Forces Determining Amount of Genetic Diversity

Size: px
Start display at page:

Download "Forces Determining Amount of Genetic Diversity"

Transcription

1 Forces Determining Amount of Genetic Diversity The following are major factors or forces that determine the amount of diversity in a population. They also determine the rate and pattern of evolutionary base substitution. factor (parameter) (1) mutation (rate) (2) natural selection (kind and strength) (3) random drift (effective population size)

2 Mutation Mutation is the ultimate source of genetic variation and differences between species. All other things being equal, the higher the mutation rate the greater the genetic variance in the population and the larger the differences between species. u = mutation rate = probability that a particular base pair will undergo mutation u is very low, on the order of 10-8 to 10-9 per base pair or 10-4 to 10-6 per gene. We are interested in the total number of mutations that enter the gene pool in one generation. In a diploid organism, if there are N individuals in the population, 2N gametes must be produced each generation. The total mutation rate in the population is the rate per base pair (or gene) per gamete times the number of copies of the gene in the population. The number of copies is the number of individuals (population size) N times 2 for a diploid organism. M = 2Nu

3 M = 2Nu Mutations per gene = Number of gametes mutations per gene per gamete dimensional analysis: mutations = gametes mutations genes genes gametes M is usually very large: If N is 10 5, the population will contain on the average of 2 new mutations in each gene in each generation. Clearly most of these must be eliminated, otherwise genetic variation will accumulate until species identity is lost. If use DNA sequences to identify mutations, u is in mutations per bp per gamete or mutations per site per gamete. If N = 10 5 and u = 10-9 and there are 3 X 10 9 bp per human genome, will have 3 X 10 6 new mutations in gene pool in each generation. 3 X 10 6 new mutations 3 X 10 6 new and old mutations

4 Random genetic drift. Nondirectional force. Acts equally to increase or decrease frequencies. Eliminates or fixes new mutations. Happens because different individuals have different numbers of offspring by chance. The probability that an allele will be fixed by drift is equal to its frequency. Why drift happens Not all individuals in a population produce the same number of offspring. Not all genes leave the same number of offspring. Some of difference due to selection, some to pure dumb luck.

5 E.g. Mutation happens in one of the 6 million primary oocytes in your germ line when you were a fetus. Only a few hundred survive and ovulate. But you only have two children. Probability that a child will have the mutation is about 2/6 million or 1/3 million. E.g. Three bdelloid rotifers belonging to same clone dry up and blow around. Each one lands in a tiny pothole just after a rain and starts to reproduce. Each one produces 5,000 offspring. A deer comes along and drinks the other pothole dry, so that bdelloid has no offspring. Any allele of any gene carried by it only leaves no offspring. Eleplhant drinks all Bad things can happen even to good genes. (S--- happens.)

6 Drift leads to fixation or loss of alleles Even in the absence of selection, allele frequencies are not constant: they undergo random walks. If the frequency of an allele drifts to 0, it is lost; if it drifts to 1, it is fixed and all other alleles of that gene are lost. Probability of fixation of an allele is equal to its frequency: P(fix neutral allele of frequency x) = x

7 Section 18 divided into 18a, b, c. 18a and b on web. Another homework assignment, on population and evolutionary genetics, will be posted soon, hopefully on Friday.

8 Probability of fixation of an allele is equal to its frequency: P(fix neutral allele of frequency x) = x Random drift is much more likely to eliminate a new mutation than to fix it. New mutation: x = 1/2N P(fix new mutation) = 1/2N P(lose new mutation) = 1-1/2N e.g. N = 5,000 P(fix) = 1/10,000 = P(loss) = New mutation begins with frequency very close to 0 and very likely to hit 0 and be lost. Conversely, it is very far from 1 and very unlikely to get there. Proof that random drift actually occurs has been obtained repeatedly in laboratory experiments. Done with very small population size to make it go fast. Fig and adjacent text describe an experiment in Drosophila. Read it.

9 The strength of random drift depends on the population size; works faster in smaller populations. E.g. Haploid population with N = 5 or 10. What is important is the effective population size Ne. N e depends on N but also on the sex ratio and other factors that determine the variance in offspring number. In nearly all cases, Ne < N. Often Ne << N. e.g. elk harems In diploids the important number is 2Ne because each individual has 2 genomes.

10 Play with a simple model of drift to understand it Go to bottom of web site, then go either to URL for simulation or, better, download stuff and do manual simulation. Best is to do both. Another program available on web is PopG program which tracks changes in gene frequencies under mutation, drift, and/or selection. We will use it later.

11 Combined effects of mutation and drift: neutral model Drift always happens. Mutation always happens. So add mutation to simulation: This model is realistic: it fits many real situations in which most genetic diversity is due to neutral alleles. Some people think that it fits the majority of molecular data. H π 4N e u 1 + 4N e u 4N eu = θ Haploids and asexuals: substitute 2Neu Animal mitochondrial genes: substitute N f u 4N e u 1 + 4N e u 4N eu = θ but now u is in mutations per site per gamete, sometimes symbolized by µ Intuitive explanation for these equations: Higher mutation rate: more mutations pumped into the population. Larger N e : drift is slower so mutations tend to linger in population longer.

