Presenter: Suprvisor: Selection, Scale up and Operation of Bioreactors

Size: px
Start display at page:

Download "Presenter: Suprvisor: Selection, Scale up and Operation of Bioreactors"

Transcription

1 In the Name of God Presenter: Maryam Shahmansouri Suprvisor: Dr.Reza Gheshlaghi Selection, Scale up and Operation of Bioreactors (Chapter 10 Shuler) 1

2 Outline types of Bioreactors problems in large reactors Scale-up Scale-down 3 Classification types of Bioreactors Operation modes: - batch: stirred tank. - continuous:chemostat, fluidized-bed. - modified types of the above modes:fed-batch, chemostat with recycle, multi-stage continuous reactors. Oxygen supply: - aerobic: airlift. - anaerobic Application of energy: -Mechanical (mixers) -Pneumatic -Hydraulic Control of cell growth - Chemostat - Turbidostat 4 2

3 Basic Reactor types Stirred-tank reactor Reactors with internal mechanical agitation. Bubble columns reactors that rely on gas sparging for agitation. Loop reactors reactors that mixing and liquid circulation are induced by the motion of an injected gas, by a mechanical pump, or by a combination of the two. (Airlift, propeller loop, jet loop reactor) Three-phase reactors are difficult to design 5 Mechanical (stirred tank reactors with different stirrers) deflector plate deflector Plate(baffels) supply air supply air marine impellers Axial flow For low viscosity media For cellular systems with high levels of shear sensitivity. Disc impellers Radial flow For high viscosity media Most commonly used bioreactor type(highly flexible, provide high heat & mass transfer) High energy consumption 6 3

4 Pneumatic Bubble column Advantages: Highly distributed gas bubbles Suitable for low viscosity Newtonian broths Provide a higher energy efficiency than STR Provide a low-shear environment. Absence of mechanical agitation reduces cost and eliminates one potential entry point for contaminants. supply air exhaust air Disadvantages: less vigorous mixing capabilities than STR Mixing may not be possible in highly viscous broths. Less flexible than STR. Work over a rather narrow range of gas flow rates (foaming,bubble coalescence,nature of the broth) 7 Pneumatic loop reactor (airlift) Advantages: low shear forces cultivation of animal ells Low energy consumption Can generally handle somewhat more viscous fluids than bubble column Coalescence is not so much of problem exhaust air inner catalyst tube Disadvantages: The interchange of material between fluid elements is small, so the transient time to circulate is important. supply air 8 4

5 Main problems in large reactors The abilities of the design to provide an adequate supply of oxygen. Remove metabolic heat efficiently. Foaming sterility 9 Aeration(oxygen supply) For industrial-scale fermenters, oxygen supply and heat removal are the key design limitations. Oxygen transfer from gas bubbles to cells is usually limited by oxygen transfer through the liquid film surrounding the gas bubbles. 10 5

6 Aeration The rate of oxygen transfer from the gas to liquid phase is given by: K L : Oxygen transfer coefficient(cm/h) a : gas-liquid interfacial area(cm 3 /Cm 2 ) K L a : volumetric oxygen transfer coefficient(h -1 ) C * :saturated DO concentration(mg/l) C L : actual DO concentration(mg/l) N O2 : rate of oxygen transfer(mg/l.h) OTR : oxygen transfer rate O 2 gas bubble cells transmission of oxygen 11 Aeration The rate of oxygen uptake is denoted as OUR(oxygen uptake rate) : specific rate of oxygen consumption (mg O2 /g dw cells.h) : yield coefficient on oxygen (g dw cells/go2) :cell concentration (g dw cells/l) When oxygen transfer is rate-limiting step, the rate of oxygen Consumption is equal to the rate of oxygen transfer. If the maintenance Requirement of O2 is negligible compared to growth, then 12 6

7 Aeration Demand side Supply side The value of OUR: In large-scale systems are 40 to 200 (mmol/l.h) In most systems in the range of 40 to 60 (mmol/l.h) 13 Aeration A wide range of equations has been suggested for the estimation of K l a. K:empirical constant :Power requirement in an aerated bioreactor :bioreactor volume :superficial gas exit speed N : rotational speed of agitator K:constant based on reactor geometry : power required in ungased fermenter : impeller diameter Q: aeration rate(volume of gas supplied per minute divided by the liquid volume in the reactor) 14 7

8 Aeration Main factors effect on K L a & C* presence of salts and surfactants can significantly alter bubble size and liquid film resistance around the gas bubble. Temperature Pressure Vessel geometry Operation Fluid properties Presence of biomass Note1: On the supply side, C L should be maintained at a value above the critical oxygen concentration but at a low enough value to provide good oxygen transfer. Note2: one complication, in all methods is the value of C * to use. C * is proportional to po 2.at the sparger point, po 2 will be significantly higher than at the exit. 15 Aeration Although K L a is difficult to predict, it is measurable parameter. Methods of Measurement of K l a in a Bioreactor Two basic methods for measuring K l a: Chemical methods(no cell present) Sodium sulfite oxidation method Absorption of CO2 Physical methods(with/without cells) Four approaches are commonly used :unsteady state, steady state, dynamic, sulfite test. 16 8

9 Aeration Methods of K l a Measurement: Steady-state method (best way) a) Whole reactor is used as a respirometer. b) uses a gaseous oxygen analyzer to measure the oxygen concentration both in the inlet and the outlet gas stream of the bioreactor c) uses a probe for measuring the dissolved oxygen concentration in the liquid An oxygen mass balance under steady-state conditions yields: 17 Aeration (Unsteady-state method) Unsteady-state method (without cell) a) Measured C*accurately. b) Oxygen is removed from the system by sparging with N2. c) Air is introduced and the change in DO is monitored until the solution is nearly saturated. integration 18 9

10 Aeration Sulfite method a) In the presence of Cu 2+ The sulfur in sulfite (SO 2-3 ) is oxidized to sulfate (SO 2-4 ) in a zero order reaction. b) This reaction is very rapid and consequently C L approaches zero. c) Rate of sulfate formation is monitored and is proportional to the rate of oxygen consumption (1/2 mol of O 2 is consumed to product 1 mol of SO 2-4. desadvantages: the sulfite method probably overestimates K l a. physicochemical properties are very different from those of fermentation broths. 19 Aeration Dynamic method a) this method shares similarities with the steady-state method in that it uses a fermenter with active cells. b) It is simpler in that is requires only a dissolved oxygen(do). c) It is requires that the air supply be shut off for a short period (eq<5 min)and then turned back on. The governing equation for DO levels is: There is no gas bubble when the gas is off The lowest value of C L must be above the critical oxygen concentration. Advantage K L a can be estimated under actual fermentation conditions. If q O2 is known, the value of OUR can be used to estimate X

