin Heidelberg GmbH P. Pavone. R. Passariello MR Cholangiopancreatography Techniques, Results, and Clinical Indications With the Collaboration of A. Laghi

More information

CQIE MRI PROCEDURES. American College of Radiology Clinical Research Center. Centers for Quantitative Imaging Excellence LEARNING MODULE

CQIE MRI PROCEDURES. American College of Radiology Clinical Research Center. Centers for Quantitative Imaging Excellence LEARNING MODULE Centers for Quantitative Imaging Excellence LEARNING MODULE CQIE MRI PROCEDURES American College of Radiology Clinical Research Center Imaging Core Laboratory v.2 Centers for Quantitative Imaging Excellence

More information

Marco Essig MD, Department of Radiology, German Cancer Research Center, Heidelberg, Germany.

Marco Essig MD, Department of Radiology, German Cancer Research Center, Heidelberg, Germany. What is new in contrast enhanced MRI Marco Essig MD, Department of Radiology, German Cancer Research Center, Heidelberg, Germany. Contact: m.essig@dkfz.de To improve sensitivity and specificity of MRI

More information

Computer-Aided Surgical Navigation Coding Guide Neurosurgery. May 1, 2009

Computer-Aided Surgical Navigation Coding Guide Neurosurgery. May 1, 2009 Computer-Aided Surgical Navigation Coding Guide Neurosurgery May 1, 2009 Please direct any questions to: Kim Brew Manager, Reimbursement and Therapy Access Medtronic Surgical Technologies (904) 279-7569

More information

Philips PET/CT Gemini GXL. Total performance. Total confidence.

Philips PET/CT Gemini GXL. Total performance. Total confidence. Philips PET/CT Gemini GXL Total performance. Total confidence. Gemini GXL The one for all. Healthcare isn t about to slow down. Your best bet? 2 Accelerate. All patients. All applications. All the time.

More information

CTA Throughout the Ages

CTA Throughout the Ages CTA Throughout the Ages Suhny Abbara, MD Associate Professor, Harvard Medical School Director of Education, Cardiac MRCT Program Director Cardiovascular Imaging Fellowship, Massachusetts General Hospital

More information

Balancing versatility and value Introducing Optima MR T

Balancing versatility and value Introducing Optima MR T GE Healthcare Balancing versatility and value Introducing Optima MR360 1.5T Optima MR360 1.5T Providing an innovative balance in MR You know what you need from an MR scanner. The new Optima MR360 is engineered

More information

Charles A Mistretta PhD

Charles A Mistretta PhD Charles A Mistretta PhD Digital Subtraction Angiography State of the Art Neuro-angiography Suite 1972 In 1980 only device capable of accessing the intracranial arteries 1 75 year old woman with Pcom aneurysm

More information

Angio PL.U.S. PLaneWave UltraSensitive TM ultrasound imaging. White Paper

Angio PL.U.S. PLaneWave UltraSensitive TM ultrasound imaging. White Paper White Paper Angio PL.U.S. PLaneWave UltraSensitive TM ultrasound imaging Jeremy Bercoff, Vice President of Product Management & Ultrasound Engineering Thomas Frappart, R&D Ultrasound Engineer Introduction

More information

To Whom It May Concern:

To Whom It May Concern: To Whom It May Concern: DeRoyal Foley Catheters with Temperature Sensors have been tested for safe use in magnetic resonance environments at 1.5 and 3.0 Tesla according to ASTM International F2052, Standard

More information

MAGNETOM Skyra: The Mannheim Perspective

MAGNETOM Skyra: The Mannheim Perspective MAGNETOM Skyra: The Mannheim Perspective Henrik J. Michaely; Stefan O. Schoenberg Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, University of Heidelberg, Germany

More information

Making Reliable Low-dose CT a Clinical Reality

Making Reliable Low-dose CT a Clinical Reality Making Reliable Low-dose CT a Clinical Reality By Ramakrishnan RS, MD, DNB, Consultant Radiologist 1 ; George Joseph, MD, DMRD, Consultant Radiologist 2 ; and Sundar RK, BSc, DRT, DAMIT, Clinical Applications