12 Directional selection If mutation and drift were all that happened, there would be no adaptation of organisms to different habitats. Differences in N e and u can t explain synonymous > nonsynonymous or introns > exons, because all these are in same genome in same organism and have same N e and u. Directional selection is a directional force that tends to increase frequencies of advantageous alleles and decrease frequencies of detrimental alleles. By itself, directional selection will fix advantageous alleles and eliminate detrimental alleles. Directional selection is the basis for most cases of Darwinian adaptive evolution, because it results in a phenotypic change that increases the fitness of the organism.

13 Drosophila experimental results usually not as neat as those cases we use in class. Did three-factor cross in genetics lab course. All mutant genotypes (e.g. white eye) present in fewer than the expected numbers. All visible mutants, all at least slightly detrimental. If they were not detrimental, they would be more common in nature. If they were advantageous, they would have become the wild type.

14 Adaptive Melanism in Lava Flow Mice Hopi Hoekstra (now at Harvard), Michael Nachman (EEB), et al. See Hopi s web site: Follow the link to Projects. Melanism seen in mice, lizards, and snakes living on desert lava flows. Earlier work showed that melanism reduces owl predation on mice on dark lava rock, and dark mice have reduced fitness on light rock. Rock pocket mouse Chaeootdipus intermedius living in Arizona, New Mexico, and northern Sonora Hair color matches rock color. Due to natural selection, acting over < 500,000 years. Requires strong selection. This is short-term evolution, within a species. Mouse populations on lava are not completely isolated from mouse populations on light rock in adjacent desert. Therefore selection must be very strong to counteract effects of migration. Melanism in Pinacate population in Arizona is due to a single point mutation in the melanocolrtin-1 receptor gene (Mc1r) that is responsible for melanism. Melanism in New Mexico populations due to different gene. 2 independent origins of adaptive melanism in pocket mice.

15 Selection intensity is measured by relative fitness or by selection coefficient s of mutant allele: offspring number (relative fitness) mutant wild type s lethal detrimental neutral advantageous lethal mutant wild typle The majority of mutants have selection coefficients with small absolute values: s < 0.1.

16 Combined Effects of Selection and Drift Probability of fixation of a new mutant allele with selection coefficient s in population with effective size N e is given by Kimura s equation: F = (1 e -2N e s/n )/ (1 e -4N e s ) Solving equation for various values of N, N e, and s leads to the following conclusions: Even detrimental mutations can be fixed by drift. Even advantageous mutations can be lost by drift. Relative strength of selection and drift depends on the product N e s : N e s >> 1 selection dominates N e s << 1 drift dominates (mutation is effectively neutral) If N e s >> 1, then either N e is very large so drift works very slowly, or s is very large so selection is very strong (or both). If N e s << 1, then either N e is very small so drift is strong, or s is very small so selection is very weak (or both). Analogy: selection is signal, drift is noise.

17 Balancing Selection Balancing selection is any kind of selection that maintains two or more alleles in a population. Sickle-cell anemia Sickle-cell gene has been maintained in fairly high frequency even though it is detrimental. Heterozygotes are more resistant to malaria than homozygous normal. Heterozygotes have selective advantage where malaria is endemic. effects of anemia malaria Hb A Hb A none severe Hb A Hb S mild less severe Hb S Hb S severe? Example of overdominance = heterozygotes are more fit than either homozygote.

18 There are a number of other kinds of balancing selection. e.g. different alleles are adapted to different habitats. Deer mice in western U.S. live from sea level to 14,000 feet. Polymorphic for two variants of α-globin protein, one more efficient at binding oxygen at high altitude and the other at low altitude. Only a few cases of balancing selection have been clearly demonstrated. Probably less important than directional selection, but this is still being debated. Balancing selection delays the fixation or loss of alleles, which increases heterozygosity.

19 Combined Effects of Mutation, Drift, and Selection: Simple Models of Extreme Cases Each dot represents a gene. Time goes left to right. Each vertical column of dots represents the genes in one generation.

20 Directional selection reduces genetic variability relative to neutral case by accelerating the fixation or loss of mutations. Balancing selection increases genetic variability relative to neutral case.

21 Directional Selection Mutations stay in population average H or π neutral 4Ne generations 4N e u detrimental pushed to loss < 4N e generations < 4N e u advantageous pushed to fixation < 4N e generations < 4N e u balanced maintained > 4N e generations > 4N e u Balancing selection is not very common. Therefore if we look at a large segment of DNA, we will find that H < 4N e u. A few genes have H > 4N e u showing balancing selection. Analogy: Gene pool is bathtub with water molecules as alleles. Mutation is faucet. Drift is drain. Directional selection is pump. Balancing selection is 2 (or more) rubber duckies which can t fit out the drain or pump.

22 Evidence for directional and balancing selection from population genetics of Drolsophila Adh Directional selection: (1) There is more polymorphism in introns than in exons. (2) In the exons, there is much more polymorphism in DNA sequence than in amino acid sequence. (4) The left end of exon 4 is an exception. The F/S site is polymorphic, and regions close to it on both sides have a higher polymorphism than other exons. The F/S difference is maintained by balancing selection. This selection also tends to maintain heterozygosity for mutations closely linked to F or S. Further away, recombination tends to separate new mutations from F or S and directional selection acts to reduce polymorphism.

