Introduction to Software Engineering

Size: px
Start display at page:

Download "Introduction to Software Engineering"

Transcription

1 UNIT I SOFTWARE PROCESS Introduction S/W Engineering Paradigm life cycle models (water fall, incremental, spiral, WINWIN spiral, evolutionary, prototyping, objects oriented) -system engineering computer based system verification validation lifecycle process development process system engineering hierarchy. Key points: At the end of this chapter the student will be able to: Identify the scope and necessity of software engineering. Identify the causes of and solutions for software crisis. Differentiate a piece of program from a software product. Introduction to Software Engineering Specific Instructional Objectives At the end of this unit the student will be able to: Identify the scope and necessity of software engineering. Identify the causes of and solutions for software crisis. Differentiate a piece of program from a software product. Software Engineering Software engineering is the establishment and sound engineering principles applied to obtain reliable and efficient software in an economical manner. Software engineering is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software. Software engineering encompasses a process, management techniques, technical methods, and the use of tools.

2 Software engineering is that form of engineering that applies the principles of computer science and mathematics to achieving cost-effective solutions to software problems. Software process overview The roadmap to building high quality software products is software process. Software processes are adapted to meet the needs of software engineers and managers as they undertake the development of a software product. A software process provides a framework for managing activities that can very easily get out of control. Different projects require different software processes. The software engineer's work products (programs, documentation, data) are produced as consequences of the activities defined by the software process. The best indicators of how well a software process has worked are the quality, timeliness, and long-term viability of the resulting software product. Generic Software Engineering Phases Definition phase - focuses on what (information engineering, software project planning, and requirements analysis). Development phase - focuses on how (software design, code generation, software testing). Support phase - focuses on change (corrective maintenance, adaptive maintenance, perfective maintenance, preventative maintenance). Software Engineering Umbrella Activities Software project tracking and control Formal technical reviews Software quality assurance Software configuration management Document preparation and production Reusability management

3 Measurement Risk management Software Process Models Linear Sequential Model (old fashioned but reasonable approach when requirements are well understood) Prototyping Model (good first step when customer has a legitimate need, but is clueless about the details, developer needs to resist pressure to extend a rough prototype into a production product) Rapid Application and Development (RAD) Model (makes heavy use of reusable software components with an extremely short development cycle) Incremental Model (delivers software in small but usable pieces, each piece builds on pieces already delivered) Spiral Model (couples iterative nature of prototyping with the controlled and systematic aspects of the linear sequential model) Win-Win Spiral Model (eliciting software requirements defined through negotiation between customer and developer, where each party attempts to balance technical and business constraints) Concurrent Development Model (similar to spiral model often used in development of client/server applications) Component-Based Development (spiral model variation in which applications are built from prepackaged software components called classes) Formal Methods Model (rigorous mathematical notation used to specify, design, and verify computer-based systems) Fourth Generation (4GT) Techniques (software tool is used to generate the source code for a software system from a high level specification representation) The General Model life cycle model Software life cycle models describe phases of the software cycle and the order in which those phases are executed. There are tons of models, and many companies adopt their own, but all have very similar patterns. The general, basic model is shown below:

4 General Life cycle model Each phase produces deliverables required by the next phase in the life cycle. Requirements are translated into design. Code is produced during implementation that is driven by the design. Testing verifies the deliverable of the implementation phase against requirements. Requirements Business requirements are gathered in this phase. This phase is the main focus of the project managers and stake holders. Meetings with managers, stake holders and users are held in order to determine the requirements. Who is going to use the system? How will they use the system? What data should be input into the system? What data should be output by the system? These are general questions that get answered during a requirements gathering phase. This produces a nice big list of functionality that the system should provide, which describes functions the system should perform, business logic that processes data, what data is stored and used by the system, and how the user interface should work. The overall result is the system as a whole and how it performs, not how it is actually going to do it.

5 Design The software system design is produced from the results of the requirements phase. Architects have the ball in their court during this phase and this is the phase in which their focus lies. This is where the details on how the system will work is produced. Architecture, including hardware and software, communication, software design (UML is produced here) are all part of the deliverables of a design phase. Implementation Code is produced from the deliverables of the design phase during implementation, and this is the longest phase of the software development life cycle. For a developer, this is the main focus of the life cycle because this is where the code is produced. Implementation my overlap with both the design and testing phases. Many tools exists (CASE tools) to actually automate the production of code using information gathered and produced during the design phase. Testing During testing, the implementation is tested against the requirements to make sure that the product is actually solving the needs addressed and gathered during the requirements phase. Unit tests and system/acceptance tests are done during this phase. Unit tests act on a specific component of the system, while system tests act on the system as a whole. So in a nutshell, that is a very basic overview of the general software development life cycle model. Now let s delve into some of the traditional and widely used variations. Waterfall Model This is the most common and classic of life cycle models, also referred to as a linearsequential life cycle model. It is very simple to understand and use. In a waterfall model, each phase must be completed in its entirety before the next phase can begin. At the end of each phase, a review takes place to determine if the project is on the right path and whether or not to continue or discard the project. Unlike what I mentioned in the general model, phases do not overlap in a waterfall model.

6 Waterfall Life Cycle model Advantages Simple and easy to use. Easy to manage due to the rigidity of the model each phase has specific deliverables and a review process. Phases are processed and completed one at a time. Works well for smaller projects where requirements are very well understood. Disadvantages Adjusting scope during the life cycle can kill a project No working software is produced until late during the life cycle. High amounts of risk and uncertainty. Poor model for complex and object-oriented projects. Poor model for long and ongoing projects. Poor model where requirements are at a moderate to high risk of changing.