More information

Strategy and Organization of Corporate Banking

Strategy and Organization of Corporate Banking Strategy and Organization of Corporate Banking Giacomo De Laurentis (Editor) Strategy and Organization of Corporate Banking With 12 Figures and 49 Tables 4y Springer Professor Giacomo De Laurentis Institute

More information

Examples of component location and routing are shown on the next page:

Examples of component location and routing are shown on the next page: The Cleveland FES Center MetroHealth Medical Center Hamann Building Room 601 2500 MetroHealth Drive Cleveland, Ohio 44109 (216) 778-3480 (216) 778-4259 (fax) www.fescenter.org Memo To: Re: Whom it may

More information

Arterial Spin Labeling (ASL)

Arterial Spin Labeling (ASL) Arterial Spin Labeling (ASL) Imaging Seminars Series Stony Brook University, Health Science Center Stony Brook, NY - December 11 th, 2012 Francesca Zanderigo, PhD Layout BASIC PRINCIPLES ACQUISITION SEQUENCES

More information

Managing e-business Projects

Managing e-business Projects Managing e-business Projects Springer-Verlag Berlin Heidelberg GmbH Thomas Stoehr Managing e-business Projects 99 Key Success Factors With 37 Figures and 12 Tables Springer Thomas Stoehr Overbeckstr. 7

More information

Recent Advances in Endourology, 6 H. Kumon, M. Murai, S. Baba (Eds.) Endourooncology. New Horizons in Endourology

Recent Advances in Endourology, 6 H. Kumon, M. Murai, S. Baba (Eds.) Endourooncology. New Horizons in Endourology Recent Advances in Endourology, 6 H. Kumon, M. Murai, S. Baba (Eds.) Endourooncology New Horizons in Endourology Recent Advances in Endourology, 6 H. Kumon, M. Murai, S. Baba (Eds.) Endourooncology New

More information

Performance in CT SOMATOM Sensation

Performance in CT SOMATOM Sensation Performance in CT SOMATOM Sensation With the SOMATOM Sensation and z-sharp Technology, the future of volume imaging for cardiac and noncardiac applications has arrived. This scanner is the standard to

More information

Propel your imaging abilities into the future.

Propel your imaging abilities into the future. GE Healthcare Propel your imaging abilities into the future. SIGNA CREATOR Imagine what MR can be. Leap ahead and create your future in imaging. Meet SIGNA Creator, named for its ability to help you create

More information

GE Healthcare. PET/CT + MR Trimodality Imaging

GE Healthcare. PET/CT + MR Trimodality Imaging Unlocking new possibilities with PET/CT + MR 1 PET/CT MR PET/CT + MR The exquisite soft-tissue-contrast of 3.0T MR. The exceptional metabolic insight of PET imaging. The precise anatomical reference of

More information

Section: Magnetic Resonance Imaging

Section: Magnetic Resonance Imaging Section: Magnetic Resonance Imaging Available masters project: Cardiac shape modeling for automated wall motion analysis Overview One of the most popular segmentation methods in medical imaging is the

More information

Powerful MRI, Simplified. Innovation with Integrity. ICON, compact MRI system. Compact MRI

Powerful MRI, Simplified. Innovation with Integrity. ICON, compact MRI system. Compact MRI Powerful MRI, Simplified ICON, compact MRI system Innovation with Integrity Compact MRI Preclinical MRI with the ICON : Powerful insights, simplicity in operation Traditionally MRI technology has been

More information

Laser Surgery in Children

Laser Surgery in Children H.-P. Berlien P.-P. Schmittenbecher (Eds.) Laser Surgery in Children Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo H.-P. Berlien P. P.

More information

Optimize efficiency with a universal system.