23 Explaining patterns/phenomena: Different species have different diversities Could be due to differences in u, N e, or s. Why are cheetahs so uniform? No reason to believe mutation rate different from other animals. Some markers probably nearly neutral so probably not due to very strong selection. Probably mainly small N and Ne; lingering effects of population bottleneck. Different genomes have different diversities. Hominids: mitochondrial gene diversity > nuclear gene diversity 2N f u m > 4N e u n where N f = number of females we know 2N f < 4N e therefore u m > u n Mitochondria have different DNA polymerase, less effective repair systems, and more exposure to mutagens.

24 Different genes or regions of genome have different diversity. E.g. fibrinopeptides > α-globin All nuclear genes in same species, so difference not due to N e or to u. Is due to selection; fibrinopeptides work with a wide range of amino acid sequences so new mutations are only slightly detrimental; globin mutations more detrimental. Why are conserved sequences lower in variation than others? Not low u, which is same on average for all segments of a genome. Not N and N e, which are same for all genes in an organism. Conserved sequences have arge negative s: on average, larger proportion of mutations are detrimental, fewer are neutral. Why are VNTRs so useful for forensic work? N e is same for VNTRs and other genes. Most nearly neutral, so high variation partly due to lack of directional selection. Mutation rate u is high (due to replication slippage and changes in repeat numbers, not to single-base mutations)

25 One Implication for Conservation Endangered species have small N. This means small Ne and Ne s, which means less effective selection, which includes more accumulation of detrimental mutations, leading to reduced fitness and further reduction in N. Vicious circle: smaller N reduced fitness smaller N e and N e s less effective selection

The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations

The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations The Making of the Fittest: Natural Selection and Adaptation Allele and phenotype frequencies in rock pocket mouse populations Name: Per. Introduction The tiny rock pocket mouse weighs just 15 grams, about

More information

The Making of the Fittest: Natural Selection and Adaptation

The Making of the Fittest: Natural Selection and Adaptation ALLELE AND PHENOTYPE FREQUENCIES IN ROCK POCKET MOUSE POPULATIONS INTRODUCTION The tiny rock pocket mouse weighs just 15 grams, about as much as a handful of paper clips. A typical rock pocket mouse is

More information

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations

Genetic Variation. Genetic Variation within Populations. Population Genetics. Darwin s Observations Genetic Variation within Populations Population Genetics Darwin s Observations Genetic Variation Underlying phenotypic variation is genetic variation. The potential for genetic variation in individuals

More information

Quiz will begin at 10:00 am. Please Sign In

Quiz will begin at 10:00 am. Please Sign In Quiz will begin at 10:00 am Please Sign In You have 15 minutes to complete the quiz Put all your belongings away, including phones Put your name and date on the top of the page Circle your answer clearly

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

Evolution of Populations (Ch. 17)

Evolution of Populations (Ch. 17) Evolution of Populations (Ch. 17) Doonesbury - Sunday February 8, 2004 Beak depth of Beak depth Where does Variation come from? Mutation Wet year random changes to DNA errors in gamete production Dry year

More information

Module 20: Population Genetics, Student Learning Guide

Module 20: Population Genetics, Student Learning Guide Name: Period: Date: Module 20: Population Genetics, Student Learning Guide Instructions: 1. Work in pairs (share a computer). 2. Make sure that you log in for the first quiz so that you get credit. 3.

More information

Lecture 10: Introduction to Genetic Drift. September 28, 2012

Lecture 10: Introduction to Genetic Drift. September 28, 2012 Lecture 10: Introduction to Genetic Drift September 28, 2012 Announcements Exam to be returned Monday Mid-term course evaluation Class participation Office hours Last Time Transposable Elements Dominance

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations What you need to know How and reproduction each produce genetic. The conditions for equilibrium. How to use the Hardy-Weinberg equation to calculate allelic and to test whether

More information

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017

LAB ACTIVITY ONE POPULATION GENETICS AND EVOLUTION 2017 OVERVIEW In this lab you will: 1. learn about the Hardy-Weinberg law of genetic equilibrium, and 2. study the relationship between evolution and changes in allele frequency by using your class to represent

More information

Evolution of Populations

Evolution of Populations Chapter 23. Evolution of Populations 1 Populations evolve Natural selection acts on individuals differential survival survival of the fittest differential reproductive success bear more offspring Populations

More information

AP BIOLOGY Population Genetics and Evolution Lab

AP BIOLOGY Population Genetics and Evolution Lab AP BIOLOGY Population Genetics and Evolution Lab In 1908 G.H. Hardy and W. Weinberg independently suggested a scheme whereby evolution could be viewed as changes in the frequency of alleles in a population

More information

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium.

