Nonlinear Redundancy Analysis of Multi-Cell Pre-stressed Concrete Box-Girder Bridge

Size: px
Start display at page:

Download "Nonlinear Redundancy Analysis of Multi-Cell Pre-stressed Concrete Box-Girder Bridge"

Transcription

1 Nonlinear Redundancy Analysis of Multi-Cell Pre-stressed Concrete Box-Girder Bridge Analysis Report Bala Sivakumar PE O. Murat Hamutcuoglu Ph.D. HNTB Corporation Dr. Michel Ghosn Ph.D. The City College of New York / CUNY JUNE 2013

2 NON-LINEAR ANALYSIS OF PRE-STRESSED CONCRETE BOX-GIRDER BRIDGE This document describes the model and covers the details of the analysis setup for a multi-cell prestressed concrete box- girder bridge example. The original bridge model was set up by CALTRANS to perform a pushover analysis for the seismic design of the bridge using SAP2000 commercial software. The original model represents the pre-stressed concrete multi- cell box-girder superstructure using elastic shell elements as illustrated in Figure 1. The column and the integral cap beam at the piers are modeled using beam- column type finite elements. The original model is well detailed to represent the inelastic pier behavior directly for pushover analysis under the effect of a lateral load. However, the superstructure model with elastic shell elements is not sufficient to represent the inelastic interaction between the concrete, reinforcing steel, and pre-stressing tendons and it cannot be used for a pushdown analysis that studies the nonlinear behavior of the structure under increasing vertical loads. For this reason, a second model is created where the inelastic section behavior of the box girders is incorporated. The analysis setup is prepared in SAP2000 v15 Advanced providing complex analysis features including non-linear pushover and pushdown analyses. In this Report, the original model with an integral connection between the cap beam and the columns will be identified as Model 1. A modified model where the columns are assumed to be connected to the cap beam by bearings will be identified as Model 2. A more advanced space frame model that considers the nonlinear behavior of the superstructure will be identified as Model 3. The details of the setup and the models are given below. Figure 1- Original Model of Sample Bridge B.3-1

3 1. Bridge Description A 3-D finite element model is used to analyze the behavior of sub- and super- structure of multi cell box-girder bridge. As given in Figure 1, four cell box girder deck has the top slab width of The three- span continuous bridge is 412 ft long and the span lengths are 126 ft, 168 ft and 118 ft. The thicknesses of the top and bottom slabs are 9 1/8 and 8 1/4, respectively. The depth of the box-girder is 6 9. The connection between the super- and the sub- structures are through the integral cap beams with the same depth of the girders and 8 ft width. The original bridge superstructure is connected to two 6 ft diameter round columns through the moment resisting rigid connections. In the further analyses, the influence of the moment-free bearing configuration is also investigated as well. Note that the pile caps are not included in the model and the bottom ends of the columns are restrained as fixed in all six degree-of-freedoms. The unconfined concrete strength is assumed to be 4000psi and the reinforcing steel is taken as Grade 60 with the ultimate stress capacity is 90 ksi. The prestressing tendons have the peak stress of 270ksi and their yield stress is 230ksi. The area of tendons in each section is 9in 2 and the initial prestressing force is set as 1824kips without the losses. The total loss in the prestressing force is assumed 20 ksi including the elastic shortening, creep, shrinkage and the steel relaxation stresses. The tendons are considered in parabolic geometry along the girders and all section momentcurvature calculations include the exact location of the tendons in the sections analyses. The reinforcing steel detail in the box-girders is given in Figure 2 where the transverse bars are also included in the moment-curvature analysis of the transverse sections. Figure 1- Typical Bridge Section and the Pier Columns with the Cap Beam B.3-2

4 Figure 2- Reinforcing Steel Details of the Girders and the Top and Bottom Slabs 2. Analysis for Lateral Load: Model 1 with Rigid Cap-Column Connections The lateral push-over analysis of the original model is straightforward using SAP2000. The plastic hinge definitions are applied at the bottom and top of the columns to capture the non-linear axial-flexure interaction. The plastic hinge definition is applied at the bottom surface of the integral cap beam as illustrated in Figure 3. The nonlinear pushover analysis tracks the plastic deformations at these locations. The lateral pushover analysis is initiated with a nonlinear dead load, tendon jacking and live load analysis that provide the initial stresses in the elements. The dead load is calculated through the self-weight feature of SAP2000 and then the pre-stressing tendon jacking forces are applied to provide the initial condition of the bridge prior to an extreme event case. Note that the bridge is loaded by 20% of the HL93 load along two lanes to represent the regular traffic that may be on the bridge during an earthquake. Plastic Hinge Locations Figure 3- Model 1 Cross Sections with integral connection between cap beam and column B.3-3

5 Pier Total Base Shear (kips) NON-LINEAR PUSH-OVER ANALYSES OF PRE-STRESSED CONCRETE BOX-GIRDERS JULY Model 1 Pier Transverse Pushover Pier Top Displacement (ft) Model 1: Rigid Model 1: Rigid Linear Analysis Figure 4- Model 1: Original Model Horizontal Pushover Curve The plastic deformations are initialized at a total base shear of 437 kips. In Figure 4, the global response indicates a hardening behavior after plastic deformations has started at this 437 kip load level. At the last load step, where the total base shear on the pier is 720kips, the concrete compressive strain exceeds the ultimate limit and the section is crushed at bottom of the columns. Note that the transverse base shear capacity of the pier is also evaluated using a linear elastic analysis to compare with the non-linear analyses results. The bottom section of the pier reaches its ultimate flexure capacity at 501 kips. The linear analysis does not incorporate the load re-distribution during the plastic behavior of the sections and underestimates the entire capacity of the pier. The deformed shape at this final load step is illustrated in Figure 5. The sectional moment curvature response of the column is illustrated in Figure 6 where the extreme concrete fibers fail due to the strain exceeding the limit spalling strains and then the compression fibers in the confined concrete region reach the ultimate compressive strain limits. Hinge at Elastic Limit Hinge at Plastic Limit Figure 5- Model 1: (a) The first step where column top and bottom sections exceed elastic limits, (b) Failure due to concrete compressive strains exceeding crushing limit. B.3-4

6 Figure 6- Column Section Behavior Showing Compressed Concrete Region in Dark Blue and Moment Curvature under the DL and 20% LL axial force. 3. Analysis for Lateral Load: Model 2 with Released Connections (Bearings) Plastic Hinges Elastic Links for Pinned Bearings. Figure 7- Model 2 Cross Sections with elastic links (pinned bearings) at the Pier Model 1 is modified assuming that the cap beam is connected to the columns through bearings applied between the top of the column and the cap beam as illustrated in Figure 7. Elastic links are used to model the pads that serve to release the rotations at the top of the columns with the rotational stiffnesses of these bearings being set at zero. For the transverse and longitudinal translation, the elastic stiffness of the link is B.3-5