Optimize efficiency with a universal system. wins www.siemens.com/artis-one Optimize efficiency with a universal system.. Designed around you. Answers for life. Consistently efficient. Improve your competitiveness by mastering the balancing act between

More information

The Cost-Benefit Calculus of CT Angiograms

The Cost-Benefit Calculus of CT Angiograms Transcript Details This is a transcript of an educational program accessible on the ReachMD network. Details about the program and additional media formats for the program are accessible by visiting: https://reachmd.com/programs/heart-matters/the-cost-benefit-calculus-of-ct-angiograms/4047/

More information

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Resident s Name: RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Rotation: PHYS 705: Clinical Rotation 3 Inclusive dates of rotation: Aug. 25, 2015 Feb. 25, 2016 Director or Associate

More information

Computed Tomography: Optimization of acquisition protocols & Justification of clinical referrals. Koos Geleijns, medical physicist

Computed Tomography: Optimization of acquisition protocols & Justification of clinical referrals. Koos Geleijns, medical physicist Computed Tomography: Optimization of acquisition protocols & Justification of clinical referrals Koos Geleijns, medical physicist CT delivers excellent 3D image quality CT delivers excellent 3D image quality

More information

I-class. All together a better way to work. MAGNETOM Avanto.

I-class. All together a better way to work. MAGNETOM Avanto. I-class. All together a better way to work. MAGNETOM Avanto www.siemens.com/medical Introducing I-class Innovative applications. Innovative workflow. Welcome to the next generation of MRI. Powered by innovative

More information

Imaging anytime, anywhere.

Imaging anytime, anywhere. Imaging anytime, anywhere. Vitrea Enterprise Suite Vitrea Enterprise Suite is Vital Images premier advanced visualization solution that provides clinical applications and data management systems, backed

More information

High quality and fast scanning with Compressed SENSE at KCH

High quality and fast scanning with Compressed SENSE at KCH FieldStrength MRI articles High quality and fast scanning with at KCH FieldStrength MRI magazine User experiences - November 2018 www.philips.com/fieldstrength At Kurashiki Central Hospital, use of resulted

More information

Abdominal CT with Single-Energy Metal Artifact Reduction (SEMAR): Initial Experiences

Abdominal CT with Single-Energy Metal Artifact Reduction (SEMAR): Initial Experiences Abdominal CT with Single-Energy Metal Artifact Reduction (SEMAR): Initial Experiences Poster No.: C-0674 Congress: ECR 2014 Type: Scientific Exhibit Authors: K. Sofue 1, T. Yoshikawa 1, N. Negi 1, Y. Ohno

More information

BME101 Introduction to Biomedical Engineering Medical Imaging Özlem BİRGÜL Ankara University Department of Biomedical Engineering

BME101 Introduction to Biomedical Engineering Medical Imaging Özlem BİRGÜL Ankara University Department of Biomedical Engineering BME101 Introduction to Biomedical Engineering Medical Imaging Özlem BİRGÜL Ankara University Department of Biomedical Engineering Outline What is Medical Imaging? History of Medical Imaging X-Ray Imaging

More information

High performance comes easily

High performance comes easily High performance comes easily Philips MX 16-slice CT Easy from any The CT solution Your days may not be getting any easier, but now your CT solution is. The remarkably easy-to-use Philips MX 16-slice CT

More information

2018 REVIEW CATEGORIES

2018 REVIEW CATEGORIES 2018 REVIEW CATEGORIES 100 Neuro 101 Neuro: Acquisition 102 Neuro: Processing 103 Neuro: Neonatal & Pediatric - Normal Development 104 Neuro: Neonatal & Pediatric - Clinical Studies 105 Neuro: Normal Aging

More information

Efficacy of a new post processing workflow for CTA head and neck

Efficacy of a new post processing workflow for CTA head and neck Efficacy of a new post processing workflow for CTA head and neck Poster No.: C-1760 Congress: ECR 2013 Type: Authors: Keywords: DOI: Scientific Exhibit N. Ardley 1, K. Buchan 2, K. K. Lau 3 ; 1 Clayton,

More information

Fast enough to stop the Capable of delineating Unprecedented imaging power for the. Virtual endoscopy. The gatewa

Fast enough to stop the Capable of delineating Unprecedented imaging power for the. Virtual endoscopy. The gatewa Fast enough to stop the Capable of delineating Unprecedented imaging power for the M U L T I S L I C E Virtual endoscopy The gatewa motion of a beating heart. anatomic structures as small as 0.25mm. earliest,