LAB. POPULATION GENETICS. 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. Period Date LAB. POPULATION GENETICS PRE-LAB 1. Explain what is meant by a population being in Hardy-Weinberg equilibrium. 2. List and briefly explain the 5 conditions that need to be met to maintain a

More information

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds:

1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: 1) (15 points) Next to each term in the left-hand column place the number from the right-hand column that best corresponds: natural selection 21 1) the component of phenotypic variance not explained by

More information

mrna for protein translation

mrna for protein translation Biology 1B Evolution Lecture 5 (March 5, 2010), Genetic Drift and Migration Mutation What is mutation? Changes in the coding sequence Changes in gene regulation, or how the genes are expressed as amino

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Objectives the neutral theory detecting natural selection exercises 1 - learn about the neutral theory 2 - be able to detect natural selection at the molecular

More information

Genetic drift 10/13/2014. Random factors in evolution. Sampling error. Genetic drift. Random walk. Genetic drift

Genetic drift 10/13/2014. Random factors in evolution. Sampling error. Genetic drift. Random walk. Genetic drift Random factors in evolution Mutation is random is random is random fluctuations in frequencies of alleles or haplotypes Due to violation of HW assumption of large population size Can result in nonadaptive

More information

Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM. Changes in allele frequencies: - NATURAL SELECTION

Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM. Changes in allele frequencies: - NATURAL SELECTION THE ORGANIZATION OF GENETIC DIVERSITY Constancy of allele frequencies: -HARDY WEINBERG EQUILIBRIUM Changes in allele frequencies: - MUTATION and RECOMBINATION - GENETIC DRIFT and POPULATION STRUCTURE -

More information

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations

5/18/2017. Genotypic, phenotypic or allelic frequencies each sum to 1. Changes in allele frequencies determine gene pool composition over generations Topics How to track evolution allele frequencies Hardy Weinberg principle applications Requirements for genetic equilibrium Types of natural selection Population genetic polymorphism in populations, pp.

More information

LABORATORY 8. POPULATION GENETICS AND EVOLUTION

LABORATORY 8. POPULATION GENETICS AND EVOLUTION STUDENT GUIDE LABORATORY 8. POPULATION GENETICS AND EVOLUTION Objectives In this activity, you will learn about the Hardy-Weinberg law of genetic equilibrium study the relationship between evolution and

More information

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium)

7-1. Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) 7-1 Biology 1001 Lab 7: POPULATION GENETICS PREPARTION Read this exercise before you come to the laboratory. Review the lecture notes from October 15 (Hardy-Weinberg Equilibrium) OBECTIVES At the end of

More information

University of York Department of Biology B. Sc Stage 2 Degree Examinations

University of York Department of Biology B. Sc Stage 2 Degree Examinations Examination Candidate Number: Desk Number: University of York Department of Biology B. Sc Stage 2 Degree Examinations 2016-17 Evolutionary and Population Genetics Time allowed: 1 hour and 30 minutes Total

More information

Genetic drift. 1. The Nature of Genetic Drift

Genetic drift. 1. The Nature of Genetic Drift Genetic drift. The Nature of Genetic Drift To date, we have assumed that populations are infinite in size. This assumption enabled us to easily calculate the expected frequencies of alleles and genotypes

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Molecular Evolution Course #27615

Molecular Evolution Course #27615 Molecular Evolution Course #27615 Anders Gorm Pedersen Molecular Evolution Group Center for Biological Sequence Analysis Technical University of Denmark (DTU) gorm@cbs.dtu.dk Neutral Theory of Molecular

More information

Exercise 8C: Selection

Exercise 8C: Selection STUDENT GUIDE Exercise 8C: Selection 4. Look back at the five conditions that must be met for allele frequencies to remain constant. Which, if any, of these conditions might not have been met in this simulation?

More information

Genetic drift is change in allele frequencies due to chance fluctuations; its strength depends on population size.

Genetic drift is change in allele frequencies due to chance fluctuations; its strength depends on population size. Roadmap Genetic drift is change in allele frequencies due to chance fluctuations; its strength depends on population size. Rate of fixation (recap) Proportion of homozygotes in population (genetic diversity)

More information

Population Genetics. Chapter 16

Population Genetics. Chapter 16 Population Genetics Chapter 16 Populations and Gene Pools Evolution is the change of genetic composition of populations over time. Microevolution is change within species which can occur over dozens of

More information

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15

Introduction to Population Genetics. Spezielle Statistik in der Biomedizin WS 2014/15 Introduction to Population Genetics Spezielle Statistik in der Biomedizin WS 2014/15 What is population genetics? Describes the genetic structure and variation of populations. Causes Maintenance Changes

More information

Distinguishing Among Sources of Phenotypic Variation in Populations

Distinguishing Among Sources of Phenotypic Variation in Populations Population Genetics Distinguishing Among Sources of Phenotypic Variation in Populations Discrete vs. continuous Genotype or environment (nature vs. nurture) Phenotypic variation - Discrete vs. Continuous

More information

GENETICS. Chapter 1: Cell cycle. Thème 1 : La Terre dans l Univers A. Expression, stabilité et variation du patrimoine génétique.