7 Pier Total Base Shear (kips) NON-LINEAR PUSH-OVER ANALYSES OF PRE-STRESSED CONCRETE BOX-GIRDERS JULY 2013 infinitely large assuring the compatibility of the longitudinal and transverse displacements between the columns and the cap beam at the location of the bearings Model 1 & 2 Pier Transverse Pushover Pier Top Displacement (ft) Model 1: Rigid Model 2: Bearing Model 1: Rigid Linear Analysis Model 2: Bearing- Linear Analysis Figure 8- Transverse Pushover Analysis of the Pier with Bearings Figure 8 compares the results of the push over analysis performed for Model 1 and Model 2. At the elastic limit, the total base shear capacity of the pier for Model 2 with a bearing connection is equal to 252 kips, which is significantly lower than the results of Model 1 with the rigid connection. The bearings provide a released flexure connection between the column and the cap beam and consequently, the bottom sections of the columns are subjected to significantly increased flexure demand when compared to the rigidly connected Model 1. Note that for the case with moment-released bearings, the level of indeterminacy is lower, thus linear analysis provides more accurate solutions than Model 1. Figure 9 illustrates the fact that the released column top sections and the cap beam of the bridge with bearings do not contribute to structural resistance. At the final step, the bridge will fail when the load reaches 345 kips. At that load, the concrete section failure occurs when the concrete fibers in compression exceed the crushing limit while the reinforcing steel is in strain-hardening. It is observed that the ultimate capacity for the Model 1 with the integral connection at 720 kips is slightly higher (by less than 5%) than two times the ultimate capacity of Model 2 with the bearing connections at 345 kips. B.3-6

8 Hinge at Elastic Limit Hinge at Plastic Limit (Failure) Figure 9- Model 2: (a) The first step where column bottom sections exceed their elastic limits, (b) Failure due to concrete compressive strains exceeding crushing limit. 4. Pushdown Analysis under Vertical Loads: Model 3 with Grillage The nonlinear pushdown analysis under the effect of vertical load is not as straightforward as the lateral pushover analyses performed for Model 1 and Model 2. The shell element definitions for the reinforced concrete superstructure are not capable of representing the nonlinear behavior and interaction between the concrete and reinforcing steel fibers. Also, the pre-stressing tendons cannot be incorporated explicitly in the model. Instead, the original model represented the prestressing effects in terms of forces. Thus, the tendons physically do not exist in the model. However, with or without the physical tendon elements, the combined inelastic moment- curvature behavior cannot be represented using the original model. Another commonly used option for representing the superstructure is the spline model which can simulate the inelastic behavior of this type of multi-cell prestressed concrete box girder superstructures. However, using a single beam element- type spline model will not be capable of capturing out-of-plane torsional effects whereas one of the goals in the model is to investigate the capacity of the superstructure in the presence of eccentric vertical loadings shifted to the curb which is further detailed. Therefore, a new model is required where longitudinal/transverse flexure and torsional effects are represented accurately and the plastic hinge theory is applicable to capture inelastic behavior. The nonlinear behavior of the box-girder can be simulated by plastic hinge theory if the multi- cell box girder is modeled using a grillage where the transverse and longitudinal stiffnesses of the elements can be approximated. The flexural and torsional stiffnesses of the grillage elements are calculated through existing methodologies proven to capture box-girder behavior accurately [1, 2]. The grillage model for the superstructure can be connected to the beam column element representing the substructure such the entire bridge system is modeled as a space frame. B.3-7

9 Figure 10- Model 3 Grillage/Space Frame Model with the HS20 Vehicle Loading The longitudinal grillage elements represent the longitudinal stiffness of superstructure portions where each element carries the stiffness of the pre-stressed concrete web and the corresponding top/bottom slabs. For five webs, the model includes five longitudinal elements and the longitudinal stiffness I L, is calculated from the geometry of each web portion and the proportional slab area. The effective shear area of the transverse beams that distributes the loads in transverse and represents the cross section distortion (Figure 11) is evaluated by the closed form equation for an accurate approximation [1]. ( ) [ ] (Eq. 1) ( ) top slab thickness, t t ; bottom slab thickness, t b ; web thickness, t w ; depth between centerlines of the top and bottom slabs, d ; Spacing between adjacent webs of the cell, S. Figure 11- Cross Section Distortion Represented by I t Stiffness The transverse bending inertia has the closed form equation per unit length and the quantity is applied regarding the number of the transverse element of the grillage [1, 2]. (Eq.2) Two formulations are available for the torsional stiffness of the longitudinal elements. The first formulation divides the total torsional constant J1 to be equally shared among the grillage longitudinal girders. The second formulation J2 is the other option which is calculated per unit length of the width. However, J1 is approximately twice the J2 stiffness. The non-linear analysis of the grillage is carried out only with the inelastic flexural effects wile torsional effect is assumed as elastic before the plastic hinge occurs. Initially, J2 stiffness is applied to the grillage girders so that the eccentric vertical forces are B.3-8

10 carried by the flexure stiffness of the beams. This way, J2 is expected to provide more conservative flexural plastic capacity. (Eq.3) The plastic hinge definition for the grillage elements is based on the moment-curvature relationship of each web and corresponding slab portion. The pre-stressing strands and the conventional reinforcing steel are included in the section definitions. The SAP2000 program cannot incorporate the tendon pre-stressing effects in sections other than Caltrans sections. However, the program allows the analyst to apply userdefined moment-curvature relationships at the plastic hinge definitions. Thus, the pre-stressed girders are evaluated outside the program and then their moment-curvature definition is assigned as user-defined. Xtract Software was used to obtain the moment-curvature relationships of the pre-stressed sections at each girder element along the bridge. Then, the plastic hinges are described in SAP2000 using the idealized bilinear moment-curvatures due to the SAP2000 program which only allows linear hardening/softening behavior within plastic region. Note that the Xtract bi-linearization technique is not always as accurate as the one given in Figure 12. Thus, a segmental regression analysis was carried out using available open-source codes [3] that provide the mathematically consistent idealized curves represented by one line for elastic and one line for the plastic region. Note that the average strength increase is 1.3 times the moment in elastic limit and provides significant capacity through hardening in the plastic region of the moment- curvature curves. Figure 12- Negative Moment Curvature Section 126 where Failure is due to Rupture of the Tendons As illustrated in Figure 13, two HS20 trucks with 4 ft distance are applied at the mid-span. The model is beam- type grillage where the transverse element locations are adjusted to make truck point loads coincide with the nodes. Note that the dead load is not incremented during the vertical push-down analysis. B.3-9

11 6 4 6 Figure 13-2-Lane HS20 Truck Loading Locations Coinciding with the Grillage Mesh The plastic hinge definitions of the program are applied at the critical location where the plastic deformations are expected at the connection regions and the point load locations as illustrated in Figure 14. The plastic hinge defintions provide the analyst the ability to track the elastic and plastic deformation levels. Note that for each end of the transverse elements, corresponding non-linear moment curvature curves of the section are assigned as well to represent the influence of top and bottom slabs of the box girders on the transverse stiffness. Pier CL Pier CL Locations where Plastic Hinge are defined to track hinge occurrence Figure 14- Plastic Hinge Locations at Pier Centerlines and the vehicle loads. B.3-10