More information

Intracranial stent visualization for image guided interventions and therapy

Intracranial stent visualization for image guided interventions and therapy Intracranial stent visualization for image guided interventions and therapy Daniel Ruijters, Peter van de Haar, Ruben Roijers, Niels J. Noordhoek, Jan Timmer, and Drazenko Babic interventional X-Ray, Philips

More information

Purpose. Methods and Materials

Purpose. Methods and Materials MR cholangiopancreatography: Comparison between 3D fast recovery fast spin echo and 2D single shot fast spin echo sequences in the evaluation of choledocholithiasis. Poster No.: C-1193 Congress: ECR 2012

More information

New PET/CT from Siemens helps more patients benefit from premium technologies

New PET/CT from Siemens helps more patients benefit from premium technologies Press Healthcare Erlangen, October 9, 2015 EANM 2015, Congress Center Hamburg (CCH) New PET/CT from Siemens helps more patients benefit from premium technologies Versatile new PET/CT system addresses a

More information

Future bound. Philips Ingenuity Core

Future bound. Philips Ingenuity Core Future bound Philips Ingenuity Core High reliability Low-dose, high-quality imaging and coverage, and the ability to personalize image quality* patient by patient. Expect excellence in routine imaging,

More information

Table of Contents. Adaptive Diagnostics...7 Integrated Dose Reduction Streamlined Workflow Clinical Images... 26

Table of Contents. Adaptive Diagnostics...7 Integrated Dose Reduction Streamlined Workflow Clinical Images... 26 2 Table of Contents Adaptive Diagnostics...7 Integrated Dose Reduction... 17 Streamlined Workflow... 21 Clinical Images... 26 3 AQUILION TM PRIME PROVIDES CLINICAL FLEXIBILITY, ENHANCED WORKFLOW FEATURES

More information

Artifacts Caused by Eddy Current in Diffusion MRI

Artifacts Caused by Eddy Current in Diffusion MRI Artifacts Caused by Eddy Current in Diffusion MRI Xi Tan ABSTRACT Magnetic resonance diffusion imaging is potentially an important tool for the noninvasive characterization of normal and pathological tissue.

More information

Press Presse Press Presse

Press Presse Press Presse Press Presse Press Presse Healthcare Sector Imaging & IT Division Erlangen, November 30, 2009 Siemens Introduces its New Power Couple at RSNA 2009 Tim and Dot* redefine productivity in MRI up to 30 percent

More information

Biograph TruePoint PET CT. The World s First HD PET Platform.

Biograph TruePoint PET CT. The World s First HD PET Platform. Biograph TruePoint PET CT The World s First HD PET Platform www.siemens.com/mi Biograph TruePoint PET CT A flexible, high-powered medical imaging platform, Siemens Biograph offers an unmatched range of

More information

Design and Preliminary Clinical Studies of an MRI-Guided Transrectal Prostate Intervention System

Design and Preliminary Clinical Studies of an MRI-Guided Transrectal Prostate Intervention System Design and Preliminary Clinical Studies of an MRI-Guided Transrectal Prostate Intervention System Axel Krieger 1, Peter Guion 2, Csaba Csoma 1, Iulian Iordachita 1, Anurag K. Singh 2,3, Aradhana Kaushal

More information

Poster No.: R Page 1 of 12

Poster No.: R Page 1 of 12 Abdominal endovascular aortic repair (EVAR): Comparison of image fusion (IF3D) angiography versus conventional (2D) angiography with respect to intravenous contrast dose, radiation dose and total fluoroscopy

More information

OUR WISH LIST RESEARCH EQUIPMENT

OUR WISH LIST RESEARCH EQUIPMENT OUR WISH LIST RESEARCH EQUIPMENT YOU CAN MAKE A TANGIBLE DIFFERENCE! The South Australian Health and Medical Research Institute (SAHMRI) is one of the most exciting developments in the field of health