11 DO 2 CONC. C L (mm O 2 /L) C L STEADY-STATE C L,CRIT AIR-OFF AIR-ON Aerator off Aerator on TIME (MIN) 3-5 The slope of the descending curve will give the OUR or. When air sparsing is resumed, the ascending curve can be used to calculate K L a. A plot of versus result in a line with a slope of K L a 21 Heat removal In aerobic fermentation,since oxygen is the final electron acceptor, the rate of metabolic heat evolution can roughly be correlated to the rate of oxygen uptake. The total amount of cooling surface (either jacket or coil) required can be calculated by: given the temperature of the cooling water the maximum flow rates allowable the desired temperature differential between the exiting coolant and the reactor and the overall heat transfer coefficient

12 Scale-up What is Scale-up? Study of problems associated with the transfer of experimental data from laboratory and pilot-plant equipment to large scale industrial equipment. No actual data or correlation exist for scale-up. Stages Bench Scale ( 2 20 L) Pilot Scale ( L) Plant Scale (500 20,000 L) 23 Scale-up scale-up the box below To make a box twice as big, just 3 multiply the dimensions by 2 and 6 3 you have the scaled dimensions. 6 The same type of bioreactors of different size may be: Geometrically similar Geometrically non-similar The scale-related volume and surface area are fundamental physical parameters that can not be maintained at a constant state. As a result of scaling up, whether geometrically similar or not, the scale related surface area per unit volume will be decrease

13 Scale-up Preservation of Geometrical Similarity: H L1 /D t1 = H L2 /D t2 =.. = H L3 /D t3.=2/1 or 3/1 Unlike a vessel s dimensions, manufacturing process parameters should not be scaled linearly. Linear scaling of process parameters would produce undesired results and can greatly affect cell growth. HL3 HL1 HL2 DT1 DT2 DT3 LAB SCALE PILOT SCALE COMMERCIAL SCALE Geometric Scale-up of Bioreactors 25 Scale-up Problems in scale-up Surface-to-volume ratio decreases dramatically during scale up Wall growth in bacterial and fungal fermentation. Physical conditions in a large fermenter can never exactly duplicate those in a smaller fermenter if geometric similarity is maintained

14 Scale-up Scale up rules can be used to establish which parameters will be varied and how? Rules o Constant power input(p 0 /V) implies constant OTR o Constant impeller rotation number(n) give constant mixing time. o Constant impeller tip speed(ndi) give constant shear. o Constant Reynolds number( ) implies geometrically similar flow pattern. 27 Scale-up Important depended variables used in scale-up. 1. Energy input P N 3 D i 5 2. Energy input/volume P/V N 3 D i 2 3. Pump rate of impeller Q N D 3 i 4. Pump rate of impeller/volume Q/V N 5. Impeller Tip Velocity V t = (2 R)(N) = ( D i )(N) 6. Reynolds Number N Re = ND i2 /. Scale-up criterion in general are a function of independent variables N, Di

15 Scale-up the choice of scale-up criterion depends On two considerations: a) Nature of the fermentation and morphology of the microorganism. b) During scale-up, what is the objective parameter of fermentation we wish to optimize (maximize). 29 Scale-up Example geometric similarity was applied. N i2 N i1 SCALE-UP 80 L 10,000 L Volumetric scale-up ratio = V 2 /V 1 = 10,000/80 = 125 Impeller diameter scale-up ratio = D i2 /D i1 =

16 Independence of scale up parameters Constant, Re Scale-up Traditional scale up is highly empirical and make sense only if there is no change in the controlling regime during scale up. In empirical scale up operating parameters for the large scale are often determined experimentally (i.e. trial and error). Example: if constant DO is desirable, then the setpoint value for DO is maintained at the large scale, and other parameters (agitation speed, aeration rate,...) are varied to ensure the setpoint is achieved

17 Scale-down What is Scale-down? The basic concept is to provide at a smaller scale an experimental system that duplicates exactly the same heterogeneity in environment that exists at the large scale. Advantages: In many case scale-up will require using existing production facilities, but scale-down dose not. At the smaller scale many parameters can be tested more quickly and inexpensively than at the production scale. A small-scale system can be used to evaluate proposed process changes for an existing operating process. 33 Sterility: means the absence of any detectable viable organism. Sterility is an absolute concept ;a system is never partially or almost sterile. Pure culture: means that only the desired organism is detectably present. Disinfection: means reduce the number of viable organisms, often specific type of organisms, to a low, but none zero value. Death: means the failure of the cell, spores, or virus to reproduce or germinate when placed in a favorable environment

18 Reasons for sterilization 1. Economic penalty for contamination is high. 2. Many fermentation must be absolutely devoid of foreign organisms. 3. Recombinant DNA fermentations-exit streams must be sterilized

19 37 Spores of bacillus stearothermophilus E.coli N = number of viable spores or cells at any time, N 0 = original number of viable spores or cells

20 39 Dependence of the specific death rate on temperature is given by Arrhnius equation: R:gas constant T:absolute temperature E 0d :activation energy for the death of the organism( kcal/g-mol) Spores of bacillus stearothermophilus E.coli E 0d =127( kcal/g-mol) Vitamins and growth factors in many media E 0d =70( kcal/g-mol) E 0d =2-20( kcal/g-mol) Most thermal sterilizations take place at 121 c.the values for k d in such situations are very high for vegetative cells(often> min -1 ). For spores the values of k d typically range from min

21 The main factors in any sterilization protocol are: Temperature and ph of environment Time of exposure Initial number of organisms that must be killed Nature of microbes in the population Presence of solvents, organic matter, or inhibitors 41 Problems of sterilization increase with scale up Example: Consider the probability of an unsuccessful sterilization in a1l and 1000L reactor, where each contains the same identical solution, if k d t=15 and n0( concentration of particles)= 10 4 spores/l then: 42 21