7 V-Shaped Model Just like the waterfall model, the V-Shaped life cycle is a sequential path of execution of processes. Each phase must be completed before the next phase begins. Testing is emphasized in this model more so than the waterfall model though. The testing procedures are developed early in the life cycle before any coding is done, during each of the phases preceding implementation. Requirements begin the life cycle model just like the waterfall model. Before development is started, a system test plan is created. The test plan focuses on meeting the functionality specified in the requirements gathering. The high-level design phase focuses on system architecture and design. An integration test plan is created in this phase as well in order to test the pieces of the software systems ability to work together. The low-level design phase is where the actual software components are designed, and unit tests are created in this phase as well. The implementation phase is, again, where all coding takes place. Once coding is complete, the path of execution continues up the right side of the V where the test plans developed earlier are now put to use. V-Shaped Life Cycle Model

8 Advantages Simple and easy to use. Each phase has specific deliverables. Higher chance of success over the waterfall model due to the development of test plans early on during the life cycle. Works well for small projects where requirements are easily understood. Disadvantages Very rigid, like the waterfall model. Little flexibility and adjusting scope is difficult and expensive. Software is developed during the implementation phase, so no early prototypes of the software are produced. Model doesn t provide a clear path for problems found during testing phases. PROTOTYPE MODEL When the developer is unsure of the efficiency of an algorithm, the adaptability of an operating system or the form that human machine interaction should take in this case prototype paradigm may offer the best approach. The prototyping paradigm beginning with requirements gathering. Developer and customer meet and define the overall objectives for the software and identify requirement. A Quick design then occurs. This quick design focuses on a representation of those aspects of the software that will be visible to the customer user. The prototype is evaluated by the customer and used to refine requirements for the software to be developed. Iteration occurs as the prototype is tuned to satisfy the need for the customer, while at the same time enabling the developer to better understand what needs to be done.

9 INCREMENTAL MODEL: This model combines the elements of the waterfall model with the iterative philosophy of prototyping. However, unlike prototyping the IM focuses on the delivery of an operational product at the end of each increment. More specifically, the model is designed, implemented and tested as a series of incremental builds until the product is finished. A build consists of pieces of code from various modules that interact together to provide a specific function. At each stage of the IM a new build is coded and then integrated into the structure, which is tested as a whole. Note that the product is only defined as finished when it satisfies all of its requirements. This model is based upon the recognition that software is built from smaller components. When an incremental model is used, the first increment is often a core product. i.e., basic requirements are addressed, but many supplementary features remain undelivered.

10 An example of this incremental approach is observed in the development of word processing applications where the following services are provided on subsequent builds: 1. Basic file management, editing and document production functions 2. Advanced editing and document production functions 3. Spell and grammar checking 4. Advance page layout Advantages Generates working software quickly and early during the software life cycle. More flexible less costly to change scope and requirements. Easier to test and debug during a smaller iteration. Easier to manage risk because risky pieces are identified and handled during its iteration. Each iteration is an easily managed milestone. Disadvantages Each phase of an iteration is rigid and do not overlap each other. Problems may arise pertaining to system architecture because not all requirements are gathered up front for the entire software life cycle. Spiral Model It describes the water fall and prototyping models.

11 The spiral model proposed by Boehm, is an evolutionary software process model that couples the iterative nature of prototyping with the controlled and systematic aspects of the linear sequential model. Using the spiral model, software is developed in a series of incremental releases. A spiral model is divided into a number of framework activities also called task Regions. o Typically there are between three and six task regions. o In the model shown the task regions are as follows: Customer communication: Tasks required establishing effective communication between developer and customer. Planning: Tasks required to define resources, timelines and other project related information. Risk analysis: Tasks required to access both representations of management risks. Engineering: Tasks required to build one or more representation of the application. Constructions and release: Tasks required to construct, test, install and provide user support. Customer evaluation: Tasks required to obtain customer feedback based on evaluation of the software representation created during the engineering stage and implemented during the installation stage. Each of the regions is populated by a set of work tasks, called the task set, that are adapted to the characteristics of the project to be undertaken.

12 Advantages High amount of risk analysis Good for large and mission-critical projects. Software is produced early in the software life cycle. Disadvantages Can be a costly model to use. Risk analysis requires highly specific expertise. Project s success is highly dependent on the risk analysis phase. Doesn t work well for smaller projects. WINWIN SPIRAL: The Win Win Spiral Model uses Theory W (win-win) to develop software and system requirements, and architectural solutions, as win conditions negotiated among a project's stakeholders (user, customer, developer, maintainer, interface, etc.). The objective of this activity is to elicit project requirements from customer. The customer and developer enter into a process of negotiation, where the customer may be asked to balance functionality, performance and other product and time to market. ie., the customer wins by getting the system or product that satisfies the majority of the customer s and the developer wins by working to realistic and budgets and deadlines. Boehm s WINWIN spiral model defines a set of negations acticities at the beginning of each pass around the spiral.

13 (Additions to the spiral model shown in bold.) Single customer communication activity the following activities are defined. 1. Identification of the system or subsystem key stakeholders: 2. Determination of the stakeholders: win conditions. 3. Negotiations of the stakeholders win conditions to reconcile them into a set of win-win conditions for all concerned (including software project team). The emphasis placed on early negotiation, the WINWIN spiral model introduces three process milestones, called anchor points. The anchor points represent 3 different views of progress as the project traverses the spiral. 1. Life cycle objectives (LOC): Define set of objectives for each major software engineering activity. 2. Life cycle architecture (LOA): It establishes objectives that must be must be as the system and software architecture is defined. 3. Initial operational capability (IOC): It represents a set of objectives associated with the preparation of the software installation.

14 Object Oriented The object oriented process moves through an evolutionary spiral that starts with customer communication. It is here that the problem domain is defines and basic problem classes are defined. Planning and risk analysis establish a foundation for the Object Oriented project plan. The technical work associated with object oriented software engineering follows the iterative path shown in the shaded box. Object oriented software engineering emphasizes reuse. Therefore, classes are looked up in a library before they are built. When classes cannot found in the library, the software engineer applies o Object Oriented analysis (OOA), o Object Oriented design (OOD) o Object Oriented programming (OOP), and o Object Oriented testing (OOT) To create the classes and the objects derive ed from the classes. The new class is then put into the library so that it may be reused in the future. System engineering: Software engineering occurs as a consequence of a process called system engineering. Instead of concentrating solely on software, system engineering focuses on a variety of elements, analyzing, designing, and organizing those elements into a system that can be a product, a service, or a technology for the transformation of information. The system engineering process is called business process engineering when the context of the engineering work focuses on a business enterprise. When a product is to be built, the process is called product engineering.