GENETICS. Chapter 1: Cell cycle. Thème 1 : La Terre dans l Univers A. Expression, stabilité et variation du patrimoine génétique. Introduction: GENETICS 3M = first look at genetics (study of inheritance, discovery of chromosomes, genes, dominant and recessive alleles and the DNA molecule within chromosomes) 2D = not much in fact,

More information

Chapter 3: Evolutionary genetics of natural populations

Chapter 3: Evolutionary genetics of natural populations Chapter 3: Evolutionary genetics of natural populations What is Evolution? Change in the frequency of an allele within a population Evolution acts on DIVERSITY to cause adaptive change Ex. Light vs. Dark

More information

How Populations Evolve. Chapter 15

How Populations Evolve. Chapter 15 How Populations Evolve Chapter 15 Populations Evolve Biological evolution does not change individuals It changes a population Traits in a population vary among individuals Evolution is change in frequency

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

CHAPTER 12 MECHANISMS OF EVOLUTION

CHAPTER 12 MECHANISMS OF EVOLUTION CHAPTER 12 MECHANISMS OF EVOLUTION 12.1 Genetic Variation DNA biological code for inheritable traits GENES units of DNA molecule in a chromosome LOCI location of specific gene on DNA molecules DIPLOID

More information

Lecture 23: Causes and Consequences of Linkage Disequilibrium. November 16, 2012

Lecture 23: Causes and Consequences of Linkage Disequilibrium. November 16, 2012 Lecture 23: Causes and Consequences of Linkage Disequilibrium November 16, 2012 Last Time Signatures of selection based on synonymous and nonsynonymous substitutions Multiple loci and independent segregation

More information

can be found from OMIM (Online Mendelian Inheritance in Man),

can be found from OMIM (Online Mendelian Inheritance in Man), Lectures 4 & 5 Wednesday, October 5, 2011 & Friday, October 7, 2011 Forces causing gene frequency change Mutation Random mating does not cause allele frequencies to change, but other forces do. Mutation

More information

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools

Chapter 23: The Evolution of Populations. 1. Populations & Gene Pools. Populations & Gene Pools 12/2/ Populations and Gene Pools Chapter 23: The Evolution of Populations 1. Populations and Gene Pools 2. Hardy-Weinberg Equilibrium 3. A Closer Look at Natural Selection 1. Populations & Gene Pools Chapter Reading pp. 481-484, 488-491

More information

Measurement of Molecular Genetic Variation. Forces Creating Genetic Variation. Mutation: Nucleotide Substitutions

Measurement of Molecular Genetic Variation. Forces Creating Genetic Variation. Mutation: Nucleotide Substitutions Measurement of Molecular Genetic Variation Genetic Variation Is The Necessary Prerequisite For All Evolution And For Studying All The Major Problem Areas In Molecular Evolution. How We Score And Measure

More information

Balancing and disruptive selection The HKA test

Balancing and disruptive selection The HKA test Natural selection The time-scale of evolution Deleterious mutations Mutation selection balance Mutation load Selection that promotes variation Balancing and disruptive selection The HKA test Adaptation

More information

LABORATORY 8: POPULATION GENETICS AND EVOLUTION

LABORATORY 8: POPULATION GENETICS AND EVOLUTION LABORATORY 8: POPULATION GENETICS AND EVOLUTION OVERVIEW In this activity you will learn about the Hardy-Weinberg law of genetic equilibrium and study the relationship between evolution and changes in

More information

Biology Evolution Dr. Kilburn, page 1 Mutation and genetic variation

Biology Evolution Dr. Kilburn, page 1 Mutation and genetic variation Biology 203 - Evolution Dr. Kilburn, page 1 In this unit, we will look at the mechanisms of evolution, largely at the population scale. Our primary focus will be on natural selection, but we will also

More information

The Evolution of Populations

The Evolution of Populations Microevolution The Evolution of Populations C H A P T E R 2 3 Change in allele frequencies over generations Three mechanisms cause allele frequency change: Natural selection (leads to adaptation) Genetic

More information

Mutation and sexual reproduction produce the genetic variation that makes evolution possible. [2]

Mutation and sexual reproduction produce the genetic variation that makes evolution possible. [2] GUIDED READING - Ch. 23 POPULATION EVOLUTION NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.

More information

Chapter 4 (Pp ) Heredity and Evolution

Chapter 4 (Pp ) Heredity and Evolution Chapter 4 (Pp. 85-95) Heredity and Evolution Modern Evolutionary Theory The Modern Synthesis Prior to the early-1930s there was a break between the geneticists and the natural historians (read ecologists

More information

Genetic Drift Lecture outline. 1. Founder effect 2. Genetic drift consequences 3. Population bottlenecks 4. Effective Population size

Genetic Drift Lecture outline. 1. Founder effect 2. Genetic drift consequences 3. Population bottlenecks 4. Effective Population size Genetic Drift Lecture outline. Founder effect 2. Genetic drift consequences 3. Population bottlenecks 4. Effective Population size Odd populations Deer at Seneca Army Depot Cheetah Silvereyes (Zosterops

More information

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both?

Variation Chapter 9 10/6/2014. Some terms. Variation in phenotype can be due to genes AND environment: Is variation genetic, environmental, or both? Frequency 10/6/2014 Variation Chapter 9 Some terms Genotype Allele form of a gene, distinguished by effect on phenotype Haplotype form of a gene, distinguished by DNA sequence Gene copy number of copies

More information

In the presence of CWD the form of selection operating is Heterozygote Advantage (overdominance).

In the presence of CWD the form of selection operating is Heterozygote Advantage (overdominance). PROBLEM SET 2 KEY EVOLUTIONARY BIOLOGY FALL 2017 Mutation, Selection, Migration, Drift (20 pts total) 1) In class we discussed some prion diseases including the infamous Kuru. There are many other prion

More information

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies.