22 43 Use of sterilization chart: 1. Spesify1-P 0 (t) which is acceptable 2. Determine N 0 in the system 3. Read k d t from the chart 4. With knowing k d for spores or cells, obtained requred time,t. Example:1-P 0 (t)=0.001, N 0= 10 8, k d =1 min c From the chart K d t=26 t=26min 44 22

23 Steam sterilization can be accomplished batch wise, often in situ in the fermentation vessel, or in a continuous apparatus. 45 Batch sterilization Disadvantages: Thermal lags Incomplete mixing Time required to heat (121 C)and to cool it back(37 C) is often much longer than the time of exposure to the desired temperature. For most spores Kd falls very rapidly with temperature so heat-up and cool-down periods do littleto augment spore killing. Elevated temperature during Heat-up and cool-down can be very damaging to vitamins and proteins

24 Continuous sterilization Advantages: Particularly a high-temperature, short exposure time, can achieve complete sterilization. Both the heat-up and cool-down period are very rapid Easier to control and reduce downtime in the fermenters. Disadvantages: Dilution of medium with steam injection Foaming

25 49 25

Scale-up in Bioprocess Sandip Bankar and Tero Eerikainen

Scale-up in Bioprocess Sandip Bankar and Tero Eerikainen Scale-up in Bioprocess and Tero Eerikainen sandip.bankar@aalto.fi CONTROL OF BIOPROCESS SANDIP BANKAR AND TERO EERIKAINEN sandip.bankar@aalto.fi https://www.sartorius.com/en/products/bioreactors-fermentors/single-use/biostat-str/

More information

a. Sulfite Oxidation (Cooper, Ind. Eng. Chem. 336, 504, 1944)

a. Sulfite Oxidation (Cooper, Ind. Eng. Chem. 336, 504, 1944) 7. Measurement of k L a and OUR a. Sulfite Oxidation (Cooper, Ind. Eng. Chem. 336, 504, 1944) Relies on the rate of conversion of 0.5 M sodium sulfite to sodium sulfate in the presence of cobalt ion catalyst:

More information

Bioreactor System ERT 314. Sidang /2012

Bioreactor System ERT 314. Sidang /2012 Bioreactor System ERT 314 Sidang 1 2011/2012 Chapter 3:Types of Bioreactors Week 4-5 Handouts : Chapter 13 in Doran, Bioprocess Engineering Principles Background to Bioreactors The bioreactor is the heart

More information

CHAPTER 2 CULTURE TYPE

CHAPTER 2 CULTURE TYPE CHAPTER 2 CULTURE TYPE All types of micro-organisms are grown in suspension with the exception of cell culture, in which cells can also be anchorage dependent. Suspension the micro-organism can grow successfully

More information

Evaluating the Use of Airlift Pumps for Bioreactor Applications

Evaluating the Use of Airlift Pumps for Bioreactor Applications Proceedings of the 4 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'17) Toronto, Canada August 21 23, 2017 Paper No. 134 DOI: 10.11159/ffhmt17.134 Evaluating the Use of Airlift

More information

Scale-up & scale-down between the two. worlds of shaken and stirred bioreactors

Scale-up & scale-down between the two. worlds of shaken and stirred bioreactors Scale-up & scale-down between the two worlds of shaken and stirred bioreactors Prof. Dr.-Ing. Jochen Büchs AVT - Biochemical Engineering, RWTH Aachen University Sammelbau Biologie, D - 52074 Aachen, Germany

More information

PTT304 Fermentation Technology. Sterilization and Equipment

PTT304 Fermentation Technology. Sterilization and Equipment PTT304 Fermentation Technology Sterilization and Equipment Sterilization Reading assignments: Chapter 10 Shuler & Kargi Sterilization Fermentation process involves cultivation of a single microorganisms,

More information

2.4 TYPES OF MICROBIAL CULTURE

2.4 TYPES OF MICROBIAL CULTURE 2.4 TYPES OF MICROBIAL CULTURE Microbial culture processes can be carried out in different ways. There are three models of fermentation used in industrial applications: batch, continuous and fed batch

More information

Contents. Preface XI Nomenclature XIII. Part I Basic Concepts and Principles 1

Contents. Preface XI Nomenclature XIII. Part I Basic Concepts and Principles 1 V Preface XI Nomenclature XIII Part I Basic Concepts and Principles 1 1 Introduction 3 1.1 Background and Scope 3 1.2 Dimensions and Units 4 1.3 Intensive and Extensive Properties 6 1.4 Equilibria and

More information

Scalability of the Mobius CellReady Single-use Bioreactor Systems

Scalability of the Mobius CellReady Single-use Bioreactor Systems Application Note Scalability of the Mobius CellReady Single-use Bioreactor Systems Abstract The Mobius CellReady single-use bioreactor systems are designed for mammalian cell growth and recombinant protein

More information

KGC SCIENTIFIC FERMENTER DESIGN INDUSTRIAL SCALE

KGC SCIENTIFIC  FERMENTER DESIGN INDUSTRIAL SCALE KGC SCIENTIFIC www.kgcscientific.com FERMENTER DESIGN INDUSTRIAL SCALE Definition of Biotechnology Utilization of bioprocess using microorganism, plant tissue, and animal cell, and components of them for

More information

BCT Loop Reactor Technology

BCT Loop Reactor Technology BCT Loop Reactor Technology By BUSS ChemTech AG www.buss-ct.com Hohenrainstrasse 10 CH-4133 Pratteln 1, Switzerland Tel. + 41 (0) 618 256 462 Fax. +41 (0) 618 256 737 Abstract This paper highlights the

More information

PROCESS ECONOMICS PROGRAM

PROCESS ECONOMICS PROGRAM PROCESS ECONOMICS PROGRAM Abstract Process Economics Program Report No. 188 SRI INTERNATIONAL Menlo Park, California 94025 BIOTl3CHNOLOCY REACTION SYSTEMS (March 1987) Most bioreactions are carried out

More information

Chapter 7 Mass Transfer

Chapter 7 Mass Transfer Chapter 7 Mass Transfer Mass transfer occurs in mixtures containing local concentration variation. For example, when dye is dropped into a cup of water, mass-transfer processes are responsible for the

More information

Homework #6. From the primary textbook (Shuler, et. al. 3 rd ed.), problems 10.2, 10.5, 10.8.