12 Normalized Vertical Load (k/k) NON-LINEAR PUSH-OVER ANALYSES OF PRE-STRESSED CONCRETE BOX-GIRDERS JULY 2013 The vertical pushdown analysis results are presented in terms of the total vehicle axle load and the recorded displacement in the exterior girder at the midspan.the pushdown analysis is started after the dead load (DL) and the pre-stress (PS) loading are applied in a nonlinear analysis. Therefore, at the end of the initial DL+PS analysis, the pushdown curve starts at a vertical displacement equal to 0.12 ft at Step 0. The toal vertical force applied on the structure is then normalized by the total weight of two trucks, 144 kips and the load level is simply reported as a function of the Normalized Vertical Load (NVL) as given in Figure 15. The plastic strains are initiated at NVL=12.9 on the exterior girder support due to negative flexure and in both the interior and exterior girders due to positive flexure at midspan. Due to the eccentric vertical loads, the distortion behavior along the bridge section is well-simulated with appropriate shear stiffness calculated by the refered formulations. Note that the plastic hinges also occur in the transverse elements as the load steps are further increased. Figure 15 also includes the linear analysis solution for the vertical live load capacity of the superstructure where the midspan positive moment capacity is at NVL=18.0, and negative moment capacity occurs at NVL=18.6. Thus, the linear analysis results underestimates the load re-distribution among the girders once the plastic deformations occurs. Maximum load capacity is at NVL= 24.1 when the total maximum vertical displacement of the midspan is 1.84 ft. Note that the recorded section failure is due to the extended pre-stress tendon fibers exceeding the ultimate strain limit of in/in at the negative moment section as indicated in Figure 16 (b). A detailed deformed shape of half of the middle span is given in Figure 17 where the distortion in the bridge section is illustrated including the locations of plastic hinges occured at the peak load level. Model 3: Vertical Pushover Mid-Span Vertical Displacement (ft) Model 3: Original Case Model 3 Linear Figure 15- Vertical Pushover Analysis of the Original Model with No Deficiency. B.3-11

13 Figure 16- Model 3 (a) The first step where pre-stressed girder sections exceed elastic limits, (b) Failure due to the tendon stress reaching the ultimate strain. Pier CL Mid-Span CL Figure 17- Model 3 Distortion at the Mid-span Due to the Eccentric Vehicle Loading. 5. Vertical Load Analysis with Damage Scenario I: Model 4 Column Removal The push-down analysis is repeated in Model 4 where one of the piers is removed from the system to study the capacity of the system to carry some load following major damage to one of the columns. This first damage scenario as illustrated in Figure 18 could represent a situation where one of the column is hit by a truck, ship or debris carried by a flood or when one column foundation is damaged to a major scour or if one of the columns has been exposed to major deterioration or construction errors. Note that the initial plastic hinge definitions given in Figure 18 can be increased near the undamaged pier and, again, around the vehicle axle loads. Within the scope of the damage bridge scenarios undertaken in this study, the dynamic impact of the element loss is not included in the static pushdown analyses. The objective is to study the ability of a system that has sustained some major damage to continue to carry load and not the response of the bridge to the dynamic impact. B.3-12

14 Figure 18- Damage Scenario I with the Removed Pier Column The analyses of Model 4 is carried out in two scenarios. The first scenario followed is given in Model 4-a where the columns sections are assumed to behave within linear elastic limits. Due to the loss of one pier column, the amount of flexure demand on the undamaged column of the same pier is expected to be extreme, so that the failure modes are probable in this column section. In the first scenario, the focus is directly on the load distribution on the superstructure, thus the column sections are assumed to behave in elastic manner to investigate the effects of load distribution only in the superstructure. Figure 19 illustrates the failed girder section plastic hinges due to excessive negative moment demand at the undamaged pier location. Note that the plastic hinges also occur on the cap beam; however, these sections, which are already yielded, do not reach their failure limits before the girder sections in this analysis. The second scenario, Model 4-b, is a more realistic approach that represents the nonlinear material behavior in both super- and sub- structures. In this case, the plastic hinges are also defined in the column sections to monitor the plastic behavior of the sub-structure as well. Note that the behavior of Model 4-b with the column loss is expected to be governed by the plastic deformations and probable failure modes in the column and/or the cantilevered cap beam sections. Figure 20(a) illustrates the deformed shape of the bridge at the initial step where the plastic hinges are already initialized in the cap beam and the column when the structure with the column loss is subjected to the dead load and pretressing force effects (DL+PS). Figure 20(b) illustrates the plastic hinge propagation when the column section is failed due to the excessive compressive strains in the conrete. Then, the section loses its entire flexure stiffness, starts unloading and behaves as a flexure hinge after this point. The pushdown analysis is continued after the load redistribution due the the column flexural failure and the vertical vehicle loads are increased until the critical girder section failure at the midspan of Span 2 as given in Figure 20 (c). The numerical results of the vertical pushdown analyses on the Models 4-a and 4-b are compared to the original case (Model 3) in Figure 21. Regarding the results from Model 4-a where the sub-structure columns is in elastic manner, the prestressed girders are significantly redundant when one of the piers in the structure is subjected to a column loss. Model 4-a experienced the girder failure at the negative moment section of the exterior girder at the peak level of the normalized vertical load, NVL = Recall that this value is slightly smaller than the original case, Model 3 with NVL=24.1. The column plastic hinge reached its ultimate plastic deformations capacity at NVL=11.Note that the plastic hinge is already initiated due to the re-distribution of dead and prestressing loads. The vertical pushdown is resumed while the failed column section is unloaded until the critical girder section at the B.3-13

15 midspan is failed due to the excessive plastic strains in the pre-stress tendon in the exterior girder (NVL=19.0). Figure 19- Model 4-a (a) The first step where the cap beam sections exceed elastic limits, (b) Failure due to the tendon stress reaching the ultimate strain at the negative moment section along the centerline of undamaged pier. Figure 20- Model 4-b (a) The first step where the column sections exceed elastic limits, (b) Failure in the top column sections, the section immediately starts unloading after this point. (c) First failed pre-stressed girder failure B.3-14

16 Normalized Vertical Load (k/k) NON-LINEAR PUSH-OVER ANALYSES OF PRE-STRESSED CONCRETE BOX-GIRDERS JULY Model 4: Vertical Pushover with Column Losses - Load Location -Midspan Span Girder Hinge Failure (NVL=19) Column Hinge initiated at NVL = 0. Plastic Deformation Limit is NVL=11. Column top is unloaded Model 3: Original Case Mid-Span Vertical Displacement (ft) Model 4-a: Column Loss Model 4-b: Column Loss with Column Hinge Model 4 Linear Model 4: Linear- Column Hinge Model 3 Linear Figure 21- The Effects of Column Removal on the Vertical Pushdown Analyses of Pre-stressed Girders. The linear analysis solution for Model 4 cases are also included in Figure 21. The linear analysis in Model 4-a can not provide a sufficient represetation of the load re-distribution once the initial plastic hinges occur and underestimates the live load capacity at NVL=16.5. In the presence of plasticity in the columns, the linear analysis is performed on the system where the column top seciton is released for both moment directions. The linear solution indicates that the positive moment capacity at the midspan and the negative moment capacity at the support are reached at NVL=16.4 and NVL=16.8, respectively.the linear analysis solution for Model 4-c provides more accurate results when the column failure is also modeled. Once the influence of the plasticity on the un-dameged colums is detected as significant, an additional model case (Model 4-c) is introduced as an alternative case to check to evaluate the effect of the truck location on the failure mode. In Model 4-c, the two HL93 trucks are located over the damaged pier. As illustrated in Figure 22, the vertical load capacity of the system slightly different than each other. However the cricial member locations are not the same. The failure occurs on the girder plastic hinge near the support location due to the positive moment causing excessive compressive stress in the concrete. This failure mode is not similar to the ductile tendon failure at the midspan where the vehicles are loacated in Model 4-b. B.3-15