15 Computer based systems. A set of arrangement of elements that are organized to accomplish some predefined goal by processing information. To accomplish a goal, a computer based system makes use of a variety of system elements: Software: Computer programs, data structures, and related documentation that serve to affect the goal logical methods, procedure, or control that is required. Hardware: Electronic devices that provide computing capability the interconnectivity devices that enable flow of data. People: Users and operators of hardware and software. Database: A large, organized collection of information that is accessed via software. Documentation. Descriptive information (e.g. hardcopy manual) that portrays the use and operation of the system. Procedures: The steps that define the specific use of each system element or the procedural context in which the system resides. The elements combine in a variety of ways to transform information. Example A marketing department transforms raw sales data into a profile of the typical purchaser of a product. A robot transforms a command file into a set of control signals. Verification and validation Software testing is one element of a broader topic that is often referred to as Verification and validation (V&V).

16 Verification refers to the set of activities that ensure that software correctly implements a specific function. Validation refers to a different set of activities ensure that the software that has been built is traceable to customer requirements. Verification: Are we building the product right? Validation: Are we building the right product? The definition of V&V encompasses many of the activities that we have referred to as software quality assurance (SQA). Verification and validation encompasses a wide array of SQA activities that include formal technical reviews, performance monitoring, simulation, review, etc.., Verification and validation (V & V) is intended to show that a system conforms to its specification and meets the requirements of the system customer. Involves checking and review processes and system testing. System testing involves executing the system with test cases that are derived from the specification of the real data to be processed by the system. Software Verification and Validation plan. It Describe the overall plan for the verification and validation of the software. Identifies and describes the methods (e.g. Inspection, analysis, demonstration, or tests) Software Verification and Validation Report. It describes the results of the execution of the Software System Engineering Hierarchy System engineering encompasses a collection of top-down and bottom-up methods to navigate the hierarchy. The System engineering process usually begins with a world view.i.e., the entire business or product domain is examined to ensure that the proper business or technology context can be established. The worlds view is refined to focus more fully on specific domain of interest.

17 Stated in a slightly more manner, the world view (WV) is encompassed of a set of domain (Di), which can be each a system in its own right. WV= {D1, D2, D3 Dn} Each domain is encompassed of specific elements (Ei) each of which serves some role in accomplishing the objectives and goals of the domain. Di= {E1, E2, E3,.Em} Finally, each element is implemented by specifying the technical components (Ck) that achieve the necessary function for an element: Ei= {C1, C2, C3 Ck} A component could be a computer program, a reusable program component, a module, a class or even a programming language statement. Short answers: 1) Define Software Engineering. Software Engineering: The Application of systematic, disciplined, quantifier approach To the development, operations, and maintenance of software 2) What is a Process Framework? Process Framework : Establishes foundation for a complete software process By identifying a small number of framework activities that are applicable for all software projects regardless of their size and complexity 3) What are the Generic Framework Activities? Generic Framework Activities: Communication Planning Modeling Construction Deployment 4) Define Stakeholder. Stakeholder: Anyone who has stake in successful outcome of Project Business Managers, end-users, software engineer, support people

18 5) How the Process Model differ from one another? Based on flow of activities Interdependencies between activities Manner of Quality Assurance Manner of Project Tracking Team Organization and Roles Work Products identify an requirement identifier 6) Write out the reasons for the Failure of Water Fall Model? Reasons For The Failure Of Water Fall Model : Real Project rarely follow Sequential Flow. Iterations are made in indirect manner Difficult for customer to state all requirements explicitly Customer needs more patients as working product reach only at Deployment phase 7) What are the Drawbacks of RAD Model? Drawbacks of RAD Model: Require sufficient number of Human Resources to create enough number of teams Developers and Customers are not committed, system result in failure Not Properly Modularized building component may Problematic Not applicable when there is more possibility for Technical Risk 8) Why Formal Methods are not widely used? Quite Time Consuming and Expensive Extensive expertise is needed for developers to apply formal methods Difficult to use as they are technically sophisticated maintenance may become risk 9) What is Cross Cutting Concerns? Cross Cutting Concerns: When concerns cut across multiple functions, features and information 10) What are the different Phases of Unified Process? Different Phases of Unified Process: Inception Phase Elaboration Phase Construction Phase

19 Transition Phase Production Phase 11) Define the terms: a) Agility b) Agile Team a) Agility :- Dynamic, Content Specific, Aggressively Change Embracing and Growth Oriented b) Agile Team :- Fast Team Able to Respond to Changes 12) Define the terms: a) Agile Methods b) Agile Process a)agile Methods :- Methods to overcome perceive and actual weakness in conventional software engineering To accommodate changes in environment, requirements and use cases b)agile Process :- Focus on Team Structures, Team Communications, Rapid Delivery of software and it de-emphasis importance of intermediate product 13) What is the Use of Process Technology Tools? Use of Process Technology Tools: Help Software Organizations Analyze their current process Organize work task Control And Monitor Progress Manage Technical Quality 14) Define the term Scripts. Scripts: Specific Process Activities and other detailed work functions that are part of team process 15) What is the Objective of the Project Planning Process? Objective of the Project Planning Process: To provide framework that enables manager to make reasonable estimates of resources, cost and schedule

20 16) What are the Decomposition Techniques? Decomposition Techniques: Software Sizing Problem Based Estimation Process Based Estimation Estimation With Use Cases Reconciling Estimates 17) How do we compute the Expected Value for Software Size? Expected value for estimation variable (size), S, can be compute as Weighted Average of Optimistic(Sopt),most likely(sm),and Pessimistic(Spess) estimates S = (Sopt+4Sm+Spess)/6 18) What is an Object Point? Object Point : Count is determined by multiplying original number of object instances by weighting factor and summing to obtain total object point count 19) What is the difference between the Known Risks and Predictable Risks? Known Risks :- That can be uncovered after careful evaluation of the project plan, the business, and technical environment in which the product is being developed Example : Unrealistic delivery rate Predictable Risks :- Extrapolated from past project experience Example: Staff turnover 20) List out the basic principles of software project scheduling? Basic Principles Of Software Project Scheduling:- Compartmentalization Interdependency Time Allocation Effort Validation Defined Responsibilities Defined Outcomes Defined Milestones

21

CLASS/YEAR: II MCA SUB.CODE&NAME: MC7303, SOFTWARE ENGINEERING. 1. Define Software Engineering. Software Engineering: 2. What is a process Framework? Process Framework: UNIT-I 2MARKS QUESTIONS AND ANSWERS