Homework #6. From the primary textbook (Shuler, et. al. 3 rd ed.), problems 10.2, 10.5, 10.8. Homework #6 From the primary textbook (Shuler, et. al. 3 rd ed.), problems 10.2, 10.5, 10.8. CBEN 460 Fall 2017 1 October 18, 2017 AMANULLAH, A., J. M. 0TERRO, M. MIKOLA, A. Hsu, J. ZHANG, J. AUNINS, H.

More information

Fundamentals and Applications of Biofilms Bacterial Biofilm Formation and Culture

Fundamentals and Applications of Biofilms Bacterial Biofilm Formation and Culture 1 Fundamentals and Applications of Biofilms Bacterial Biofilm Formation and Culture Ching-Tsan Huang ( 黃慶璨 ) Office: Agronomy Building, Room 111 Tel: (02) 33664454 E-mail: cthuang@ntu.edu.tw 2 Introduction

More information

M. TECH. BIOTECHNOLOGY (Evening) SEMESTER II

M. TECH. BIOTECHNOLOGY (Evening) SEMESTER II M. TECH. BIOTECHNOLOGY (Evening) SEMESTER II S. No. Course Category Subject code Subject Periods Evaluation Scheme Subject Total Sessional Exam L T P C CT TA Total ESE 1 DC BEE-507 Fermentation Technology

More information

BIOREACTOR ENGINEERING Chapter 8. Faculty of Chemical & Natural Resources Engineering Bioreactor/Fermenter Systems by Chew Few Ne

BIOREACTOR ENGINEERING Chapter 8. Faculty of Chemical & Natural Resources Engineering Bioreactor/Fermenter Systems by Chew Few Ne BIOREACTOR ENGINEERING Chapter 8 Bioreactor/Fermenter Systems by Chew Few Ne Faculty of Chemical & Natural Resources Engineering cfne@ump.edu.my Chapter Description Topic Outcome Classify types of bioreactor/fermenter

More information

6.1 Mixing Equipment. Fig. 6.1 A standard tank with a working volume of 100 M 3 and used for penicillin production

6.1 Mixing Equipment. Fig. 6.1 A standard tank with a working volume of 100 M 3 and used for penicillin production Chapter 6 Mixing Mixing, a physical process which aims at reducing non-uniformities in fluids by eliminating gradients of concentration, temperature, and other properties, is happening within every bioreactor.

More information

Cells and Cell Cultures

Cells and Cell Cultures Cells and Cell Cultures Beyond pure enzymes, whole cells are used and grown in biotechnological applications for a variety of reasons: cells may perform a desired transformation of a substrate, the cells

More information

10.2 Applications 579

10.2 Applications 579 1.2 Applications 579 Figure 1.5: Cell infection by a virus. The cells are uniformly distributed, and the virus is placed initially in the center and diffuses outward. The cells fluoresce after they become

More information

Continuous bioremediation of phenol polluted air in an external loop airlift bioreactor with packed bed Hossein Nikakhtari 1 and Gordon A.

Continuous bioremediation of phenol polluted air in an external loop airlift bioreactor with packed bed Hossein Nikakhtari 1 and Gordon A. CONTINUOUS BIOREMEDIATION OF PHENOL POLLUTED AIR IN AN EXTERNAL LOOP AIRLIFT BIOREACTOR 211 Continuous bioremediation of phenol polluted air in an external loop airlift bioreactor with packed bed Hossein

More information

Outline. Upstream Processing: Development & Optimization

Outline. Upstream Processing: Development & Optimization Upstream Processing: Development & Optimization Kamal Rashid, Ph.D., Director Biomanufacturing Education & Training Center Worcester Polytechnic Institute Outline Introduction to Upstream processing Microbial

More information

Fermenter System Bioreactor Lab / Pilot / Industrial Fermenter Automation Fermenter System

Fermenter System Bioreactor Lab / Pilot / Industrial Fermenter Automation Fermenter System Fermenter System Bioreactor Lab / Pilot / Industrial Fermenter Automation Fermenter System About us CNS Co., Ltd. has reached exclusive position in fermenter development, design, and manufacturing area.

More information

Bio Reactor Systems. Contact for further information, or call +44 (0)

Bio Reactor Systems. Contact for further information, or call +44 (0) Bio Reactor Systems The bench mark for R+D Bio-reactors Single and parallel fully automated, modular systems Aerobic, anaerobic plus microbial, cell cultures and bio-fuels Range of interchangeable size

More information

Pump Performance Curves and Matching a Pump to a Piping System

Pump Performance Curves and Matching a Pump to a Piping System Pump Performance Curves and Matching a Pump to a Piping System Fundamental Parameters Some fundamental parameters are used to analyze the performance of a pump Mass flow rate (Volumetric Flow rate in case

More information

Pump Performance Curves and Matching a Pump to a Piping System

Pump Performance Curves and Matching a Pump to a Piping System Pump Performance Curves and Matching a Pump to a Piping System Fundamental Parameters Some fundamental parameters are used to analyze the performance of a pump Mass flow rate (Volumetric Flow rate in case

More information

Pfenex : A Fermentation Platform based on Pseudomonas fluorescens

Pfenex : A Fermentation Platform based on Pseudomonas fluorescens Pfenex : A Fermentation Platform based on Pseudomonas fluorescens Deisy Corredor, PhD. Upstream Group Leader Global Bio-Production Summit Feb 6 th - 2018 Outline Fermentation Process Development Scale-Up

More information

Shehab. Yousef... Omar. Yousef Omar. Anas

Shehab. Yousef... Omar. Yousef Omar. Anas 3 Shehab Yousef Omar Yousef... Omar Anas Bacterial Growth and Survival After discussing the structure of a Bacteria, we must know how it survive and grow in a specific media. Firstly, the survival of any

More information

Single-Use Cultivation in a Classical Format:

Single-Use Cultivation in a Classical Format: Single-Use Cultivation in a Classical Format: Reflecting the demand for single-use manufacturing by implementing stirred single-use bioreactors based on classical standards Dr. Andreas Kocourek, Sartorius

More information

Bioreactor System ERT 314. Sidang /2011

Bioreactor System ERT 314. Sidang /2011 Bioreactor System ERT 314 Sidang 1 2010/2011 Chapter 2:Types of Bioreactors Week 2 Choosing the Cultivation Method The Choice of Bioreactor Affects Many Aspects of Bioprocessing. Product concentration

More information

Surface Aeration System Modeling Using COMSOL

Surface Aeration System Modeling Using COMSOL Surface Aeration System Modeling Using COMSOL George Selembo, PhD, PE Priscilla Selembo, PhD James Stanton Gregory Paulsen, PE Presented at the 2011 COMSOL Conference October 14 Presentation Outline Motivation

More information

Driving Innovation Through Bioengineering Solutions. a world-class business in a global hub for biotechnology

Driving Innovation Through Bioengineering Solutions. a world-class business in a global hub for biotechnology Driving Innovation Through Bioengineering Solutions a world-class business in a global hub for biotechnology Process Scale-Up & Tech Transfer Capabilities Unique blend of engineering and biotechnology

More information

TECHNICAL PAPER. Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1. By: Dr.