17 Normalized Vertical Load (k/k) NON-LINEAR PUSH-OVER ANALYSES OF PRE-STRESSED CONCRETE BOX-GIRDERS JULY 2013 Model 4: Vertical Pushdown Analysis at Different Load Locations Mid-Span Vertical Displacement (ft) Model 4-b: Vehicle over the Midspan -Span2 Model 4-c: Vehicle over the Support Model 4 Linear Midspan Model 4 Linear Support Figure 22- The Effects of Vehicle location on the Vertical Pushdown Analyses of Pre-stressed Girders. 6. Vertical Load Analysis with Damage Scenario II: Model 5 Web Removal Figure 23- Damage Scenario II with the Removed Grillage Girder The second damage scenario considered is the failure in the pre-stressing tendons in one of the webs. The case is represented by setting the flexural stiffnesses theoretically as zero along the length of the bridge. The second girder in the grillage model is selected as the failed girder to simulate a worst case scenario because the maximum demand in the originally intact system is expected on this girder due to the position of the two HS20 trucks. B.3-16

18 Normalized Vertical Load (k/k) NON-LINEAR PUSH-OVER ANALYSES OF PRE-STRESSED CONCRETE BOX-GIRDERS JULY 2013 Note that a significant load demand is expected on the transverse elements where multiple axle wheel loads are applied. When the damaged girder is removed, the transverse elements are expected to fail and both flexure hinge mechanisms are expected to occur on these elements. To model such effect accurately, additional releases are provided at the transverse member element ends. Locations where Plastic Hinge are defined to track hinge occurrence Pier CL Pier CL Figure 24- Plastic Hinge Locations at Pier Centerlines and the vehicle loads. Model 5: Vertical Pushover with Girder Losses Mid-Span Vertical Displacement (ft) Model 3: Original Case Model 5: Int. Girder Loss Model 5: Linear Figure 25- Vertical Pushdown Analysis of the Bridge with the Damage Scenario II, Girder Loss. Due to the interior girder loss, the exterior girder becomes the most critical component when the structure is subjected to the eccentric vehicle load. The initial plastic hinges occurred at the pier and the midspan sections of the the exterior girder at the vertical load level, NVL = As the vertical loads are increased, the flexure hinges are also observed at the mid points of the transverse elements where the points loads are applied. Finally, the pier section of the exterior girder reaches the flexure capacity as the B.3-17

19 tendon exceeds the strain limit at the failure, NVL= 18.2 as given in Figure 25. Note that the linear analysis solution (NVL=12.8) is not accurate due to the load re-distribution after plastic hinge occurrence. The plastic hinge propagation is illustrated in Figure 26. Figure 22- Model 5: (a) The First Step where the Exterior Girders Exceeded Elastic Limit (NVL=10.1), (b) the Plastic Hinge Failure at the Negative Moment Section of the Exterior Girder (NVL =18.2). 7. Redundancy Analysis and Comparisons Table 1 summarizes the redundancy ratios for the different models. According to NCHRP 406, a redundancy ratio for the originally intact bridge subjected to overloading should produce a redudancy ratio LF u /LF 1 greater than 1.3 to be considered suffciently redundant. Damaged bridges should give LF d /LF 1 ratio of 0.50 or higher. The redundancy ratios compare the maximum capacity of the system to that of the first member to fail. According to linear elastic pushover analysis of Model 1, the lateral force P 1 is 501kips when the bottom section of the pier reaches its ultimate flexure capacity. According to linear pushdown analysis of Model 3, if two trucks are loaded in the middle span, the first member fails in positive bending when the weight of these trucks is incremented by a factor at LF 1 =18.0. The results of Model 1 through 3 in Table 1 show that this bridge provides good levels of redundancy for the ultimate limit state due to either vertical or lateral overloading of the originally intact bridge. The results of Model 4-a, -b, -c and Model 5 also show higher redundancy ratio than the minimum redundancy value of 0.50 for damaged scenarios. Therefore, this bridge satisfies all the redundancy criteria provided in NCHRP 406. B.3-18

20 Table 1 Summary table for the redundancy ratio of the prestressed box-girder bridge Analysis Case Model P u /P 1 LF u /LF 1 LF d /LF 1 Model Model Model Model 4-a Model 4-b Model 4-c Model CONCLUSIONS The system redundancy of a sample multicell prestrssed concrete box-girder bridge was evaluated through a set of non-linear static analyses accounting for the nonlinear behavior of the pier columns and the pre-stressed girder sections. The system behavior of the system under the effect of lateral load was evaluated for two cases: (1) Model 1 with the box-girder superstructure connected to the substructure through rigid integral connections between the capbeams and the columns; (2) Model 2 with the boxgirder superstructure supported on bearings where the theoretical flexural stiffness was zero. The horizontal pushover analyses indicated that the horizontal load capacity of the system with pinned piers is reduced by 53% when compared to the performance of the system with integral column cap beam connection. This reduction is consistent with currently used simplified plastic analysis models that consider the pier as a frame with either fixed-fixed columns simulating the behavior of the system with integral connection as compared to fixed-pinned columns which simulate the behavior of the system with bearings. The pre-stressed multicell box girder bridge system redundancy was evaluated by analyzing the effects of two damage scenarios. In the first damage scenario the structure is assuemd to have experienced the loss of a pier column while the second scenario simulated the loss of a pre-stressed girder. The vertical pushdown analysis indicated that the eccentrically loaded bridge in its original undamaged condition had a total capacity capable of carrying up to 23.9 times the weight of two HS-20 vehicles located side-byside between the exterior and the second interior girders on top of the dead load and the pre-stressing force effects. For the damaged scenario simulating the loss of one column, the remaining un-damaged column is subjected to significant flexure demand at the top section. The undamged column s flexure capacity rstarted its plastification at when the vertial load reached 11 times the weight of two HS-20 design vehicles applied at the midspan. However, due to girder load distribution the ultimate capcity was B.3-19

21 not affected as severly as the column and the ultimate capacity of the system took place when the load reached 21 times the total vehicle loads. The linear analysis solutions for the superstructure through five models are generally not sufficient to represent the load re-distribution among the prestressed girders. The linear solution underestimates the vertical and horizontal load capacity of super- and sub-structures due to the higher level of indeterminacy. The damage scenario simulating the loss of a girder demonstrated that there was significant amount of redundancy in the system and large additional load distribution. The loss of a prestressed girder, reduces the capacity of the system by 76% compared to the original intact case. Due to the loads s eccentric location, the exterior girder away from the load and the first interior girder on the other side did not contribute significantly to the original load capacity of the intact system; therefore they are able to help carry additional load when the girder below the load is removed. REFERENCES [1] Zokaie T, Osterkamp TA, Imbsen RA. (1991) Distribution of Wheel loads on Highway Bridges. Final Report, NCHRP project 12-26; Transportation Research Board, The National Academies, [2] Hambly EC. (1991) Bridge Deck Behavior. London: Chapman and Hall, Ltd; [3] Muggeo V. (2008) Segmented: an R package to fit regression models with broken-line relationships. R News, 8, 1: B.3-20

Appendix D.2. Redundancy Analysis of Prestressed Box Girder Superstructures under Vertical Loads

Appendix D.2. Redundancy Analysis of Prestressed Box Girder Superstructures under Vertical Loads Appendix D.2 Redundancy Analysis of Prestressed Box Girder Superstructures under Vertical Loads By Jian Yang, Giorgio Anitori, Feng Miao and Michel Ghosn Contents 1. Introduction...1 2. Prestressed Concrete

More information

Appendix D.1. Redundancy Analysis of Composite Spread Box Girder Superstructures under Vertical Loads

Appendix D.1. Redundancy Analysis of Composite Spread Box Girder Superstructures under Vertical Loads Appendix D.1 Redundancy Analysis of Composite Spread Box Girder Superstructures under Vertical Loads By Jian Yang, Feng Miao and Michel Ghosn Contents 1. Introduction...1 2. Structural Modeling...3 2.1

More information

Nonlinear Redundancy Analysis of Truss Bridges

Nonlinear Redundancy Analysis of Truss Bridges Nonlinear Redundancy Analysis of Truss Bridges Analysis Report Dr. Michel Ghosn Ph.D. Graziano Fiorillo The City College of New York / CUNY SEPTEMBER 2013 Acknowledgments This section describes the redundancy

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

Bijan Khaleghi, Ph, D. P.E., S.E.