EXERCISE 1. Testing Hardy-Weinberg Equilibrium. 1a. Fill in Table 1. Calculate the initial genotype and allele frequencies. Biology 152/153 Hardy-Weinberg Mating Game EXERCISE 1 Testing Hardy-Weinberg Equilibrium Hypothesis: The Hardy-Weinberg Theorem says that allele frequencies will not change over generations under the following

More information

From DNA to Protein: Genotype to Phenotype

From DNA to Protein: Genotype to Phenotype 12 From DNA to Protein: Genotype to Phenotype 12.1 What Is the Evidence that Genes Code for Proteins? The gene-enzyme relationship is one-gene, one-polypeptide relationship. Example: In hemoglobin, each

More information

FINDING THE PAIN GENE How do geneticists connect a specific gene with a specific phenotype?

FINDING THE PAIN GENE How do geneticists connect a specific gene with a specific phenotype? FINDING THE PAIN GENE How do geneticists connect a specific gene with a specific phenotype? 1 Linkage & Recombination HUH? What? Why? Who cares? How? Multiple choice question. Each colored line represents

More information

The Evolution of Populations

The Evolution of Populations LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 23 The Evolution of Populations

More information

16.2 Evolution as Genetic Change

16.2 Evolution as Genetic Change 16.2 Evolution as Genetic Change 1 of 40 16-2 Evolution as Genetic Change 16-2 Evolution as Genetic Change If an individual dies without reproducing, it does not contribute to the gene pool. If an individual

More information

MICROEVOLUTION. On the Origin of Species WHAT IS A SPECIES? WHAT IS A POPULATION? Genetic variation: how do new forms arise?

MICROEVOLUTION. On the Origin of Species WHAT IS A SPECIES? WHAT IS A POPULATION? Genetic variation: how do new forms arise? MICROEVOLUTION On the Origin of Species WHAT IS A SPECIES? Individuals in one or more populations Potential to interbreed Produce fertile offspring WHAT IS A POPULATION? Group of interacting individuals

More information

Evolutionary Mechanisms

Evolutionary Mechanisms Evolutionary Mechanisms Tidbits One misconception is that organisms evolve, in the Darwinian sense, during their lifetimes Natural selection acts on individuals, but only populations evolve Genetic variations

More information

The Theory of Evolution

The Theory of Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

Bio 6 Natural Selection Lab

Bio 6 Natural Selection Lab Bio 6 Natural Selection Lab Overview In this laboratory you will demonstrate the process of evolution by natural selection by carrying out a predator/prey simulation. Through this exercise you will observe

More information

FINDING THE PAIN GENE How do geneticists connect a specific gene with a specific phenotype?

FINDING THE PAIN GENE How do geneticists connect a specific gene with a specific phenotype? FINDING THE PAIN GENE How do geneticists connect a specific gene with a specific phenotype? 1 Linkage & Recombination HUH? What? Why? Who cares? How? Multiple choice question. Each colored line represents

More information

[Presented by: Andrew Howlett, Cruise Slater, Mahmud Hasan, Greg Dale]

[Presented by: Andrew Howlett, Cruise Slater, Mahmud Hasan, Greg Dale] Mutational Dissection [Presented by: Andrew Howlett, Cruise Slater, Mahmud Hasan, Greg Dale] Introduction What is the point of Mutational Dissection? It allows understanding of normal biological functions

More information

Population Genetics (Learning Objectives)

Population Genetics (Learning Objectives) Population Genetics (Learning Objectives) Define the terms population, species, allelic and genotypic frequencies, gene pool, and fixed allele, genetic drift, bottle-neck effect, founder effect. Explain

More information

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation

Review. Molecular Evolution and the Neutral Theory. Genetic drift. Evolutionary force that removes genetic variation Molecular Evolution and the Neutral Theory Carlo Lapid Sep., 202 Review Genetic drift Evolutionary force that removes genetic variation from a population Strength is inversely proportional to the effective

More information

1) Genetic Drift. Genetic Drift - population with stable size ~ 10

1) Genetic Drift. Genetic Drift - population with stable size ~ 10 1) Genetic Drift Flip a coin 1000 times 700 heads and 300 tails very suspicious. Flip a coin 10 times 7 heads and 3 tails well within the bounds of possibility. 700 7 300 3 The smaller the sample, the

More information

ECOLOGY and EVOLUTION. LAB II Part 2. Evolutionary mechanisms

ECOLOGY and EVOLUTION. LAB II Part 2. Evolutionary mechanisms ECOLOGY and EVOLUTION Week 2: September 6 September 9, 2011 LAB II Part 2. Evolutionary mechanisms Before coming to lab, read this lab manual and be sure to know the following terms: Gene locus Haploid

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem

Population Genetics Modern Synthesis Theory The Hardy-Weinberg Theorem Assumptions of the H-W Theorem Population Genetics A Population is: a group of same species organisms living in an area An allele is: one of a number of alternative forms of the same gene that may occur at a given site on a chromosome.

More information

Lecture 10 Molecular evolution. Jim Watson, Francis Crick, and DNA

Lecture 10 Molecular evolution. Jim Watson, Francis Crick, and DNA Lecture 10 Molecular evolution Jim Watson, Francis Crick, and DNA Molecular Evolution 4 characteristics 1. c-value paradox 2. Molecular evolution is sometimes decoupled from morphological evolution 3.