TECHNICAL PAPER. Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1. By: Dr. TECHNICAL PAPER Stirred Bioreactor Engineering for Production Scale, Low Viscosity Aerobic Fermentations: Part 1 By: Dr. Alvin Nienow Senior Technical Consultant The Merrick Consultancy Merrick & Company

More information

Chapter 10 Material Balances for Processes Involving Reaction 10.1 Species Material Balances Processes Involving a Single Reaction

Chapter 10 Material Balances for Processes Involving Reaction 10.1 Species Material Balances Processes Involving a Single Reaction Chapter 10 Material Balances for Processes Involving Reaction 10.1 Species Material Balances 10.1.1 Processes Involving a Single Reaction The material balance for a species must be augmented to include

More information

Homework #3. From the textbook, problems 9.1, 9.2, 9.3, 9.10, In 9.2 use q P = 0.02 g P / g cell h.

Homework #3. From the textbook, problems 9.1, 9.2, 9.3, 9.10, In 9.2 use q P = 0.02 g P / g cell h. Homework #3 From the textbook, problems 9.1, 9.2, 9.3, 9.10, 9.15 In 9.2 use q P = 0.02 g P / g cell h. In 9.10 the factor k s is k d, the kinetic factor for the cell death. Also, use r=0 for part (b)

More information

LARGE SCALE PRODUCTION OF LACCASE BY PLEUROTUS OSTREATUS IMI IN BIOREACTOR

LARGE SCALE PRODUCTION OF LACCASE BY PLEUROTUS OSTREATUS IMI IN BIOREACTOR LARGE SCALE PRODUCTION OF LACCASE BY PLEUROTUS OSTREATUS IMI 395545 IN BIOREACTOR ABSTRACT In this chapter large scale laccase production from Pleurotus ostreatus IMI 395545 in a bench top bioreactor was

More information

Trickle bed reactor diluted with ne particles and coiled tubular ow-type reactor for kinetic measurements without external effects

Trickle bed reactor diluted with ne particles and coiled tubular ow-type reactor for kinetic measurements without external effects Catalysis Today 48 (1999) 301±306 Trickle bed reactor diluted with ne particles and coiled tubular ow-type reactor for kinetic measurements without external effects Hiroshi Yamada, Takafumi Naruse, Shigeo

More information

Critical Analytical Measurements for Bioreactor Optimization. controlling an organism s chemical environment leads to consistent and

Critical Analytical Measurements for Bioreactor Optimization. controlling an organism s chemical environment leads to consistent and Critical Analytical Measurements for Bioreactor Optimization Mettler-Toledo Ingold, Inc., Bedford, MA Abstract Most bioreactor processes share a basic principle; optimizing and controlling an organism

More information

MIXING IMPACT ON ANTISOLVENT CRYSTALLIZATIONS. Dr. Wayne Genck Genck International

MIXING IMPACT ON ANTISOLVENT CRYSTALLIZATIONS. Dr. Wayne Genck Genck International MIXING IMPACT ON ANTISOLVENT CRYSTALLIZATIONS Dr. Wayne Genck Genck International Agitator Parameters Table 1. Agitator Parameters Agitator Type N P N Q (Q/P) R PBT Hydrofoil Rushton GL Retreat Blade*

More information

Basic design of laboratory bioreactor

Basic design of laboratory bioreactor Basic design of laboratory bioreactor In terms of the construction, the following variants of the laboratory bioreactor can be made: 1. Glass bioreactor (without a jacket) with an upper stainless steel

More information

9 Reasons To Consider A Single-Use Fermentor

9 Reasons To Consider A Single-Use Fermentor 9 Reasons To Consider A Single-Use Fermentor Dedicated Fermentation Technology Replacing Stainless Steel Systems in Bioprocess Markets By Nephi Jones Historically, the rigorous performance demands of industrial

More information

Bioreactors and Fermenters. Biometrix Corporation (800)

Bioreactors and Fermenters. Biometrix Corporation (800) Bioreactors and Fermenters Biometrix Corporation (800)-890-89 1 Course Objectives This lesson will discuss bioreactors including basic operations, typical instrumentation configurations and calibration

More information

Advances in Environmental Technology 4 (2016) Advances in Environmental Technology. journal homepage:

Advances in Environmental Technology 4 (2016) Advances in Environmental Technology. journal homepage: Advances in Environmental Technology 4 (2016) 179-184 Advances in Environmental Technology journal homepage: http://aet.irost.ir Hydrodynamics and mass transfer investigation in three-phase airlift reactors

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Computational Modeling of Industrial Biofuel Reactors Jaydeep Kulkarni Presenter: Genong Li Technical Account Manager ANSYS, Inc. 2008 ANSYS, Inc. All rights reserved.

More information

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR

A STUDY ON DENITRIFICATION IN A FLUIDIZED BED BIOREACTOR Refereed Proceedings The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering Engineering Conferences International Year 2010 A STUDY ON DENITRIFICATION IN A FLUIDIZED

More information

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor

Continuous Xylose Fermentation by Candida shehatae in a Two-Stage Reactor In: Scott, Charles D., ed. Proceedings of the 9th symposium on biotechnology for fuels and chemicals; 1987 May 5-8; Boulder, CO. In: Applied Biochemistry and Biotechnology. Clifton, NJ: Humana Press; 1988:

More information

A simple gas-liquid mass transfer jet system,

A simple gas-liquid mass transfer jet system, A simple gas-liquid mass transfer jet system, Roger Botton, Dominique Cosserat, Souhila Poncin, Gabriel Wild To cite this version: Roger Botton, Dominique Cosserat, Souhila Poncin, Gabriel Wild. A simple