More information

OUR WISH LIST RESEARCH EQUIPMENT

OUR WISH LIST RESEARCH EQUIPMENT OUR WISH LIST RESEARCH EQUIPMENT WITH YOUR PHILANTHROPIC SUPPORT, WE CAN WORK TOGETHER TO COMPLETE OUR FULLY-FUNCTIONAL FACILITY BY PURCHASING THE CUTTING-EDGE EQUIPMENT AND RESOURCES TO SUPPORT SAHMRI

More information

40TH ANNUAL MEETING. CTA Dose Reduction: Special Considerations in Children. Jeffrey C. Hellinger, MD FACC. October 13 16, 2012 Pasadena, CA

40TH ANNUAL MEETING. CTA Dose Reduction: Special Considerations in Children. Jeffrey C. Hellinger, MD FACC. October 13 16, 2012 Pasadena, CA 40TH ANNUAL MEETING October 13 16, 2012 Pasadena, CA CTA Dose Reduction: Special Considerations in Children Jeffrey C. Hellinger, MD FACC New York Cardiovascular Institute Lenox Hill Radiology and Medical

More information

Computed Tomography. Printed in Japan

Computed Tomography. Printed in Japan Computed Tomography WARNING: Any reference to x-ray exposure, intravenous contrast dosage, and other medication is intended as a reference guideline only. The guidelines in this document do not substitute

More information

Delivering the most exciting equation in MRI. MAGNETOM Verio. Answers for life.

Delivering the most exciting equation in MRI. MAGNETOM Verio. Answers for life. Delivering the most exciting equation in MRI. MAGNETOM Verio Answers for life. We know, we re excited too! Siemens has set a new benchmark in MRI again. As a proven innovator Siemens is bringing 3T field

More information

Recent clinical advances and applications for medical image segmentation

Recent clinical advances and applications for medical image segmentation Recent clinical advances and applications for medical image segmentation Prof. Leo Joskowicz Lab website: http://www.cs.huji.ac.il/~caslab/site L. Joskowicz, 2011 Key trends in clinical radiology Film/light

More information

Diagnostic Medical Image Processing

Diagnostic Medical Image Processing Diagnostic Medical Image Processing Introduction WS 2010/11 Joachim Hornegger, Dietrich Paulus, Markus Kowarschik Lehrstuhl für Mustererkennung (Informatik 5) Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

BIOMEDICAL SIGNAL AND IMAGE PROCESSING

BIOMEDICAL SIGNAL AND IMAGE PROCESSING BIOMEDICAL SIGNAL AND IMAGE PROCESSING EE 5390-001 SYLLABUS Instructor: Wei Qian, Ph.D. Professor of Electrical and Computer Engineering Medical Signal and Image Computerized Processing Scheme for Medical

More information

Leading Canadian Pediatric Hospital Continues to Drive Dose Down for Sick Children

Leading Canadian Pediatric Hospital Continues to Drive Dose Down for Sick Children Leading Canadian Pediatric Hospital Continues to Drive Dose Down for Sick Children At Canada s premier pediatric hospital also recognized as one of the world s foremost pediatric healthcare institutions

More information

Making the difference

Making the difference Intuis Interventional X-ray Making the difference with Live Image Guidance Making the difference with Live Image Guidance Philips Intuis Together we make the difference in minimally invasive treatment

More information

First Experiences with the Ziehm Vision FD Mobile C-Arm with Flat-Panel Detector

First Experiences with the Ziehm Vision FD Mobile C-Arm with Flat-Panel Detector 01 White Paper No. 02/2009 First Experiences with the Ziehm Vision FD Mobile C-Arm with Flat-Panel Detector Leiden University Medical Center (LUMC) in the Netherlands is the first hospital in the world

More information

FESTSCHRIFT The Institute of Nuclear Medicine 50 Years. University College NHS Foundation Trust and University College London

FESTSCHRIFT The Institute of Nuclear Medicine 50 Years. University College NHS Foundation Trust and University College London FESTSCHRIFT The Institute of Nuclear Medicine 50 Years University College NHS Foundation Trust and University College London October 2011 Dedication: The families of the Staff of the Institute of Nuclear