More information

Chapter 3 Prescriptive Process Models

Chapter 3 Prescriptive Process Models Chapter 3 Prescriptive Process Models - Generic process framework (revisited) - Traditional process models - Specialized process models - The unified process Generic Process Framework Communication Involves

More information

II-IT IV-SEM. 1. Software product and process. Software Engineering and Quality Assurance. Objectives:

II-IT IV-SEM. 1. Software product and process. Software Engineering and Quality Assurance. Objectives: II-IT IV-SEM Software Engineering and Quality Assurance 1. Software product and process Objectives: To introduce software engineering and to explain its importance. To set out the answers to key questions

More information

Chapter 3 Software Process Model

Chapter 3 Software Process Model Usman Akram COMSATS Institute of information Technology lahore musmanakram@ciitlahore.edu.pk March 8, 2015 About software process model Outline 1 About software process model Build and Fix Model Why Models

More information

Pertemuan 2. Software Engineering: The Process

Pertemuan 2. Software Engineering: The Process Pertemuan 2 Software Engineering: The Process Collect Your Project Topic What is Software Engineering? Software engineering is the establishment and sound engineering principles in order to obtain economically

More information

SDLC Models- A Survey

SDLC Models- A Survey Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 1, January 2013,

More information

Explore Comparative Analysis Software Development Life Cycle Models

Explore Comparative Analysis Software Development Life Cycle Models Explore Comparative Analysis Software Development Life Cycle Models Anshu Mishra Assistant Professor, Department of Information Science and Engineering Jyothy Institute of Technology, Bangalore Abstract-The

More information

A New Divide & Conquer Software Process Model

A New Divide & Conquer Software Process Model A New Divide & Conquer Software Process Model First A. Hina Gull, Second B. Farooque Azam Third C. Wasi Haider Butt, Fourth D. Sardar Zafar Iqbal Abstract The software system goes through a number of stages

More information

A Comparison Between Evolutionary and Prototype Model

A Comparison Between Evolutionary and Prototype Model A Comparison Between Evolutionary and Prototype Model Aditi Thakur Department of Computer Science, Baddi University of Emerging Sciences and Technology ABSTRACT: In this paper, I have examined a number

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Software Engineering Third Year CSE( Sem:I) 2 marks Questions and Answers

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Software Engineering Third Year CSE( Sem:I) 2 marks Questions and Answers DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Software Engineering Third Year CSE( Sem:I) 2 marks Questions and Answers UNIT 1 1. What are software myths Answer: Management myths: We already have a book

More information

Darshan Institute of Engineering & Technology for Diploma Studies Rajkot Unit-1

Darshan Institute of Engineering & Technology for Diploma Studies Rajkot Unit-1 Failure Rate Darshan Institute of Engineering & Technology for Diploma Studies Rajkot Unit-1 SOFTWARE (What is Software? Explain characteristics of Software. OR How the software product is differing than

More information

Selecting Software Development Life Cycles. Adapted from Chapter 4, Futrell

Selecting Software Development Life Cycles. Adapted from Chapter 4, Futrell Selecting Software Development Life Cycles Adapted from Chapter 4, Futrell Examples of Software Life Cycle Models Classical Waterfall Waterfall with feedback V-Shaped Prototyping Incremental Spiral Rapid

More information

Note 10: Software Process

Note 10: Software Process Computer Science and Software Engineering University of Wisconsin - Platteville Note 10: Software Process Yan Shi Lecture Notes for SE 3330 UW-Platteville Based on Pressman Chapter 2 & 3 Software Process

More information

Software Engineering. Unit 1. Software Process

Software Engineering. Unit 1. Software Process 1 Unit 1 Software Process Software: a) Instructions (Computer Programs) that when executed provide desired features, function, and performance. b) Data structures that enable the programs to adequately

More information

The Top Thrill Dragster

The Top Thrill Dragster EEC 421/521: Software Engineering The Software Process Prescriptive Process Models 1/22/08 EEC 421/521: Software Engineering 1 The Top Thrill Dragster 420 ft tall Max speed over 120 mph World s second

More information

Based on Software Engineering, by Ian Sommerville Coherent sets of activities for specifying, designing, implementing and testing software systems

Based on Software Engineering, by Ian Sommerville Coherent sets of activities for specifying, designing, implementing and testing software systems Software Processes Based on Software Engineering, by Ian Sommerville Coherent sets of activities for specifying, designing, implementing and testing software systems Slide 1 Objectives To introduce software

More information

Object-Oriented Software Engineering Practical Software Development using UML and Java. Chapter 11: Managing the Software Process

Object-Oriented Software Engineering Practical Software Development using UML and Java. Chapter 11: Managing the Software Process Object-Oriented Software Engineering Practical Software Development using UML and Java Chapter 11: Managing the Software Process 11.1 What is Project Management? Project management encompasses all the

More information

03. Perspective Process Models

03. Perspective Process Models 03. Perspective Process Models Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2017 Prescriptive Process Models advocates an orderly approach to software

More information

Software Engineering Part 2

Software Engineering Part 2 CS 0901341 Software Engineering Part 2 In this part, we look at 2.1 Software Process 2.2 Software Process Models 2.3 Tools and Techniques for Processing Modelling As we saw in the previous part, the concept

More information

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING Page 1 MCA302 SOFTWARE ENGINEERING UNIT I - SOFTWARE PROCESS Introduction S/W Engineering Paradigm life cycle models (water fall, incremental, spiral, WINWIN spiral, evolutionary, prototyping, object oriented)

More information

This tutorial also elaborates on other related methodologies like Agile, RAD and Prototyping.