More information

Attachment 18. Undergraduate Teaching Laboratory Facilities

Attachment 18. Undergraduate Teaching Laboratory Facilities Attachment 18. Undergraduate Teaching Laboratory Facilities The CHME Laboratory provides hands on instruction in the areas of instrumentation, transport phenomena, control systems, data collection and

More information

P. pastoris Fermentation using a BioFlo 110 Benchtop Fermentor

P. pastoris Fermentation using a BioFlo 110 Benchtop Fermentor P. pastoris Fermentation using a BioFlo 110 Benchtop Fermentor Introduction This Application Report is part of a series documenting culture growth in the BioFlo 110. With appropriate vessels and control

More information

Hideout of Sodium Phosphates in Steam Generator Crevices

Hideout of Sodium Phosphates in Steam Generator Crevices Hideout of Sodium Phosphates in Steam Generator Crevices By Gwendy Harrington Department of Chemical Engineering, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick, E3B 5A3 Abstract

More information

1433/06/28. Reactor Design

1433/06/28. Reactor Design Reactor Design 1 2 1 Algae Microalgae Macroalgae Algae cultivation can be achieved in two ways: Open ponds Photobioreactors (PBR) 3 Open ponds Easier to construct and operate than most closed systems Contamination

More information

Re-examination Cultivation Technology BB1300 & BB1120 Wednesday, 12 April 2017, 08:00-13:00.

Re-examination Cultivation Technology BB1300 & BB1120 Wednesday, 12 April 2017, 08:00-13:00. Re-examination Cultivation Technology BB1300 & BB1120 Wednesday, 12 April 2017, 08:00-13:00. Start each main question (1-4) on a separate paper. Write your name (clearly) on each page, number each question

More information

TOPIC: KNOWLEDGE: K1.01 [2.5/2.5]

TOPIC: KNOWLEDGE: K1.01 [2.5/2.5] KNOWLEDGE: K1.01 [2.5/2.5] P283 The transfer of heat from the reactor fuel pellets to the fuel cladding during normal plant operation is primarily accomplished via heat transfer. A. conduction B. convection

More information

Evaluation and Modeling of the Aerobic Stirred Bioreactor Performances for Fungus Broths

Evaluation and Modeling of the Aerobic Stirred Bioreactor Performances for Fungus Broths A.-I. GALACTION et al., Evaluation and Modeling of the Aerobic Stirred, Chem. Biochem. Eng. Q. 19 (1) 87 97 (2005) 87 Evaluation and Modeling of the Aerobic Stirred Bioreactor Performances for Fungus Broths

More information

New Developments in BioWin 5.3

New Developments in BioWin 5.3 New Developments in BioWin 5.3 December 6, 2017 BioWin 5.3 contains a new Granular Sludge Sequencing Tank element to model this process, which is gaining acceptance worldwide as an effective wastewater

More information

CRISTALIZATION UNIT YUSRON SUGIARTO

CRISTALIZATION UNIT YUSRON SUGIARTO CRISTALIZATION UNIT YUSRON SUGIARTO COURSE OUTCOMES CO DESCRIBE the basic principles and applications of crystallization process. CALCULATE the yields, material and energy balance in crystallization. OUTLINES

More information

Available online Research Article

Available online  Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(3):814-818 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Experimental studies on determination of volumetric

More information

GENERAL PROCESS CONSIDERATIONS IN THE SELECTION OF AGITATORS FOR SIMPLE APPLICATIONS AND IMPELLER DESIGN.

GENERAL PROCESS CONSIDERATIONS IN THE SELECTION OF AGITATORS FOR SIMPLE APPLICATIONS AND IMPELLER DESIGN. GENERAL PROCESS CONSIDERATIONS IN THE SELECTION OF AGITATORS FOR SIMPLE APPLICATIONS AND IMPELLER DESIGN. The first thing to keep in mind is proper positioning of the agitator with respect to the vessel

More information

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho

Chapter 9 Controlling Microbial Growth in the Environment. 10/1/ MDufilho Chapter 9 Controlling Microbial Growth in the Environment 10/1/2017 1 MDufilho Table 91 Terminology of Microbial Control 10/1/2017 MDufilho 2 Number of living microbes Figure 91 A plot of microbial death

More information

Solid State Fermentation (SSF)

Solid State Fermentation (SSF) Solid State Fermentation (SSF) What Is Solid State Fermentation? Solid-state fermentation (SSF) involves the growth of microorganisms on moist solid particles 1 What Is Solid State Fermentation? solid-substrate

More information

Fermentation monitoring. Dissolved oxygen ph Temperature Offgas monitoring Substrate (glucose)

Fermentation monitoring. Dissolved oxygen ph Temperature Offgas monitoring Substrate (glucose) Bioreactor Monitoring & Control Bioreactor Monitoring & Control Basic principles of process control Fermentation monitoring Dissolved oxygen ph Temperature Offgas monitoring Substrate (glucose) Useful

More information

Improving Single Use Bioreactor Design and Process Development: New Research Towards Intensifying Seed- Train and Scale-Up Methods Using 5:1 Turn-Down

Improving Single Use Bioreactor Design and Process Development: New Research Towards Intensifying Seed- Train and Scale-Up Methods Using 5:1 Turn-Down Improving Single Use Bioreactor Design and Process Development: New Research Towards Intensifying Seed- Train and Scale-Up Methods Using 5:1 Turn-Down Nephi Jones Advanced Technology R&D Manager BioProduction

More information

Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume

Efficient operation of the HyPerforma 5:1 Single-Use Bioreactor at low working volume APPLICATION NOTE HyPerforma : Single-Use Bioreactor Efficient operation of the HyPerforma : Single-Use Bioreactor at low working volume Introduction The Thermo Scientific HyPerforma : Single-Use Bioreactor

More information

Contents. 3 Introduction to Solid-State Fermentation Bioreactors...33

Contents. 3 Introduction to Solid-State Fermentation Bioreactors...33 Contents 1 Solid-State Fermentation Bioreactor Fundamentals: Introduction and Overview...1 David A. Mitchell, Marin Berovi, and Nadia Krieger 1.1 What Is Solid-state Fermentation?...1 1.2 Why Should We

More information

Aeration Systems Past, Present and Future. What to Expect from Aeration System Upgrades