Bijan Khaleghi, Ph, D. P.E., S.E. 0 Submission date: July, 0 Word count: 0 Author Name: Bijan Khaleghi Affiliations: Washington State D.O.T. Address: Linderson Way SW, Tumwater WA 0 INTEGRAL BENT CAP FOR CONTINUOUS PRECAST PRESTRESSED

More information

MIDAS Training Series

MIDAS Training Series MIDAS midas Civil Title: All-In-One Super and Sub Structure Design NAME Edgar De Los Santos / MIDAS IT United States 2016 Substructure Session 1: 3D substructure analysis and design midas Civil Session

More information

by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006

by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006 Principles of Earthquake Engineering of Bridges Part 1: Principles & Approach by Dr. Mark A. Ketchum, OPAC Consulting Engineers for the EERI 100 th Anniversary Earthquake Conference, April 17, 2006 Presentation

More information

Pile to Slab Bridge Connections

Pile to Slab Bridge Connections Pile to Slab Bridge Connections Mohamed I. Ayoub 1, David H. Sanders 2 and Ahmed Ibrahim 3 Abstract Slab bridges are a common bridge type, where the pile extends directly from the ground to the superstructure.

More information

Flexure Design Sequence

Flexure Design Sequence Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence Determine Effective flange width Determine maximum tensile beam stresses (without prestress)

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading

Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading Ahmed M. Saleh, Mohamed Rabie and Ezz-El-Din Kamel Structural Engineering Department, Faculty of Engineerin,g

More information

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS Juan G. Arias Acosta, Graduate Student David H. Sanders, Professor and Project PI University of Nevada, Reno NEESR SG 53737

More information

NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS

NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS NON-LINEAR STRUCTURAL INTEGRITY ANALYSIS AHMAD RAHIMIAN, PhD, PE, SE Dr. Ahmad Rahimian., PE, SE is President of Cantor Seinuk Structural Engineers in New York City. An expert in the behaviour of steel

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders Catbas, Darwash, Fadul / 0 0 0 Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders F.N. Catbas, H. Darwash and M. Fadul Dr. F. Necati Catbas, P.E. Associate

More information

BrD Superstructure Tutorial

BrD Superstructure Tutorial AASHTOWare BrD 6.8 BrD Superstructure Tutorial PS12 Prestressed Concrete I Beam Using BrD LRFD Engine BrD Superstructure Training PS12 - Prestressed Concrete I Beam Using BrD LRFD Engine 1'-9" 55'-6" Total

More information

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E.

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E. BRIDGE DESIGN MANUAL UPDATES Jamie F. Farris, P.E. October 2015 Table of Contents 1 BDM Chapter 2 Limit States and Loads 2 BDM Chapter 3 Superstructure Design 3 BDM Chapter 4 Substructure Design 4 Questions

More information

Seismic Analysis of Truss Bridges with Tall Piers

Seismic Analysis of Truss Bridges with Tall Piers Journal P Krishi Sanskriti Publications http: Seismic Analysis of Truss Bridges with Tall Piers Akil Ahmed 1 and Jameel Ahmed 2 1,2 Deptt of Civil Engineering Jamia Millia Islamia, Jamia Nagar, New Delhi

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Fragility Curves for Seismically Retrofitted Concrete Bridges

Fragility Curves for Seismically Retrofitted Concrete Bridges Fragility Curves for Seismically Retrofitted Concrete Bridges S.-H. Kim Department of Civil and Environmental Engineering, University of California, Irvine, USA. ABSTRACT: This study presents the development

More information

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND

Introduction to Structural Analysis TYPES OF STRUCTURES LOADS AND AND Introduction to Structural Analysis TYPES OF STRUCTURES LOADS INTRODUCTION What is the role of structural analysis in structural engineering projects? Structural engineering is the science and art

More information

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION Wei YUE,

More information

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles

Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Numerical Modeling of Dynamic Soil-Structure Interaction in Bridges with HP Driven Piles Yu Bao, Andrew Rietz and Steven Halewski, Rochester Institute of Technology, Rochester, NY, USA HP-Pile foundations

More information

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Performance based Displacement Limits for Reinforced Concrete Columns under Flexure Ahmet Yakut, Taylan Solmaz Earthquake Engineering Research Center, Middle East Technical University, Ankara,Turkey SUMMARY:

More information

Parametric Study of Continuous Concrete Beam Prestressed with External Tendon

Parametric Study of Continuous Concrete Beam Prestressed with External Tendon Parametric Study of Continuous Concrete Beam Prestressed with External Tendon Assistant Professor, College of Engineering, Diyala University, Iraq ABSTRACT This paper presents the results of a parametric

More information

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1 Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction Bijan Khaleghi 1 Abstract Ductility of precast prestressed girder bridges can be achieved by proper detailing of pier

More information

RESEARCH FOR THE MECHANICAL BEHAVIOR OF SIMPLE-SUPPORTED IRREGULAR REINFORCED CONCRETE SLAB BRIDGE

RESEARCH FOR THE MECHANICAL BEHAVIOR OF SIMPLE-SUPPORTED IRREGULAR REINFORCED CONCRETE SLAB BRIDGE RESEARCH FOR THE MECHANICAL BEHAVIOR OF SIMPLE-SUPPORTED IRREGULAR REINFORCED CONCRETE SLAB BRIDGE Wei Chen 1, Guojing He 1 1 Central South University of Forestry and Technology No. 498 Shaoshan Road,

More information

EFFECTS OF MODELLING PARAMETERS ON THE SEISMIC ANALYSIS OF BRIDGES

EFFECTS OF MODELLING PARAMETERS ON THE SEISMIC ANALYSIS OF BRIDGES Y. Gao & L. Lin, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 5 (2018) 868 879 EFFECTS OF MODELLING PARAMETERS ON THE SEISMIC ANALYSIS OF BRIDGES YULING GAO & LAN LIN Department of Building, Civil and

More information

Earthquake Design of Flexible Soil Retaining Structures

Earthquake Design of Flexible Soil Retaining Structures Earthquake Design of Flexible Soil Retaining Structures J.H. Wood John Wood Consulting, Lower Hutt 207 NZSEE Conference ABSTRACT: Many soil retaining wall structures are restrained from outward sliding

More information

EFFECT OF CAP BEAM TO COLUMN INERTIA RATIO ON TRANSVERSE SEISMIC RESPONSE OF MULTI COLUMN BRIDGE BENTS

EFFECT OF CAP BEAM TO COLUMN INERTIA RATIO ON TRANSVERSE SEISMIC RESPONSE OF MULTI COLUMN BRIDGE BENTS EFFECT OF CAP BEAM TO COLUMN INERTIA RATIO ON TRANSVERSE SEISMIC RESPONSE OF MULTI COLUMN BRIDGE BENTS O. Avsar 1, A. Caner and A. Yakut 1 Research Assistant, Dept. of Civil Engineering, Middle East Technical

More information

Seismic Fragility of Concrete Bridges with Deck Monolithically Connected to the Piers or Supported on Elastomeric Bearings