This tutorial also elaborates on other related methodologies like Agile, RAD and Prototyping. i About the Tutorial SDLC stands for Software Development Life Cycle. SDLC is a process that consists of a series of planned activities to develop or alter the Software Products. This tutorial will give

More information

3. Comparison of Above Described SDLC Models

3. Comparison of Above Described SDLC Models 123 3. Comparison of Above Described SDLC Models Waterfall Model is little hard to manage due to the rigidity of the model as each phase has specific deliverables and a review process. It works well for

More information

Software Engineering

Software Engineering Software Engineering (CS550) Software Development Process Jongmoon Baik Software Development Processes (Lifecycle Models) 2 What is a S/W Life Cycle? The series of stages in form and functional activity

More information

Lecture 1. In practice, most large systems are developed using a. A software process model is an abstract representation

Lecture 1. In practice, most large systems are developed using a. A software process model is an abstract representation Chapter 2 Software Processes Lecture 1 Software process descriptions When we describe and discuss processes, we usually talk about the activities in these processes such as specifying a data model, designing

More information

Waterfall model is the earliest SDLC approach that was used for software development.

Waterfall model is the earliest SDLC approach that was used for software development. 1 Waterfall Model Guide These days there is a strong push for Agile Management, as opposed to Waterfall. Personally at Castellan Systems we believe that the agility should be applied to the project development

More information

SDLC Submitted in partial fulfillment of the requirement for the award of Degree of Computer Science

SDLC Submitted in partial fulfillment of the requirement for the award of Degree of Computer Science A Seminar report on SDLC Submitted in partial fulfillment of the requirement for the award of Degree of Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org Preface I have

More information

CSE 435 Software Engineering. Sept 14, 2015

CSE 435 Software Engineering. Sept 14, 2015 CSE 435 Software Engineering Sept 14, 2015 What is Software Engineering Where Does the Software Engineer Fit In? Computer science: focusing on computer hardware, compilers, operating systems, and programming

More information

Lectures 2 & 3. Software Processes. Software Engineering, COMP201 Slide 1

Lectures 2 & 3. Software Processes. Software Engineering, COMP201 Slide 1 Lectures 2 & 3 Software Processes Software Engineering, COMP201 Slide 1 What is a Process? When we provide a service or create a product we always follow a sequence of steps to accomplish a set of tasks

More information

A Comparative Study of Universally Accepted SDLC Models for Software Development

A Comparative Study of Universally Accepted SDLC Models for Software Development 2018 IJSRST Volume 4 Issue 5 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science and Technology A Comparative Study of Universally Accepted SDLC Models for Software Development ABSTRACT

More information

Volume 8, No. 1, Jan-Feb 2017 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at

Volume 8, No. 1, Jan-Feb 2017 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at Volume 8, No. 1, Jan-Feb 2017 International Journal of Advanced Research in Computer Science RESEARCH PAPER Available Online at www.ijarcs.info A Study of Software Development Life Cycle Process Models

More information

A Comparative Study on Software Development Life Cycle Models

A Comparative Study on Software Development Life Cycle Models A Comparative Study on Software Development Life Cycle Models Prof. Supriya Madhukar Salve 1, Prof. Syed Neha Samreen 2, Prof. Neha Khatri-Valmik 3 123Assistant Professor, Dept. of Computer Science and

More information

Software Processes 1

Software Processes 1 Software Processes 1 Topics covered Software process models Process activities Coping with change 2 The software process A structured set of activities required to develop a software system. Many different

More information

Software Processes. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1

Software Processes. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1 Software Processes Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 4 Slide 1 Objectives To introduce software process models To describe three generic process models and when they may be

More information

What is Software Engineering?

What is Software Engineering? COSC 3351 Software Software Life Cycle (I) Spring 2008 What is Software Engineering? Real world problems are large and complex. Solving problems requires multiple steps Analyzing: Break the problems into

More information

CMPT 275 Software Engineering

CMPT 275 Software Engineering CMPT 275 Software Engineering Software life cycle 1 Software Life Cycle Sequence of processes completed as a software project moves from inception to retirement At beginning of project development, choose

More information

Software Modeling & Analysis. - Fundamentals of Software Engineering - Software Process Model. Lecturer: JUNBEOM YOO

Software Modeling & Analysis. - Fundamentals of Software Engineering - Software Process Model. Lecturer: JUNBEOM YOO Software Modeling & Analysis - Fundamentals of Software Engineering - Software Process Model Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr What is Software Engineering? [ IEEE Standard 610.12-1990 ] Software

More information

Introduction to Systems Analysis and Design

Introduction to Systems Analysis and Design Introduction to Systems Analysis and Design What is a System? A system is a set of interrelated components that function together to achieve a common goal. The components of a system are called subsystems.

More information

Software Processes. Objectives. Topics covered. The software process. Waterfall model. Generic software process models

Software Processes. Objectives. Topics covered. The software process. Waterfall model. Generic software process models Objectives Software Processes To introduce software process models To describe three generic process models and when they may be used To describe outline process models for requirements engineering, software

More information

Solutions Manual. Object-Oriented Software Engineering. An Agile Unified Methodology. David Kung

Solutions Manual. Object-Oriented Software Engineering. An Agile Unified Methodology. David Kung 2 David Kung Object-Oriented Software Engineering An Agile Unified Methodology Solutions Manual 3 Message to Instructors July 10, 2013 The solutions provided in this manual may not be complete, or 100%

More information

Objectives. The software process. Topics covered. Waterfall model. Generic software process models. Software Processes

Objectives. The software process. Topics covered. Waterfall model. Generic software process models. Software Processes Objectives Software Processes To introduce software process models To describe three generic process models and when they may be used To describe outline process models for requirements engineering, software

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Code & Subject Name: IT1251 Software Engineering and Quality Assurance Year / Sem : II / IV UNIT I SOFTWARE PRODUCT

More information

Topics covered. Software process models Process iteration Process activities The Rational Unified Process Computer-aided software engineering

Topics covered. Software process models Process iteration Process activities The Rational Unified Process Computer-aided software engineering Software Processes Objectives To introduce software process models To describe three generic process models and when they may be used To describe outline process models for requirements engineering, software

More information

Chapter 2 Objectives. Pfleeger and Atlee, Software Engineering: Theory and Practice (edited by B. Cheng) Chapter 2.