Aeration Systems Past, Present and Future. What to Expect from Aeration System Upgrades Aeration Systems Past, Present and Future. What to Expect from Aeration System Upgrades Michael K. Stenstrom Professor, Civil and Environmental Engineering Department Outline Aeration system types Terminology

More information

Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization

Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization Report on the application of BlueSens gas sensor in continuous bioh 2 process optimization Péter Bakonyi, Nándor Nemestóthy, Katalin Bélafi-Bakó Research Institute on Bioengineering, Membrane Technology

More information

Advanced Analytical Chemistry Lecture 13. Chem 4631

Advanced Analytical Chemistry Lecture 13. Chem 4631 Advanced Analytical Chemistry Lecture 13 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Laboratory Testing of Safety Relief Valves

Laboratory Testing of Safety Relief Valves Laboratory Testing of Safety Relief Valves Thomas Kegel (tkegel@ceesi.com) and William Johansen (bjohansen@ceesi.com) Colorado Engineering Experiment Station, Inc. (CEESI) 5443 WCR 37, Nunn, Colorado 8648

More information

ADVANCED AGITATOR DESIGNS IN FERTILIZER MANUFACTURING PROCESSES

ADVANCED AGITATOR DESIGNS IN FERTILIZER MANUFACTURING PROCESSES ADVANCED AGITATOR DESIGNS IN FERTILIZER MANUFACTURING PROCESSES by Sebastian Abredadt Project Manager Sales EKATO FLUID Sales 79541 Lörrach, Germany Prepared for AIChE Central Florida Section Clearwater

More information

Deephams STW analysis of mixing chamber, aeration lanes and final settlement tanks

Deephams STW analysis of mixing chamber, aeration lanes and final settlement tanks www.waterprojectsonline.com Deephams STW analysis of mixing chamber, aeration lanes and final settlement tanks by Darrell A Egarr PhD CEng MIMechE D eephams STW, which is located in East London, is the

More information

Hydrodynamic and Mass Transfer Study in a Mechanically Stirred Hybrid Airlift Bioreactor Based on Impeller Type

Hydrodynamic and Mass Transfer Study in a Mechanically Stirred Hybrid Airlift Bioreactor Based on Impeller Type Hydrodynamic and Mass Transfer Study in a Mechanically Stirred Hybrid Bioreactor Based on Impeller Type Sérgio S. de Jesus, Aline Santana, and Rubens Maciel Filho Abstract The analysis of the influence

More information

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 02 Sterilization

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 02 Sterilization Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras Lecture - 02 Sterilization Welcome, to this second lecture on Bioreactors. This is a mooc on Bioreactors.

More information

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF

ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF ENVIRONMENTAL ENGINEERING LECTURE 3: WATER TREATMENT MISS NOR AIDA YUSOFF LEARNING OUTCOMES Define the concept and process of water treatment. Describe the concept of coagulation, flocculation, and sedimentation

More information

A joint venture with AG! ASAHI Glassplant Inc., JAPAN ACID CONCENTRATION PLANTS STANDARDS A TEAM SETS NEW

A joint venture with AG! ASAHI Glassplant Inc., JAPAN ACID CONCENTRATION PLANTS STANDARDS A TEAM SETS NEW A joint venture with AG! ASAHI Glassplant Inc., JAPAN ACID CONCENTRATION PLANTS A TEAM SETS NEW STANDARDS A joint venture with AG! ASAHI Glassplant Inc., JAPAN ACID CONCENTRATION PLANTS FROM IDEAL COMBINATION

More information

CFD on Small Flow Injection of Advanced Accumulator in APWR

CFD on Small Flow Injection of Advanced Accumulator in APWR 54 CFD on Small Flow Injection of Advanced Accumulator in APWR TOMOSHIGE TAKATA TAKAFUMI OGINO TAKASHI ISHIBASHI TADASHI SHIRAISHI The advanced accumulator in the advanced pressurized-water reactor is

More information

DEVELOPMENTS IN IMPELLER TECHNOLOGY FOR MIXING VISCOUS, NON-NEWTONIAN FLUIDS. Richard K. Grenville Director of Mixing Technology

DEVELOPMENTS IN IMPELLER TECHNOLOGY FOR MIXING VISCOUS, NON-NEWTONIAN FLUIDS. Richard K. Grenville Director of Mixing Technology DEVELOPMENTS IN IMPELLER TECHNOLOGY FOR MIXING VISCOUS, NON-NEWTONIAN FLUIDS Richard K. Grenville Director of Mixing Technology ASC Convention Atlanta Marriott Marquis, Atlanta GA 5 th April 2017 TOPICS

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press Adaptive optimization, 402, 428 430 Adjoint trajectories, 352 Adjoint variable, 165 boundary conditions, 167 Aeration (gas flow) rate, 408 Agitator (shaft) speed, 408 Animal cell cultures, 377 Auxotrophic

More information

Monitoring Iron Transport in the Steam Cycle via Grab Sample and Online Methods

Monitoring Iron Transport in the Steam Cycle via Grab Sample and Online Methods Monitoring Iron Transport in the Steam Cycle via Grab Sample and Online Methods Abstract Quantitative online monitoring of iron corrosion product transport is an ongoing technical challenge. Total iron

More information

3.5.7 Flow Through Simple Dies

3.5.7 Flow Through Simple Dies 152 3 Fundamentals of Polymers isothermal spinning of a Newtonian fluid and predicted the critical draw ratio of 20.210. Below the critical draw ratio, any disturbance along the filament is dampened out

More information

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II)

[4163] T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Total No. of Questions : 12] P1061 SEAT No. : [Total No. of Pages : 7 [4163] - 218 T.E. (Mechanical) TURBO MACHINES (2008 Pattern) (Common to Mech. S/W) (Sem. - II) Time : 3 Hours] [Max. Marks :100 Instructions

More information

Industrial Microbiology INDM Lecture 10 24/02/04

Industrial Microbiology INDM Lecture 10 24/02/04 Industrial Microbiology INDM 4005 Lecture 10 24/02/04 4. INFLUENCE OF PROCESS VARIABLES Overview Nutrient Limitation Cell Immobilisation Overview 4. Influence of process variables 4.1. Kinetics and technology

More information

Comparative Studies on Scale-Up Methods of Single-Use Bioreactors

Comparative Studies on Scale-Up Methods of Single-Use Bioreactors Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2011 Comparative Studies on Scale-Up Methods of Single-Use Bioreactors Emily B. Stoker Utah State University