More information

GE Healthcare. Introducing Brivo MR T. Bringing high-field MR. within reach

GE Healthcare. Introducing Brivo MR T. Bringing high-field MR. within reach GE Healthcare Introducing Brivo MR355 1.5T Bringing high-field MR within reach If 1.5T MR technology has been just out of reach for your practice, the Brivo MR355 will be a welcome advancement. The Brivo

More information

Siemens Healthineers introduces innovative robot supported Artis pheno angiography system

Siemens Healthineers introduces innovative robot supported Artis pheno angiography system Press Erlangen, October 25, 2016 DKOU 2016 in Berlin: Hall 4.2, Booth 44 introduces innovative robot supported Artis pheno angiography system Enabling personalized, minimally invasive surgery for multimorbid

More information

Do we need MRI quality assurance: experience from a multiunit imaging center with 14 MRI systems

Do we need MRI quality assurance: experience from a multiunit imaging center with 14 MRI systems Do we need MRI quality assurance: experience from a multiunit imaging center with 14 MRI systems Poster No.: B-0321 Congress: ECR 2015 Type: Scientific Paper Authors: L. J. Kuusela, M. Timonen, T. Mäkelä,

More information

COMPREHENSIVE FAMILY OF INTERVENTIONAL SYSTEMS

COMPREHENSIVE FAMILY OF INTERVENTIONAL SYSTEMS COMPREHENSIVE FAMILY OF INTERVENTIONAL SYSTEMS When excellence means saving lives, installing the right lab is absolutely vital. Unlike other imaging systems, the cardiovascular lab is literally an extension

More information

SMARTBRUSH ANGIO. Version 1.0. Software User Guide Revision 1.0. Copyright 2014, Brainlab AG Germany. All rights reserved.

SMARTBRUSH ANGIO. Version 1.0. Software User Guide Revision 1.0. Copyright 2014, Brainlab AG Germany. All rights reserved. SMARTBRUSH ANGIO Version 1.0 Software User Guide Revision 1.0 Copyright 2014, Brainlab AG Germany. All rights reserved. TABLE OF CONTENTS TABLE OF CONTENTS GENERAL INFORMATION...5 Contact Data and Legal

More information

Progress in X-Ray & MR

Progress in X-Ray & MR Progress in X-Ray & MR Michiel Manuel Analyst Meeting June 15 th, 2005 X-Ray & MR: Agenda Introduction General X-Ray Cardio/Vascular X-Ray Magnetic Resonance China growth opportunity Conclusion 2 X-Ray

More information

GE Healthcare LOGIQ P3. Advancing your imaging capabilities

GE Healthcare LOGIQ P3. Advancing your imaging capabilities GE Healthcare LOGIQ P3 Advancing your imaging capabilities Clear imaging to help inform diagnosis. The LOGIQ P3 incorporates the innovative technologies that have made GE Healthcare a trusted partner of

More information

Not for publication in the USA Erlangen, November 26, 2017

Not for publication in the USA Erlangen, November 26, 2017 Press Not for publication in the USA Erlangen, November 26, 2017 RSNA 2017 in Chicago: South Building, Hall A, Booth 1937 strengthens its CT portfolio by improving patient experience and expanding precision

More information

Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow

Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow Review Article Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow Journal of Cerebral Blood Flow & Metabolism 0(00) 1 20! Author(s) 2017 Reprints and permissions:

More information

Results and Problems in Cell Differentiation

Results and Problems in Cell Differentiation Results and Problems in Cell Differentiation 51 Series Editors Dietmar Richter, Henri Tiedge Roland Martin Andreas Lutterotti (eds.) Molecular Basis of Multiple Sclerosis The Immune System Editors Roland

More information

Radiography Curriculum Analysis

Radiography Curriculum Analysis Program Number Program Name Date / /20 Radiography Curriculum Analysis DIRECTIONS: Determine the course(s) in which each of the following content area is covered and enter the course number(s) and/or title(s).