Chapter 2 Objectives. Pfleeger and Atlee, Software Engineering: Theory and Practice (edited by B. Cheng) Chapter 2. Chapter 2 Objectives What we mean by a process Software development products, processes, and resources Several models of the software development process Tools and techniques for process modeling 2.1 The

More information

Softwaretechnik. Lecture 02: Processes. Peter Thiemann SS University of Freiburg, Germany

Softwaretechnik. Lecture 02: Processes. Peter Thiemann SS University of Freiburg, Germany Softwaretechnik Lecture 02: Processes Peter Thiemann University of Freiburg, Germany SS 2012 Peter Thiemann (Univ. Freiburg) Softwaretechnik SWT 1 / 34 Terms Software Program SW System organized collections

More information

The software process

The software process Software Processes The software process A structured set of activities required to develop a software system Specification; Design; Validation; Evolution. A software process model is an abstract representation

More information

Software Engineering COMP 201

Software Engineering COMP 201 Software Engineering COMP 201 Lecturer: Sebastian Coope Ashton Building, Room G.18 E-mail: coopes@liverpool.ac.uk COMP 201 web-page: http://www.csc.liv.ac.uk/~coopes/comp201 Lecture 2 Software Processes

More information

2009 Spring. Software Modeling & Analysis. - Software Process Model. Lecturer: JUNBEOM YOO

2009 Spring. Software Modeling & Analysis. - Software Process Model. Lecturer: JUNBEOM YOO 2009 Spring Software Modeling & Analysis - Fundamentals of Software Engineering - Software Process Model Lecturer: JUNBEOM YOO jbyoo@konkuk.ac.kr What is Software Engineering? IEEE Std 610.12-1990 [ IEEE

More information

The Product and the Process The Product The Evolving Role of Software Software Software: A Crisis on the Horizon Software Myths Summary References

The Product and the Process The Product The Evolving Role of Software Software Software: A Crisis on the Horizon Software Myths Summary References The Product and the Process The Product The Evolving Role of Software Software Software: A Crisis on the Horizon Software Myths Further Readings and Information Sheets The Process Software Engineering

More information

Introduction to Software Engineering

Introduction to Software Engineering Introduction to Software Engineering (CS350) Lecture 16 Jongmoon Baik Software Testing Strategy 2 What is Software Testing? Testing is the process of exercising a program with the specific intent of finding

More information

Software Engineering

Software Engineering Software Engineering Lecture 02: Processes Peter Thiemann University of Freiburg, Germany SS 2013 Peter Thiemann (Univ. Freiburg) Software Engineering SWT 1 / 41 Terms Software Component SW System Organized

More information

Chapter 3. Information Systems Development. McGraw-Hill/Irwin. Copyright 2007 by The McGraw-Hill Companies, Inc. All rights reserved.

Chapter 3. Information Systems Development. McGraw-Hill/Irwin. Copyright 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter 3 Information Systems Development McGraw-Hill/Irwin Copyright 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Objectives 3-2 Describe the motivation for a system development process

More information

Software Processes. Chapter 2. CMPT 276 Dr. B. Fraser Based on slides from Software Engineering 9 th ed, Sommerville.

Software Processes. Chapter 2. CMPT 276 Dr. B. Fraser Based on slides from Software Engineering 9 th ed, Sommerville. Software Processes Chapter 2 CMPT 276 Dr. B. Fraser Based on slides from Software Engineering 9 th ed, Sommerville. 18-05-15 Slides #4 1 Topics 1) What activities are part of software development 2) What

More information

The Software Life Cycle

The Software Life Cycle Inception Software Increment Communication Planning Production The Software Life Cycle Software Engineering Deployment Andreas Zeller Saarland University Modelling Elaboration Transition Construction Construction

More information

UNIT I Programming Language Syntax and semantics. Kainjan Sanghavi

UNIT I Programming Language Syntax and semantics. Kainjan Sanghavi UNIT I Programming Language Syntax and semantics B y Kainjan Sanghavi Contents Software development process Language and software development environments Language and software design methods SDLC A framework

More information

SDLC AND MODEL SELECTION: A STUDY

SDLC AND MODEL SELECTION: A STUDY SDLC AND MODEL SELECTION: A STUDY V. Therese Clara Asst professor of Computer Science, Madurai Kamaraj University College, Madurai, India ABSTRACT In the software industry, the frequency of failure of

More information

Chapter 6. Software Quality Management & Estimation

Chapter 6. Software Quality Management & Estimation Chapter 6 Software Quality Management & Estimation What is Quality Management Also called software quality assurance (SQA) s/w quality:- It is defined as the degree to which a system, components, or process

More information

version NDIA CMMI Conf 3.5 SE Tutorial RE - 1

version NDIA CMMI Conf 3.5 SE Tutorial RE - 1 Requirements Engineering SE Tutorial RE - 1 What Are Requirements? Customer s needs, expectations, and measures of effectiveness Items that are necessary, needed, or demanded Implicit or explicit criteria

More information

Software Development Software Development Activities

Software Development Software Development Activities Software Development Software Development Activities Problem Definition Requirements Analysis Implementation Planning High-level Design (or Architecture) Detailed Design Coding and Unit Testing (Debugging)

More information

An Overview of Software Process

An Overview of Software Process An Overview of Software Process Objectives To introduce the general phases of the software development life cycle (SDLC) To describe various generic software process models and discuss their pros and cons

More information

Sri Vidya College of Engineering & Technology-Virudhunagar

Sri Vidya College of Engineering & Technology-Virudhunagar Sri Vidya College of Engineering &Technology Department of Information Technology Class II Year (04 Semester) Subject Code CS6403 Subject SOFTWARE ENGINEERING Prepared By R.Vidhyalakshmi Lesson Plan for

More information

Software Engineering Modern Approaches

Software Engineering Modern Approaches Software Engineering Modern Approaches Chapter : Software Process Eric Braude and Michael Bernstein Maintenance Testing The Software Development Lifecycle Implementation Design Phase most relevant to this

More information

II. Software Life Cycle. Laurea Triennale in Informatica Corso di Ingegneria del Software I A.A. 2006/2007 Andrea Polini

II. Software Life Cycle. Laurea Triennale in Informatica Corso di Ingegneria del Software I A.A. 2006/2007 Andrea Polini II. Software Life Cycle Laurea Triennale in Informatica Corso di Objectives To introduce software process models To describe three generic process models and when they may be used To describe outline process

More information

The Systems Development Lifecycle

The Systems Development Lifecycle Modelling and Systems Development Lecture 2 The Systems Development Lifecycle The four-phase model common to all system developments projects The project Major attributes of the Lifecycle Moves systematically