Seismic Fragility of Concrete Bridges with Deck Monolithically Connected to the Piers or Supported on Elastomeric Bearings Seismic Fragility of Concrete Bridges with Deck Monolithically Connected to the Piers or Supported on Elastomeric Bearings G. Tsionis & M.N. Fardis University of Patras, Greece SUMMARY: The seismic vulnerability

More information

PUNCHING SHEAR STRENGTH OF GFRP REINFORCED DECK SLABS IN SLAB- GIRDER BRIDGES

PUNCHING SHEAR STRENGTH OF GFRP REINFORCED DECK SLABS IN SLAB- GIRDER BRIDGES IV ACMBS MCAPC 4 th International Conference on Advanced Composite Materials in Bridges and Structures 4 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes

More information

PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140)

PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140) PERFORMANCE STUDY OF RETROFITTED GRAVITY LOAD DESIGNED WALL FRAME STRUCTURES (SC-140) *A. Ahmed 1, K. H. Tan 1 1 Department of Civil and Environmental Engineering National University of Singapore, Singapore,

More information

Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE

Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE Design of continuity slabs and the 020 Gajanan Chaudhari Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE Anand Panpate Senior Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE

More information

Design of Short Span Steel Bridges

Design of Short Span Steel Bridges PDHonline Course S122 (3 PDH) Design of Short Span Steel Bridges Instructor: Frank Russo, Ph.D. & John C. Huang, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone

More information

Interaction between ductile RC perimeter frames and floor slabs containing precast units

Interaction between ductile RC perimeter frames and floor slabs containing precast units Interaction between ductile RC perimeter frames and floor slabs containing precast units R. C Fenwick,. J. Davidson and D.. N. Lau Department of Civil and Environmental Engineering, University of uckland.

More information

Innovative Design of Precast/Prestressed Girder Bridge Superstructures using Ultra High Performance Concrete

Innovative Design of Precast/Prestressed Girder Bridge Superstructures using Ultra High Performance Concrete Innovative Design of Precast/Prestressed Girder Bridge Superstructures using Ultra High Performance Concrete Husham Almansour, Ph.D. and Zoubir Lounis, Ph.D., P. Eng. Paper prepared for presentation at

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT Oct. 1, 2015 to December 31, 2015 Period Submitted by M. Saiidi, A. Itani, and A. Mohebbi Department of Civil and Environmental Engineering

More information

Extreme Loading for Structures Version 3.1

Extreme Loading for Structures Version 3.1 Extreme Loading for Structures Version 3.1 Corrosion Effects Option April 2010 1. Introduction Corrosion of gusset plates was identified as one of the main causes for failure in the catastrophic collapse

More information

Proposed Modifications to the LRFD Design of U-Beam Bearings

Proposed Modifications to the LRFD Design of U-Beam Bearings Proposed Modifications to the LRFD Design of U-Beam Bearings Charles D. Newhouse, Scott A. Bole, W. R. Burkett, Phillip T. Nash, Mostafa El-Shami Performed in Cooperation with the Texas Department of Transportation

More information

Continuous Beam Design with Moment Redistribution (ACI )

Continuous Beam Design with Moment Redistribution (ACI ) Continuous Beam Design with Moment Redistribution (ACI 318-14) Continuous Beam Design with Moment Redistribution (ACI 318-14) A structural reinforced concrete continuous beam at an intermediate floor level

More information

NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS

NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS NON-LINEAR STATIC PUSHOVER ANALYSIS FOR MULTI-STORED BUILDING BY USING ETABS Polupalli Victor Paul 1, K Sampath Kumar 2 1 PG Student, Dept of Civil Engineering, Nova College of Engineering & Technology,

More information

Analysis of a Severely Skewed Prestressed Concrete Beam Bridge

Analysis of a Severely Skewed Prestressed Concrete Beam Bridge Analysis of a Severely Skewed Prestressed Concrete Beam Bridge Gary L. Gardner, Jr., P.E. Bridge Technical Service Manager ms consultants, inc. August 19 th, 2015 MIDAS Special Elite Engineers Webinar

More information

Hyperstatic (Secondary) Actions In Prestressing and Their Computation

Hyperstatic (Secondary) Actions In Prestressing and Their Computation 5.5 Hyperstatic (Secondary) Actions In Prestressing and Their Computation Bijan O Aalami 1 SYNOPSIS This Technical Note describes the definition, computation, and the significance of hyperstatic (secondary)

More information

CSiBridge Version Release Notes

CSiBridge Version Release Notes CSiBridge Version 20.0.0 Release Notes Copyright Computers and Structures, Inc., 2017 Notice Date: 2017-12-14 This file lists all changes made to CSiBridge since the previous version. Most changes do not

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT October 1, 2016 to December 31, 2016 Period Year 1 Project Development and Seismic Evaluation of Pier Systems w/ Pocket Connections and Square

More information

Behaviour of Concrete Filled Rectangular Steel Tube Column

Behaviour of Concrete Filled Rectangular Steel Tube Column IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 4, Issue 2 (Nov. - Dec. 2012), PP 46-52 Behaviour of Concrete Filled Rectangular Steel Tube Column Anil Kumar Patidar

More information

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS Chapter 4 EXPERIMENTAL RESULTS 4.1 Introduction This chapter presents the results from the half scale interior Corcon rib beam-column subassemblage and the FRP repaired subassemblage. As described in chapter

More information

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 7, July 2017, pp. 581 593, Article ID: IJCIET_08_07_062 Available online at http:// http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=7

More information

CHAPTER 3 ANALYSIS METHOD

CHAPTER 3 ANALYSIS METHOD CHAPTER 3 ANALYSIS METHOD 3.1 ELASTIC STATIC ANALYSIS Elastic static analysis is done to calculate stress ratio between before and after subsidence. The structure will behave elastic when the first yield

More information

MULTI-STOREY BUILDINGS - II

MULTI-STOREY BUILDINGS - II 38 MULTI-STOREY BUILDINGS - II 1.0 INTRODUCTION Modern design offices are generally equipped with a wide variety of structural analysis software programs, invariably based on the stiffness matrix method.

More information

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS

SEISMIC RETROFIT OF A TYPICAL REINFORCED CONCRETE BUILDING THROUGH FRP JACKETING OF EXTENDED RECTANGULAR COLUMNS 6 th International Conference on Advanced Composite Materials in Bridges and Structures 6 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes Kingston, Ontario,

More information

DESIGN OF GRAVITY-LOAD RESISTING FRAMES FOR SEISMIC DISPLACEMENT DEMANDS

DESIGN OF GRAVITY-LOAD RESISTING FRAMES FOR SEISMIC DISPLACEMENT DEMANDS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska DESIGN OF GRAVITY-LOAD RESISTING FRAMES FOR SEISMIC DISPLACEMENT DEMANDS

More information

A Case Study of a Computer Aided Structural Design of a System Interchange Bridge

A Case Study of a Computer Aided Structural Design of a System Interchange Bridge Proceedings of the 2 nd International Conference on Civil, Structural and Transportation Engineering (ICCSTE 16) Ottawa, Canada May 5 6, 2016 Paper No. 113 A Case Study of a Computer Aided Structural Design

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

THE EXTENDED N2 METHOD IN SEISMIC DESIGN OF STEEL FRAMES CONSIDERING SEMI-RIGID JOINTS

THE EXTENDED N2 METHOD IN SEISMIC DESIGN OF STEEL FRAMES CONSIDERING SEMI-RIGID JOINTS THE EXTENDED N2 METHOD IN SEISMIC DESIGN OF STEEL FRAMES CONSIDERING SEMI-RIGID JOINTS Paulina KROLO 1, Mehmed CAUSEVIC 2 and Mladen BULIC 3 ABSTRACT In this paper the nonlinear static seismic analysis