More information

Kelly B. Fox, Drilling Specialties Company; Carl E. Stouffer, Drilling Specialties Company and Beau Utley, Drilling Specialties Company

Kelly B. Fox, Drilling Specialties Company; Carl E. Stouffer, Drilling Specialties Company and Beau Utley, Drilling Specialties Company AADE-8-DF-HO-3 Evaluation Of A New Friction Reducer for Brines Kelly B. Fox, Drilling Specialties Company; Carl E. Stouffer, Drilling Specialties Company and Beau Utley, Drilling Specialties Company Copyright

More information

Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies

Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies Advancing the Science of In Situ Groundwater Remediation Petroleum Hydrocarbon Remediation Technologies TASK Tersus Advanced Surface Kinetics NAPL Surfactants Tersus is the worldwide distributor of the

More information

CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR

CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR CHEMNIUM NACLO SODIUM HYPOCHLORITE GENERATOR www.chemnium.com R ALL FOR BETTER WATER SODIUM HYPOCHLORITE NACLO APPLICATION Tap Water Disinfection Food & Beverage Processing Disinfection Waste Water Treatment

More information

PO4 Sponge. Phosphorus Removal - Low & High Level Sources

PO4 Sponge. Phosphorus Removal - Low & High Level Sources PO4 Sponge Phosphorus Removal - Low & High Level Sources Phosphorus (P) is a contaminant in streams and lakes that can degrade water bodies, especially when excessive. It contributes to growth of cyanobacteria

More information

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid

Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project. Production of Acrylic Acid Fluid Mechanics, Heat Transfer, and Thermodynamics Design Project Production of Acrylic Acid We are investigating the feasibility of constructing a new, grass-roots, 50,000 metric tons/year, acrylic acid

More information

CIP processes. Product description Bioengineering AG, CH-8636 Wald

CIP processes. Product description Bioengineering AG, CH-8636 Wald 0731-12 E/PB 1/5 Validated cleaning of bioreactors with the CIP-Valve By Dr. Karin Koller, Bioengineering AG The cleaning of biotechnological plants is subject to similar qualification regulations as the

More information

CFD analysis of coolant flow in the nuclear reactor VVER440

CFD analysis of coolant flow in the nuclear reactor VVER440 Applied and Computational Mechanics 1 (27) 499-56 CFD analysis of coolant flow in the nuclear reactor VVER44 J. Katolický a, *, M. Bláha b, J. Frelich b, M. Jícha a a Brno University of Technology, Brno,

More information

Influence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors Mateus N. Esperança, Marcel O. Cerri, Alberto C.

Influence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors Mateus N. Esperança, Marcel O. Cerri, Alberto C. Vol:7, No:11, 01 Influence of Gas-Liquid Separator Design on Performance of Airlift Bioreactors Mateus N. Esperança, Marcel O. Cerri, Alberto C. Badino International Science Index, Chemical and Molecular

More information

Solid Circulation and Gas Bypassing in an Internally Circulating Fluidized Bed with an Orifice-Type Draft Tube

Solid Circulation and Gas Bypassing in an Internally Circulating Fluidized Bed with an Orifice-Type Draft Tube Korean J. Chem. Eng., 16(5), 618-623 (1999) Solid Circulation and Gas Bypassing in an Internally Circulating Fluidized Bed with an Orifice-Type Draft Tube Hong-Sik Ahn, Woon-Jae Lee, Sang-Done Kim and

More information

Application of Disposable Technologies in Biopharmaceutical Manufacturing

Application of Disposable Technologies in Biopharmaceutical Manufacturing BMD Summit, Disposables for Biopharm Production 13th December 2005 Reston, VA, USA Application of Disposable Technologies in Biopharmaceutical Manufacturing Martin Wrankmore, Continuous Improvement Lead,

More information

Available online Research Article. Reactor design strategy: Production of xanthan from sugarcane broth

Available online  Research Article. Reactor design strategy: Production of xanthan from sugarcane broth Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(5):323-329 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Reactor design strategy: Production of xanthan from

More information

Oxygen Mass Transfer Rate in a Pressurized Lab-Scale Stirred Bioreactor

Oxygen Mass Transfer Rate in a Pressurized Lab-Scale Stirred Bioreactor Pressurized bioreactor 1779 Marlene Lopes Manuel Mota Isabel Belo University of Minho, Centre of Biological Engineering, IBB Institute for Biotechnology and Bioengineering, Braga, Portugal. Research Article

More information

Professor Wei-Shou Hu Spring 2007 ChEn 5751

Professor Wei-Shou Hu Spring 2007 ChEn 5751 Professor Wei-Shou Hu Spring 2007 ChEn 5751 Cell Culture Bioreactors Basic Types of Bioreactors................................................... 1 Segregated Bioreactors (Dead Zone Present)\Compartmentalized

More information

Laboratory based improvement of growth and yields in Chlorella using photobioreactors

Laboratory based improvement of growth and yields in Chlorella using photobioreactors Laboratory based improvement of growth and yields in Chlorella using photobioreactors Stuart Rigby. Sustainable Processing Centre for Process Innovation CPI 2014. All rights reserved. Technology Focus

More information

Fermentation : Some Basic concepts

Fermentation : Some Basic concepts Fermentation : Some Basic concepts The Objectives Grow cells in a controlled environment that support growth and production of product Factors to consider Nutrients composition and supply Oxygen transfer

More information

MANGANESE REMOVAL FROM COBALT SOLUTIONS WITH DILUTE SULPHUR DIOXIDE GAS MIXTURES

MANGANESE REMOVAL FROM COBALT SOLUTIONS WITH DILUTE SULPHUR DIOXIDE GAS MIXTURES MANGANESE REMOVAL FROM COBALT SOLUTIONS WITH DILUTE SULPHUR DIOXIDE GAS MIXTURES J van Rooyen, S. Archer and M. Fox Senior Process Engineer TWP Matomo Process Plant P.O. Box 5100 Rivonia, 2128 Senior Process

More information

Analysis of distribution of oxygen transfer rate in stirred bioreactors for yeasts broths

Analysis of distribution of oxygen transfer rate in stirred bioreactors for yeasts broths Romanian Biotechnological Letters Vol., No. 4, 21 Copyright 21 University of Bucharest Printed in Romania. All rights reserved ORIGINAL PAPER Analysis of distribution of oxygen transfer rate in stirred

More information