More information

Research Article / Paper / Case Study Available online at: Analysis of Strengths and Weakness of SDLC Models Shikha Verma Delhi India

Research Article / Paper / Case Study Available online at:  Analysis of Strengths and Weakness of SDLC Models Shikha Verma Delhi India ISSN: 2321-7782 (Online) Volume 2, Issue 3, March 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at: www.ijarcsms.com

More information

The good news. 34% of software projects succeed. Standish Group, CHAOS Report, 2003

The good news. 34% of software projects succeed. Standish Group, CHAOS Report, 2003 The good news 34% of software projects succeed. Standish Group, CHAOS Report, 2003 1 The bad news That means 66% failed! Standish Group, CHAOS Report, 2003 2 Best Practices Develop Iteratively Manage Requirements

More information

A Comparison Between Two Software Engineering Processes, RUP And Waterfall Models

A Comparison Between Two Software Engineering Processes, RUP And Waterfall Models A Comparison Between Two Software Engineering Processes, RUP And Waterfall Models Mina zaminkar a, Mohammad R. Reshadinezhad b a Graduate student,, Department of Computer Science Research Branch, Islamic

More information

SYLLABUS. What is Agility, What is an Agile Process, Agile Process Models.

SYLLABUS. What is Agility, What is an Agile Process, Agile Process Models. Contents i SYLLABUS UNIT - I CHAPTER - 1 : INTRODUCTION TO Introduction to Software Engineering. CHAPTER - 2 : A GENERIC VIEW OF PROCESS Software Engineering, Process Framework, CMMI, Process Patterns,

More information

Introduction to Software Life Cycles. CSCI 5828: Foundations of Software Engineering Lecture 06 09/08/2016

Introduction to Software Life Cycles. CSCI 5828: Foundations of Software Engineering Lecture 06 09/08/2016 Introduction to Software Life Cycles CSCI 5828: Foundations of Software Engineering Lecture 06 09/08/2016 1 Goals Present an introduction to the topic of software life cycles concepts and terminology benefits

More information

Course Organization. Lecture 1/Part 1

Course Organization. Lecture 1/Part 1 Course Organization Lecture 1/Part 1 1 Outline About me About the course Lectures Seminars Evaluation Literature 2 About me: Ing. RNDr. Barbora Bühnová, Ph.D. Industrial experience Research Quality of

More information

Software Life Cycle. Main Topics. Introduction

Software Life Cycle. Main Topics. Introduction Software Life Cycle Main Topics Study the different life cycle models Study the difference between software maintenance and evolution Study product line engineering as a design methodology 2 Introduction

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY T 76.3601 Introduction to Software Engineering Software Life-Cycle Models http://www.soberit.hut.fi/t-76.3601/ Casper.Lassenius@tkk.fi Software Engineering? 1. The application of a systematic, disciplined,

More information

Objectives. Rapid software development. Topics covered. Rapid software development. Requirements. Characteristics of RAD processes

Objectives. Rapid software development. Topics covered. Rapid software development. Requirements. Characteristics of RAD processes Objectives Rapid software development To explain how an iterative, incremental development process leads to faster delivery of more useful software To discuss the essence of agile development methods To

More information

Agile Projects 7. Agile Project Management 21

Agile Projects 7. Agile Project Management 21 Contents Contents 1 2 3 4 Agile Projects 7 Introduction 8 About the Book 9 The Problems 10 The Agile Manifesto 12 Agile Approach 14 The Benefits 16 Project Components 18 Summary 20 Agile Project Management

More information

Software Design COSC 4353/6353 D R. R A J S I N G H

Software Design COSC 4353/6353 D R. R A J S I N G H Software Design COSC 4353/6353 D R. R A J S I N G H Outline Week 2 Software Development Process Software Development Methodologies SDLC Agile Software Development Process A structure imposed on the development

More information

7. Model based software architecture

7. Model based software architecture UNIT - III Model based software architectures: A Management perspective and technical perspective. Work Flows of the process: Software process workflows, Iteration workflows. Check Points of The process

More information

CMSC 435: Software Engineering Section Back to Software. Important: Team Work. More Resources

CMSC 435: Software Engineering Section Back to Software. Important: Team Work. More Resources CMSC 435: Software Engineering Section 0101! Atif M. Memon (atif@cs.umd.edu)! 4115 A.V.Williams building! Phone: 301-405-3071! Office hours!.tu.th. (10:45am-12:00pm)! Don t wait, don t hesitate, do communicate!!!

More information

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 6 Professional Graduate Diploma in IT SOFTWARE ENGINEERING 2

BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 6 Professional Graduate Diploma in IT SOFTWARE ENGINEERING 2 BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 6 Professional Graduate Diploma in IT SOFTWARE ENGINEERING 2 Friday 30 th September 2016 - Morning Answer any THREE questions

More information

Lecture- 10. Project Scheduling. Dronacharya College of Engineering

Lecture- 10. Project Scheduling. Dronacharya College of Engineering Lecture- 10 Project Scheduling Dronacharya College of Engineering Scheduling and Planning The majority of projects are 'completed' late, if at all. A project schedule is required to ensure that required

More information

Rational Software White Paper TP 174

Rational Software White Paper TP 174 Reaching CMM Levels 2 and 3 with the Rational Unified Process Rational Software White Paper TP 174 Table of Contents Abstract... 1 Introduction... 1 Level 2, Repeatable... 2 Requirements Management...