More information

DOC GENETIC DIVERSITY IS LOST IN A SMALL POPULATION WHEN EBOOK

DOC GENETIC DIVERSITY IS LOST IN A SMALL POPULATION WHEN EBOOK 01 July, 2018 DOC GENETIC DIVERSITY IS LOST IN A SMALL POPULATION WHEN EBOOK Document Filetype: PDF 164.8 KB 0 DOC GENETIC DIVERSITY IS LOST IN A SMALL POPULATION WHEN EBOOK How might genetic drift affect

More information

HARDY-WEINBERG EQUILIBRIUM

HARDY-WEINBERG EQUILIBRIUM HARDY-WEINBERG EQUILIBRIUM At the time that Mendel's work was rediscovered, people began to question if "dominant genes" (alleles) shouldn't "take over" and spread through the population. Hardy and Weinberg

More information

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers.

Average % If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Average 50.83% If you want to complete quiz corrections for extra credit you must come after school Starting new topic today. Grab your clickers. Evolution AP BIO Pacing Evolution Today Mutations Gene

More information

Chapter 16: How Populations Evolve

Chapter 16: How Populations Evolve Chapter 16: How Populations Evolve AP Curriculum Alignment Evolution is a change in the genetic makeup of a population over time, with natural selection its major driving mechanism. This is a major component

More information

Mutation. ! Mutation occurs when a DNA gene is damaged or changed in such a way as to alter the genetic message carried by that gene

Mutation. ! Mutation occurs when a DNA gene is damaged or changed in such a way as to alter the genetic message carried by that gene Mutations Mutation The term mutation is derived from Latin word meaning to change.! Mutation occurs when a DNA gene is damaged or changed in such a way as to alter the genetic message carried by that gene!

More information

Genetic Equilibrium: Human Diversity Student Version

Genetic Equilibrium: Human Diversity Student Version Genetic Equilibrium: Human Diversity Student Version Key Concepts: A population is a group of organisms of the same species that live and breed in the same area. Alleles are alternate forms of genes. In

More information

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human?

TEST FORM A. 2. Based on current estimates of mutation rate, how many mutations in protein encoding genes are typical for each human? TEST FORM A Evolution PCB 4673 Exam # 2 Name SSN Multiple Choice: 3 points each 1. The horseshoe crab is a so-called living fossil because there are ancient species that looked very similar to the present-day

More information

Chapter 23: The Evolution of Populations

Chapter 23: The Evolution of Populations AP Biology Reading Guide Name Chapter 23: The Evolution of Populations This chapter begins with the idea that we focused on as we closed the last chapter: Individuals do not evolve! Populations evolve.

More information

Examining the Parameters of the Hardy-Weinberg Equation using an Excel Spreadsheet Part 1

Examining the Parameters of the Hardy-Weinberg Equation using an Excel Spreadsheet Part 1 Examining the Parameters of the Hardy-Weinberg Equation using an Excel Spreadsheet Part 1 Part A - Essential Knowledge Background Information 1 Key Vocabulary Hardy-Weinberg Equation Hardy-Weinberg Equilibrium

More information

Chapter 25 Population Genetics

Chapter 25 Population Genetics Chapter 25 Population Genetics Population Genetics -- the discipline within evolutionary biology that studies changes in allele frequencies. Population -- a group of individuals from the same species that

More information

Introduction Chapter 23 - EVOLUTION of

Introduction Chapter 23 - EVOLUTION of Introduction Chapter 23 - EVOLUTION of POPULATIONS The blue-footed booby has adaptations that make it suited to its environment. These include webbed feet, streamlined shape that minimizes friction when

More information

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common?

The Modern Synthesis. Terms and Concepts. Evolutionary Processes. I. Introduction: Where do we go from here? What do these things have in common? Evolutionary Processes I. Introduction - The modern synthesis Reading: Chap. 25 II. No evolution: Hardy-Weinberg equilibrium A. Population genetics B. Assumptions of H-W III. Causes of microevolution (forces

More information

Basic Concepts of Human Genetics

Basic Concepts of Human Genetics Basic Concepts of Human Genetics The genetic information of an individual is contained in 23 pairs of chromosomes. Every human cell contains the 23 pair of chromosomes. One pair is called sex chromosomes

More information

Saccharomyces cerevisiae. haploid =

Saccharomyces cerevisiae. haploid = In this lecture we are going to consider experiments on yeast, a very useful organism for genetic study. Yeast is more properly known as Saccharomyces cerevisiae, which is the single-celled microbe used

More information

Concepts: What are RFLPs and how do they act like genetic marker loci?

Concepts: What are RFLPs and how do they act like genetic marker loci? Restriction Fragment Length Polymorphisms (RFLPs) -1 Readings: Griffiths et al: 7th Edition: Ch. 12 pp. 384-386; Ch.13 pp404-407 8th Edition: pp. 364-366 Assigned Problems: 8th Ch. 11: 32, 34, 38-39 7th

More information

Genetic Variation Reading Assignment Answer the following questions in your JOURNAL while reading the accompanying packet. Genetic Variation 1.

