PGSuper Tutorials. What s new in PGSuper Version 2.7

Size: px
Start display at page:

Download "PGSuper Tutorials. What s new in PGSuper Version 2.7"

Transcription

1 PGSuper Tutorials from BridgeSight Software What s new in PGSuper Version 2.7 BridgeSight Inc. P.O. Box Venice Drive South Lake Tahoe, CA

2 Title PGSuper Tutorial What s new in PGSuper Version 2.7 Publication No. BS Abstract This document provides an overview of the new features in PGSuper Version 2.7. Notes Author Staff BridgeSight Software Sponsor BridgeSight Inc P.O. Box South Lake Tahoe, CA Specification AASHTO LRFD Bridge Design Specifications PGSuper Version 2.7 Original Publication Date 09/05/2012 Date of Latest Revision Version 1.0 Notice of Copyright Copyright 2012 BridgeSight Inc. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopied, recorded, or otherwise), without prior written permission from BridgeSight Inc.

3 Disclaimer This BridgeSight PGSuper Tutorial is provided complements of BridgeSight Inc.. BridgeSight Inc. asserts a copyright in this work. BridgeSight Inc. retains the exclusive ownership of this copy of the PGSuper Tutorial. This document is provided AS IS without any warranty, express or implied by anyone using, distributing, copying or otherwise possessing this document. The entire risk as to the use, results and performance of this document is assumed by you. BridgeSight Inc. does not warrant, guarantee, or make any representations regarding the use of, merchantability or fitness for a particular use of the product. Should this document prove defective, you assume the entire cost of all necessary servicing, repair or correction. Further, BridgeSight Inc. does not warrant, guarantee, or make any representations regarding the use of, or the results of the use of this document in terms of correctness, accuracy, reliability, currentness, or otherwise and has no obligation to correct errors, make changes, support or distribute updates; and you rely on this document solely at your own risk. BridgeSight Inc. will not be liable for any damages, service, repair, correction, loss of profit, lost savings, or any other incidental, consequential, or special damages of any nature whatsoever resulting from the use or inability to use this product including any claims, suits or causes of action involving claims of infringement of copyrights, patents, trademarks, trade secrets, or unfair competition. The Licensee indemnifies and holds harmless BridgeSight Inc., its officials, employees, and contributors for any injury to the person or property of third parties arising out of the use of or any defect in this document. BridgeSight Software retains all rights not expressly granted. Nothing in this agreement constitutes a waiver of BridgeSight Inc. s rights under United States copyright laws or any other Federal or State law.

4 Introduction The Washington, Texas and Kansas Departments of Transportation released PGSuper Version 2.7 in September This software has several new features and enhancements including: Direct Selection Strand Input Bridge View Span Selector Improved Girder Design New Prestress Loss Options Improved modeling of sidewalks and barriers Accounting for crack spacing in shear capacity calculations Improved Reporting of Reactions The most significant change to the PGSuper project is the addition of the Kansas Department of Transportation (KDOT) as a development partner. After evaluation of other offerings, KDOT decided the most economical and feasible approach was to join the PGSuper collaboration with WSDOT and TxDOT. BridgeSight Inc. entered into a software development contract with KDOT in November The result will be new capabilities that benefit all PGSuper users and KDOT will have a precastprestressed girder design solution that will seamlessly integrated into their design process at a fraction of the cost of developing software from scratch. Direct Selection Strand Input Contractor-submitted design alternatives are common with precast-prestressed girders. KDOT needed a method to directly specifying the strand grid positions containing strands to evaluate alternative design submittals. Under contract with BridgeSight, KDOT funded a new Direct Selection Strand Input feature. With this new feature, engineers are presented with a graphical representation of the girder cross section showing all the possible locations for prestressing strands as defined in the girder library. This removes the requirements that strands must be added or removed using the strand sequence defined in the Girder Library. Now you can fill strand locations in any order you want! 1

5 Figure 1 Strand Selection Window Strands are added or removed by clicking on the strand positions in the Strand Selection window. A grid is also provided for selecting individual strands and defining debonded and extended strands. To enable Direct Selection Strand Input: 1) Select a girder to edit and open the Girder Details window. (This is most easily done by double clicking on the girder in the Bridge View). 2

6 2) On the Strands tab, select the Direct Selection of Strand Locations option 3) Press the Select Strands button to open the Strand Selection window 4) In the Strand Selection window, select the strand positions that will contain strands. This can be done by clicking on the graphic with your mouse or editing data in the grid. Bridge View Span Selector PGSuper has a highly interactive user interface. But in previous versions, when long bridges are modeled, the bridge plan view became difficult to read and interact with. Developers at WSDOT addressed this issue by adding a span selector to the Bridge View. This selector is used to select a range of spans to display. 3