More information

USES OF X-RAY CONTRAST MEDIA

USES OF X-RAY CONTRAST MEDIA USES OF X-RAY CONTRAST MEDIA Modes of opacification Example CM characteristics Luminal filling G.I. tract Organ function Cholegraphy Retrograde pyelography Blood vessel i.v. urography No absorption; mild

More information

3D Imaging: How to make beautiful images

3D Imaging: How to make beautiful images 3D Imaging: How to make beautiful images Sebastian Schafer, PhD Siemens Medical Solutions USA Inc. Acknowledgments All cases are courtesy of RUSH University Hospital (D. Lopes, M. Chen) unless explicitly

More information

BIOMEDICAL ENGINEERING (BME)

BIOMEDICAL ENGINEERING (BME) Biomedical Engineering (BME) 1 BIOMEDICAL ENGINEERING (BME) BME 500 Introduction to Biomedical Engineering Introduction to the concepts and research in biomedical engineering. Provides an overview of current

More information

BRANSIST alexa Type C12/F12 Digital Angiography Systems C505-E062

BRANSIST alexa Type C12/F12 Digital Angiography Systems C505-E062 BRANSIST alexa Type C12/F12 Digital Angiography Systems C505-E062 Incorporating a Flat Panel Detector Multipurpose Angiography System Supports Interventional Procedures Crossover Angiography System How

More information

Adaptive Iterative Dose Reduction in 3D

Adaptive Iterative Dose Reduction in 3D technology history For over 130 years, Toshiba has been a world leader in developing technology to improve the quality of life. Our 50,000 global patents demonstrate a long, rich history of leading innovation.

More information

Lecture Notes in Energy 5

Lecture Notes in Energy 5 Lecture Notes in Energy 5 For further volumes: http://www.springer.com/series/8874 . Hortensia Amaris Monica Alonso Carlos Alvarez Ortega Reactive Power Management of Power Networks with Wind Generation

More information

Low radiation dose subtraction CT angiography (CTA) for diagnosis of peripheral arterial occlusive disease

Low radiation dose subtraction CT angiography (CTA) for diagnosis of peripheral arterial occlusive disease Low radiation dose subtraction CT angiography (CTA) for diagnosis of peripheral arterial occlusive disease Poster No.: C-1978 Congress: ECR 2013 Type: Authors: Scientific Exhibit M. Suzuki 1, R. Tanaka

More information

Computer Assisted Surgery Basics of medical imaging

Computer Assisted Surgery Basics of medical imaging Computer Assisted Surgery Basics of medical imaging Prof. Leo Joskowicz School of Engineering and Computer Science The Hebrew University of Jerusalem, ISRAEL Medical Image Processing Basics of medical

More information

Excellence in CT. SOMATOM Definition.

Excellence in CT. SOMATOM Definition. Excellence in CT SOMATOM Definition www.siemens.com/medical Contents SOMATOM Definition Dual Source CT Faster than Every Beating Heart Full Cardiac Detail at Half the Dose One-Stop Diagnosis in Acute

More information

GENESIS Edition. Transforming CT

GENESIS Edition. Transforming CT GENESIS Edition Transforming CT Transforming clinical confidence Transforming patient experience Transforming your workspace GENESIS Edition Transforming CT Brought to you by the leaders in area detector

More information

CALIFORNIA LAW AND RESPONSE + FIVE QUICK LESSONS ON CT DOSE OPTIMIZATION

CALIFORNIA LAW AND RESPONSE + FIVE QUICK LESSONS ON CT DOSE OPTIMIZATION CALIFORNIA LAW AND RESPONSE + FIVE QUICK LESSONS ON CT DOSE OPTIMIZATION John M. Boone, PhD Professor and Vice Chair (Research) of Radiology Professor of Biomedical Engineering Department of Radiology

More information

GE Healthcare. Revolution GSI. A Better Exam.

GE Healthcare. Revolution GSI. A Better Exam. GE Healthcare Revolution GSI A Better Exam. Put yourself instantly at the forefront of spectral CT. Revolution* GSI is a new generation of CT that delivers consistently high-definition imaging, for confident

More information