Genetic Variation Reading Assignment Answer the following questions in your JOURNAL while reading the accompanying packet. Genetic Variation 1. Genetic Variation Reading Assignment Answer the following questions in your JOURNAL while reading the accompanying packet. Genetic Variation 1. In the diagram about genetic shuffling, what two phenomena

More information

COMPUTER SIMULATIONS AND PROBLEMS

COMPUTER SIMULATIONS AND PROBLEMS Exercise 1: Exploring Evolutionary Mechanisms with Theoretical Computer Simulations, and Calculation of Allele and Genotype Frequencies & Hardy-Weinberg Equilibrium Theory INTRODUCTION Evolution is defined

More information

EVOLUTION OF POPULATIONS Genes and Variation

EVOLUTION OF POPULATIONS Genes and Variation Section Outline Section 16-1 EVOLUTION OF POPULATIONS Genes and Variation When Darwin developed his theory of evolution, he didn t know how HEREDITY worked. http://www.answers.com/topic/gregor-mendel Mendel

More information

Genetic variation, genetic drift (summary of topics)

Genetic variation, genetic drift (summary of topics) Bio 1B Lecture Outline (please print and bring along) Fall, 2007 B.D. Mishler, Dept. of Integrative Biology 2-6810, bmishler@berkeley.edu Evolution lecture #11 -- Hardy Weinberg departures: genetic variation

More information

What determines if a mutation is deleterious, neutral, or beneficial?

What determines if a mutation is deleterious, neutral, or beneficial? BIO 184 - PAL Problem Set Lecture 6 (Brooker Chapter 18) Mutations Section A. Types of mutations Define and give an example the following terms: allele; phenotype; genotype; Define and give an example

More information

LAB 12 Natural Selection INTRODUCTION

LAB 12 Natural Selection INTRODUCTION LAB 12 Natural Selection Objectives 1. Model evolution by natural selection. 2. Determine allele frequencies within a population. 3. Use the Hardy-Weinberg equation to calculate probability of each genotype

More information

Mutations during meiosis and germ line division lead to genetic variation between individuals

Mutations during meiosis and germ line division lead to genetic variation between individuals Mutations during meiosis and germ line division lead to genetic variation between individuals Types of mutations: point mutations indels (insertion/deletion) copy number variation structural rearrangements

More information

Conifer Translational Genomics Network Coordinated Agricultural Project

Conifer Translational Genomics Network Coordinated Agricultural Project Conifer Translational Genomics Network Coordinated Agricultural Project Genomics in Tree Breeding and Forest Ecosystem Management ----- Module 3 Population Genetics Nicholas Wheeler & David Harry Oregon

More information

Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, Problem 1: Genetic Drift as a Force of Evolution

Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, Problem 1: Genetic Drift as a Force of Evolution Bi/Ge105: Evolution Homework 3 Due Date: Thursday, March 01, 2018 1 Problem 1: Genetic Drift as a Force of Evolution 1.1 Simulating the processes of evolution In class we learned about the mathematical

More information

Selection and genetic drift

Selection and genetic drift Selection and genetic drift Introduction There are three basic facts about genetic drift that I really want you to remember, even if you forget everything else I ve told you about it: 1. Allele frequencies

More information

Detecting selection on nucleotide polymorphisms

Detecting selection on nucleotide polymorphisms Detecting selection on nucleotide polymorphisms Introduction At this point, we ve refined the neutral theory quite a bit. Our understanding of how molecules evolve now recognizes that some substitutions

More information

The Evolution of Populations

The Evolution of Populations The Evolution of Populations Population genetics Population: a localized group of individuals belonging to the same species Species: a group of populations whose individuals have the potential to interbreed

More information

The Evolution of Populations

The Evolution of Populations Chapter 23 The Evolution of Populations PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Random Allelic Variation

Random Allelic Variation Random Allelic Variation AKA Genetic Drift Genetic Drift a non-adaptive mechanism of evolution (therefore, a theory of evolution) that sometimes operates simultaneously with others, such as natural selection

More information

Neutrality Test. Neutrality tests allow us to: Challenges in neutrality tests. differences. data. - Identify causes of species-specific phenotype

Neutrality Test. Neutrality tests allow us to: Challenges in neutrality tests. differences. data. - Identify causes of species-specific phenotype Neutrality Test First suggested by Kimura (1968) and King and Jukes (1969) Shift to using neutrality as a null hypothesis in positive selection and selection sweep tests Positive selection is when a new

More information

Population Genetics and Evolution

Population Genetics and Evolution Population Genetics and Evolution Forces of Evolution DETERMINISTIC: direction of change predictable Mutation Migration Natural Selection STOCHASTIC: direction of change unknowable (none exp.) Genetic

More information

Park /12. Yudin /19. Li /26. Song /9

Park /12. Yudin /19. Li /26. Song /9 Each student is responsible for (1) preparing the slides and (2) leading the discussion (from problems) related to his/her assigned sections. For uniformity, we will use a single Powerpoint template throughout.

More information

A) (5 points) As the starting step isolate genomic DNA from

A) (5 points) As the starting step isolate genomic DNA from GS Final Exam Spring 00 NAME. bub ts is a recessive temperature sensitive mutation in yeast. At º C bub ts cells grow normally, but at º C they die. Use the information below to clone the wild-type BUB

More information

February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory

February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory February 10, 2005 Bio 107/207 Winter 2005 Lecture 12 Molecular population genetics. I. Neutral theory Classical versus balanced views of genome structure - like many controversies in evolutionary biology,

More information