More information

FACTFILE: GCE DIGITAL TECHNOLOGY

FACTFILE: GCE DIGITAL TECHNOLOGY FACTFILE: GCE DIGITAL TECHNOLOGY AS1: APPROACHES TO SYSTEMS DEVELOPMENT Alternative development approaches and Software projects Learning Outcomes Students should be able to: describe the main features

More information

Planning and the Software Lifecycle. CSCE Lecture 2-08/26/2015

Planning and the Software Lifecycle. CSCE Lecture 2-08/26/2015 Planning and the Software Lifecycle CSCE 740 - Lecture 2-08/26/2015 Today s Goals Introduce software development processes Definitions - processes and process models Choosing a process AKA: planning and

More information

Analysis of Spiral Model in Software Projects for the Software Houses of Pakistan

Analysis of Spiral Model in Software Projects for the Software Houses of Pakistan International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 Analysis of Spiral Model in Software Projects for the Software Houses of Pakistan 1486 Muhammad Saleem 1 saleemstriker@hotmail.com

More information

V&V = the Verification and Validation of Deliverables

V&V = the Verification and Validation of Deliverables V&V = the Verification and Validation of Deliverables Verification and validation (V&V) are separated in the PMBOK Guide, but should be viewed as two integrated elements in the process of creating value

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : IV Subject Code : CS6403 Subject Name : Software Engineering Degree & Branch : B.E & CSE UNIT-1 1. What is software engineering? 2. What

More information

SWE 211 Software Processes

SWE 211 Software Processes SWE 211 Software Processes These slides are designed and adapted from slides provided by Software Engineering 9 /e Addison Wesley 2011 by Ian Sommerville 1 Outlines Software process models Process activities

More information

Software Development Methodologies. CSC 440: Software Engineering Slide #1

Software Development Methodologies. CSC 440: Software Engineering Slide #1 Software Development Methodologies CSC 440: Software Engineering Slide #1 Topics 1. The Waterfall Model 2. Agile Software Development 3. The Unified Process 4. Object-Oriented Analysis and Design 5. The

More information

Sistemi ICT per il Business Networking

Sistemi ICT per il Business Networking Corso di Laurea Specialistica Ingegneria Gestionale Sistemi ICT per il Business Networking Requirements Engineering Docente: Vito Morreale (vito.morreale@eng.it) 17 October 2006 1 UP Phases 1. Inception

More information

Software Process. Overview

Software Process. Overview Software Process Overview What is software process? Examples of process models Unified Process (UP) Agile software development N. Meng, B. Ryder 2 1 Software Process Definition [Pressman] a framework for

More information

Major attributes of the Lifecycle. The Systems Development Lifecycle. Project phases. Planning. Design. Analysis

Major attributes of the Lifecycle. The Systems Development Lifecycle. Project phases. Planning. Design. Analysis Modelling and Systems Development Lecture 2 The Systems Development Lifecycle The four-phase model common to all system development projects Major attributes of the Lifecycle The project Moves systematically

More information

QUALITY ASSURANCE PLAN OKLAHOMA DEPARTMENT OF HUMAN SERVICES ENTERPRISE SYSTEM (MOSAIC PROJECT)

QUALITY ASSURANCE PLAN OKLAHOMA DEPARTMENT OF HUMAN SERVICES ENTERPRISE SYSTEM (MOSAIC PROJECT) QUALITY ASSURANCE PLAN OKLAHOMA DEPARTMENT OF HUMAN SERVICES ENTERPRISE SYSTEM (MOSAIC PROJECT) MOSAIC Quality Assurance Plan v04.02 Prepared by: Approved by: QUALITY ASSURANCE PLAN APPROVALS QA/QC Program

More information

PROJECT MANAGEMENT OVERVIEW

PROJECT MANAGEMENT OVERVIEW Chapter One PROJECT MANAGEMENT OVERVIEW Project management itself is not a new concept. It has been practiced for hundreds, even thousands of years. Any large undertaking requires a set of objectives,

More information

Introduction to Software Engineering

Introduction to Software Engineering CHAPTER 1 Introduction to Software Engineering Structure 1.1 Introduction Objectives 1.2 Basics of Software Engineering 1.3 Principles of Software Engineering 1.4 Software Characteristics 1.5 Software

More information

IMPLEMENTATION, EVALUATION & MAINTENANCE OF MIS:

IMPLEMENTATION, EVALUATION & MAINTENANCE OF MIS: IMPLEMENTATION, EVALUATION & MAINTENANCE OF MIS: The design of a management information system may seem to management to be an expensive project, the cost of getting the MIS on line satisfactorily may

More information

Lecture 2: Software Quality Factors, Models and Standards. Software Quality Assurance (INSE 6260/4-UU) Winter 2016

Lecture 2: Software Quality Factors, Models and Standards. Software Quality Assurance (INSE 6260/4-UU) Winter 2016 Lecture 2: Software Quality Factors, Models and Standards Software Quality Assurance (INSE 6260/4-UU) Winter 2016 INSE 6260/4-UU Software Quality Assurance Software Quality Quality Assurance Factors and

More information

DRAFT. Effort = A * Size B * EM. (1) Effort in person-months A - calibrated constant B - scale factor EM - effort multiplier from cost factors

DRAFT. Effort = A * Size B * EM. (1) Effort in person-months A - calibrated constant B - scale factor EM - effort multiplier from cost factors 1.1. Cost Estimation Models Parametric cost models used in avionics, space, ground, and shipboard platforms by the services are generally based on the common effort formula shown in Equation 1. Size of

More information

Chapter One PROJECT MANAGEMENT OVERVIEW

Chapter One PROJECT MANAGEMENT OVERVIEW Chapter One PROJECT MANAGEMENT OVERVIEW Project management itself is not a new concept. It has been practiced for hundreds, even thousands of years. Any large undertaking requires a set of objectives,

More information

COSC 735: Software Engineering Test 1 Sample Solution

COSC 735: Software Engineering Test 1 Sample Solution COSC 735: Software Engineering Test 1 Sample Solution QUESTION 1: 1. (a) Define Software Engineering. Software engineering is the establishment and use of sound engineering principles in order to obtain

More information

Actionable enterprise architecture management

Actionable enterprise architecture management Enterprise architecture White paper June 2009 Actionable enterprise architecture management Jim Amsden, solution architect, Rational software, IBM Software Group Andrew Jensen, senior product marketing

More information

Chapter 4 Software Process and Project Metrics

Chapter 4 Software Process and Project Metrics Chapter 4 Software Process and Project Metrics 1 Measurement & Metrics... collecting metrics is too hard... it's too time-consuming... it's too political... it won't prove anything... Anything that you

More information

CS350 Lecture 2 Software Dev. Life Cycle. Doo-Hwan Bae

CS350 Lecture 2 Software Dev. Life Cycle. Doo-Hwan Bae CS350 Lecture 2 Software Dev. Life Cycle Doo-Hwan Bae bae@se.kaist.ac.kr Whose Drawings? Watts Humphrey, SE is Religion and Philosophy. Just Follow me! CS350 Software Engineering, SoC, KAIST 2 What is

More information