More information

Types of Structures and Loads

Types of Structures and Loads Types of Structures and Loads THEORY OF STRUCTURES Asst. Prof. Dr. Cenk Üstündağ Asst. Prof. Dr. Cenk Ustundag E-mail: ustunda1@itu.edu.tr Room Nr: 103 Web: http://web.itu.edu.tr/ustunda1 Course Content

More information

Design of Steel-Concrete Composite Bridges

Design of Steel-Concrete Composite Bridges Design of Steel-Concrete Composite Bridges to Eurocodes Ioannis Vayas and Aristidis Iliopoulos CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis

More information

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example STL6 - Two Span Plate Girder Example (BrDR 6.5) 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf

More information

THE NEW AASHTO MANUAL FOR BRIDGE EVALUATION 2008

THE NEW AASHTO MANUAL FOR BRIDGE EVALUATION 2008 LOAD & RESISTANCE FACTOR RATING OF HIGHWAY BRIDGES FHWA LRFR Seminar SESSION 5 THE NEW AASHTO MANUAL FOR BRIDGE EVALUATION 2008 Bala Sivakumar, P.E. HNTB Corp. 2005 AASHTO BRIDGE MEETING AASHTO Adopted

More information

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Design Example 2 Reinforced Concrete Wall with Coupling Beams Design Example 2 Reinforced Concrete Wall with Coupling Beams OVERVIEW The structure in this design example is a six story office building with reinforced concrete walls as its seismic force resisting

More information

5.4 Analysis for Torsion

5.4 Analysis for Torsion 5.4 Analysis for Torsion This section covers the following topics. Stresses in an Uncracked Beam Crack Pattern Under Pure Torsion Components of Resistance for Pure Torsion Modes of Failure Effect of Prestressing

More information

Finite Element Simulation of Cantilever Construction Structure

Finite Element Simulation of Cantilever Construction Structure Finite Element Simulation of Cantilever Construction Structure Baofeng Pan 1, Gang Li 2 Abstract In order to realize the control ultimate goal, it is necessary to predict and control the deformation and

More information

Seismic Detailing of RC Structures (IS: )

Seismic Detailing of RC Structures (IS: ) Seismic Detailing of RC Structures (IS:13920-1993) Sudhir K Jain Indian Institute of Technology Gandhinagar November 2012 1 Outline This lecture covers: Covers important clauses of IS13920 With particular

More information

This final draft of the fib MC2010 has not been published; it is intended only for the purpose of voting by the General Assembly.

This final draft of the fib MC2010 has not been published; it is intended only for the purpose of voting by the General Assembly. 7 Design 382 In the case of combined action of torsion, bending and shear force in a solid section, the core within the idealised hollow cross-section may be used for the transmission of the shear forces.

More information

APPENDIX C CALIBRATION OF LRFD DESIGN SPECIFICATIONS FOR STEEL CURVED GIRDER BRIDGES

APPENDIX C CALIBRATION OF LRFD DESIGN SPECIFICATIONS FOR STEEL CURVED GIRDER BRIDGES APPENDIX C CALIBRATION OF LRFD DESIGN SPECIFICATIONS FOR STEEL CURVED GIRDER BRIDGES Prepared by Andrzej S. Nowak, Aleksander Szwed, Piotr J. Podhorecki, Artur Czarnecki and Pascal Laumet University of

More information

Sensitivity Analysis of Rail-Structure Interaction Force Effects for Direct-Fixation. Bridges

Sensitivity Analysis of Rail-Structure Interaction Force Effects for Direct-Fixation. Bridges Sensitivity Analysis of Rail-Structure Interaction Force Effects for Direct-Fixation Bridges Authors: Daniel Baxter, P.E., S.E. (Michael Baker Jr. Inc.), David Nemovitz, P.E. (Michael Baker Jr. Inc.) Number

More information

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni

Deflection Assessment of an FRP-Reinforced Concrete Bridge. By Danielle K. Stone, Andrea Prota, and Antonio Nanni Deflection Assessment of an FRP-Reinforced Concrete Bridge By Danielle K. Stone, Andrea Prota, and Antonio Nanni Synopsis: Serviceability of FRP-reinforced concrete structures remains a highly relevant

More information

Practical Nonlinear Analysis for Limit Design of Reinforced Masonry Walls

Practical Nonlinear Analysis for Limit Design of Reinforced Masonry Walls Send Orders of Reprints at reprints@benthamscience.org The Open Civil Engineering Journal, 12, 6, 107-118 107 Open Access Practical Nonlinear Analysis for Limit Design of Reinforced Masonry Walls Andres

More information

Bridge articulation No. 1.04

Bridge articulation No. 1.04 Bridge articulation Scope This Guidance Note gives advice on the selection of the articulation arrangements, the choice of bearing types and dispositions of bearings, for bridges where relative movement

More information

Analysis and design of balanced cantilever prestressed box girder bridge considering constructions stages and creep redistribution

Analysis and design of balanced cantilever prestressed box girder bridge considering constructions stages and creep redistribution Analysis and design of balanced cantilever prestressed box girder bridge considering constructions stages and creep redistribution 1. Introduction Assoc. Prof. Dr. Amorn Pimanmas Sirindhorn International

More information

PUSHOVER ANALYSIS FOR PERFORMANCE BASED-SEISMIC DESIGN OF RC FRAMES WITH SHEAR WALLS

PUSHOVER ANALYSIS FOR PERFORMANCE BASED-SEISMIC DESIGN OF RC FRAMES WITH SHEAR WALLS PUSHOVER ANALYSIS FOR PERFORMANCE BASED-SEISMIC DESIGN OF RC FRAMES WITH SHEAR WALLS Y.Fahjan Gebze Institute of Technology, Istanbul, Turkey B.Doran Yıldız Technical University, Istanbul, Turkey B.Akbas

More information

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES F. El M e s k i 1 ; M. Harajli 2 1 PhD student, Dept. of Civil and Environmental Engineering, American Univ. of Beirut;

More information

ADAPT-PT 2010 Tutorial Idealization of Design Strip in ADAPT-PT

ADAPT-PT 2010 Tutorial Idealization of Design Strip in ADAPT-PT ADAPT-PT 2010 Tutorial Idealization of Design Strip in ADAPT-PT Update: April 2010 Copyright ADAPT Corporation all rights reserved ADAPT-PT 2010-Tutorial- 1 Main Toolbar Menu Bar View Toolbar Structure

More information

Session 2: Basic Load Rating Calculations

Session 2: Basic Load Rating Calculations Agenda Day 1 8:00 am 8:15 am Introductions and House Keeping 8:15 am 8:45 am Session 1: Load Rating Basics 8:45 am 9:30 am Session 2: Basic Load Rating Calculations 9:30 am 9:45 am Break 9:45 am 11:45

More information

LARSA 2000/4th Dimension: Staged Construction Analysis

LARSA 2000/4th Dimension: Staged Construction Analysis LARSA 2000/4th Dimension: Staged Construction Analysis LARSA 2000/4th Dimension: Staged Construction Analysis for LARSA 2000 Finite Element Analysis and Design Software Larsa, Inc. Melville, New York,

More information

ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE

ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE ULTIMATE LOAD-CARRYING CAPACITY OF SELF-ANCHORED CONCRETE SUSPENSION BRIDGE Meng Jiang*, University of Technology Dalian, P. R. China Wenliang Qiu, University of Technology Dalian, P. R. China Lihua Han,

More information

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine STL6 - Two Span Plate Girder Example 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf 3'-6" 3

More information

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode Update: August 2016 Copyright ADAPT Corporation all rights reserved ADAPT-PT/RC 2016-Tutorial- 1 This ADAPT-PTRC 2016 Getting Started Tutorial is

More information

SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES

SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska SEISMIC VULNERABILITY ASSESSMENT OF STEEL PIPE SUPPORT STRUCTURES

More information

CVEN 483. Structural System Overview

CVEN 483. Structural System Overview CVEN 483 Structural System Overview Dr. J. Bracci Fall 2001 Semester Presentation Overview 1. Building system primary function 2. Types of load 3. Building materials 4. Structural members 5. Structural

More information

EVALUATION OF NONLINEAR STATIC PROCEDURES FOR SEISMIC DESIGN OF BUILDINGS

EVALUATION OF NONLINEAR STATIC PROCEDURES FOR SEISMIC DESIGN OF BUILDINGS EVALUATION OF NONLINEAR STATIC PROCEDURES FOR SEISMIC DESIGN OF BUILDINGS By H.S. Lew 1 and Sashi K. Kunnath Presented at the rd Joint Meeting of the UJNR Panel on Wind and Seismic Effects ABSTRACT This

More information

Nonlinear Static Pushover Analysis of a Shear Wall Building in Madinah

Nonlinear Static Pushover Analysis of a Shear Wall Building in Madinah Nonlinear Static Pushover Analysis of a Shear Wall Building in Madinah M. Ajmal,M.K. Rahman and M.H. Baluch King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia Recent Seismic Activities in

More information

Precast Concrete Bearing Wall Panel Design (Alternative Analysis Method) (Using ACI )

Precast Concrete Bearing Wall Panel Design (Alternative Analysis Method) (Using ACI ) Precast Concrete Bearing Wall Panel Design (Alternative Analysis ethod) (Using ACI 318-14) Precast Concrete Bearing Wall Panel Design (Alternative Analysis ethod) (Using ACI 318-14) A structural precast

More information

GUIDE SPECIFICATIONS FOR SEISMIC DESIGN OF STEEL BRIDGES

GUIDE SPECIFICATIONS FOR SEISMIC DESIGN OF STEEL BRIDGES GUIDE FOR SEISMIC DESIGN OF STEEL BRIDGES First Edition State of California Department of Transportation December 2001 TABLE OF CONTENTS PREFACE i DEFINITIONS iv NOTATION vii 1. INTRODUCTION 1 1.1. Scope

More information

Rail-Structure Interaction using MIDAS. Sean McAuley, P.E. Scott Henning, P.E.

Rail-Structure Interaction using MIDAS. Sean McAuley, P.E. Scott Henning, P.E. Rail-Structure Interaction using MIDAS Sean McAuley, P.E. Scott Henning, P.E. CA HSR CP2-3 65.5 miles of HSR infrastructure 18 HST Bridges 32 Roadway Overpasses 25 kv a.c. Electrification Design Speed:

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 Finite element

More information

Reinforced Concrete Column Design

Reinforced Concrete Column Design Reinforced Concrete Column Design Compressive Strength of Concrete f cr is the average cylinder strength f c compressive strength for design f c ~2500 psi - 18,000 psi, typically 3000-6000 psi E c estimated

More information

Effect of beam dimensions on structural performance of wide beam-column joints

Effect of beam dimensions on structural performance of wide beam-column joints Effect of beam dimensions on structural performance of wide beam-column joints J.S. Kuang 1) and *Wing Shan Kam 2) 1), 2) Department of Civil and Environmental Engineering, Hong Kong University of Science

More information

Seismic design of large underground structures Application of a new methodology to structures with feasible layout

Seismic design of large underground structures Application of a new methodology to structures with feasible layout Seismic design of large underground structures Application of a new methodology to structures with feasible layout A. Brito scola Superior de Tecnologia do Barreiro, IPS, Setúbal, Portugal M. Lopes Instituto

More information

DISPLACEMENT-BASED SEISMIC DESIGN OF CONCRETE BRIDGES

DISPLACEMENT-BASED SEISMIC DESIGN OF CONCRETE BRIDGES DISPLACEMENT-BASED SEISMIC DESIGN OF CONCRETE BRIDGES V.G. Bardakis 1 and M.N. Fardis 2 1 Post-Doctoral Researcher, Structures Lab, Dept. of Civil Engineering, University of Patras, Patras,Greece 2 Professor

More information

Influence on Durability of Concrete Slab in Composite Bridge due to Use of Elastic Supports

Influence on Durability of Concrete Slab in Composite Bridge due to Use of Elastic Supports Influence on Durability of Concrete Slab in Composite Bridge due to Use of Elastic Supports Joang-Jin PARK Shigeyuki MATSUI Hiroshi HIGASHIYAMA Keizo EGASHIRA Abstract: When existing simple span bridges

More information

Ensuring sufficient robustness to resist

Ensuring sufficient robustness to resist Performance of precast concrete moment frames subjected to column removal: Part 2, computational analysis Yihai Bao, Joseph A. Main, H. S. Lew, and Fahim Sadek This paper presents a computational study

More information

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example AASHTOWare BrD 6.8 BrR and BrD Tutorial PS7-3 Stem PS Bridge Example BrR and BrD Training PS7 3 Stem PS Bridge Example From the Bridge Explorer create a new bridge and enter the following description data.

More information

Sabah Shawkat Cabinet of Structural Engineering 2017

Sabah Shawkat Cabinet of Structural Engineering 2017 3.1-1 Continuous beams Every building, whether it is large or small, must have a structural system capable of carrying all kinds of loads - vertical, horizontal, temperature, etc. In principle, the entire

More information

SEISMIC DESIGN STRATEGY OF THE NEW EAST BAY BRIDGE SUSPENSION SPAN

SEISMIC DESIGN STRATEGY OF THE NEW EAST BAY BRIDGE SUSPENSION SPAN SEISMIC DESIGN STRATEGY OF THE NEW EAST BAY BRIDGE SUSPENSION SPAN Marwan NADER 1, Rafael MANZANAREZ 2 And Brian MARONEY 3 SUMMARY The San Francisco Oakland Bay Bridge was closed in 1989 when a 15-m portion

More information

PUSHOVER ANALYSIS OF A 19 STORY CONCRETE SHEAR WALL BUILDING

PUSHOVER ANALYSIS OF A 19 STORY CONCRETE SHEAR WALL BUILDING 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 133 PUSHOVER ANALYSIS OF A 19 STORY CONCRETE SHEAR WALL BUILDING Rahul RANA 1, Limin JIN 2 and Atila

More information

Introduction to Statically

Introduction to Statically Introduction to Statically Indeterminate Analysis Support reactions and internal forces of statically determinate structures can be determined using only the equations of equilibrium. However, the analysis

More information

ctbuh.org/papers CTBUH Recommendations for the Seismic Design of High-Rise Buildings

ctbuh.org/papers CTBUH Recommendations for the Seismic Design of High-Rise Buildings ctbuh.org/papers Title: Author: Subject: CTBUH Recommendations for the Seismic Design of High-Rise Buildings Michael Willford, Council on Tall Buildings and Urban Habitat Structural Engineering Publication

More information