7 Figure 2 Span Selector The new span selector allows you to view and interact with a portion of your bridge. Spans of a 15 span bridge are displayed for the bridge shown in Figure 2. Improved Girder Design PGSuper s Girder Designer has always had an automated shear design feature, but previous versions lacked in capability. TxDOT contracted with BridgeSight to make improvements to the shear design capabilities. Now, when designing for shear, the Girder Designer will determine the reinforcing requirements for: Primary transverse reinforcement (stirrups) Longitudinal reinforcement for shear Bursting and confinement reinforcement and, Horizontal interface shear. The Girder Designer supports two approaches to shear design. The Girder Designer can start with a predefined reinforcement layout and adjust the zone lengths, bar sizes, and bar spacing or it can start with a clean slate. There are trade-offs to both approaches. Several transportation agencies have standard stirrup configuration. There is an economy of scale and repetition by using the same stirrup configuration every time. The stirrups are detailed on standard plans and rarely need to be modified. When the Girder Designer is instructed to start with the current stirrup layout it first checks to see if the current shear reinforcement is adequate. If the Girder Designer finds that the stirrups do not satisfy the requirements defined in the Project Criteria they are adjusted, otherwise no changes are made. 4

8 When starting with a clean slate, the Girder Designer determines the reinforcement necessary to satisfy the requirements of the Project Criteria. The consequence is that the shear reinforcement is unique for each bridge and it must be detailed in the bridge plans. Non-symmetrical stirrup layouts are also supported. To design your girders for flexure and shear: 1) Select Project Design Girder to begin the automated design process. Select the flexure and shear design options in the Girder Designer window. 2) At the successful completion of the design process you will be presented with a proposed design. For the example shown, the standard stirrup configuration was adequate so nothing was changed.. 5

9 3) Press the Accept the Design button to replace the current input with the parameters determined by the Girder Designer. Stirrup design and detailing is very complex. Different agencies typically have their own stirrup layout and detailing rules. The new stirrup design algorithm solves this problem by putting the decision-making power into your hands. Associated with each girder are shear design preferences which control the outcome of the design process. These preferences guide the Girder Designer which stirrup size and spacing to use and how often to create new stirrup zones. These preferences are defined on the Shear Design tab of a Girder Library entry as shown below. Figure 3 Shear Design Preferences New Prestress Loss Options The PGSuper development team strives to make our software as complete and thorough as possible. Feedback from the PGSuper user community told us that small modifications could be made to the prestress loss calculations. The engineers at WSDOT took the lead and added new options for 6

10 Copyright 2012, BridgeSight Inc. All Rights Reserved computing prestress losses due to strand relaxation as well as controlling the computation of elastic gains and losses. Loss due to Strand Relaxation LRFD c provides three methods of computing prestress loss due to strand relaxation. All of these methods have been incorporated into PGSuper. The relaxat relaxation ion loss method is selected on the Losses tab of the Project Criteria library entry as shown below. Figure 4 Relaxation Loss Methods Elastic Gain When the LRFD Bridge Design Specifications updated the method of computing prestress losses in 2005, the concept of elastic gain was introduced. The original equations for predicting time dependent prestress losses due to concrete creep and shrinkage were based onn a stress analysis using transformed section properties. In an attempt to keep the specifications easy to understand, the AASHTO T committee modified the equations to use gross section properties. Elastic gains and losses were added to compensate for the he difference between transformed med and gross section property analysis. Many transportation agencies have policies that limit the magnitude of the elastic gains and losses that can be used in design. Th These policies can now be modeled in PGSuper. A new section titled Elastic Gains can be found on the Losses tab of the Project Criteria library entry. For the various loading components you can define the amount of load to be considered when computing ing elastic gains and losses. The values range between 0% (no elastic gain/loss due to this load) and 100%. Figure 5 Elastic Gain/Loss data 7

11 Elastic gains and losses are the change in stress in the prestressing strands due to an externally applied load and are computed as: = Where, = The change in stress in the prestressing strand (the elastic gain/loss) = A coefficient between 0.0 and 1.0 that controls the amount of elastic gain/loss that should be taken into account = Modulus of elasticity of prestressing strand = Modulus of elasticity of concrete = Moment due to externally applied load = Location of the prestressing strand relative to the centroid of the girder section = Moment of inertia The coefficient is derived from the data in the Project Criteria library as mentioned above. The application of elastic gains to the effective prestress is fairly straight forward for all the loads except for slab shrinkage. The elastic gain due to slab shrinkage must be accompanied by a corresponding change in girder stresses (there is no free lunch). The elastic gain due to slab shrinkage is computed as defined in LRFD d with a modification to LRFD Equation d-2. The modified equation is = 1+0.7, 1 The stress at the top and bottom of the girder due to slab shrinkage is computed using this modified equation with! and " substituted for # $% & %. The stress due to slab shrinkage is included in the Service I, Service III, and Fatigue I limit state stresses. The PCI Bridge Design Manual provides an excellent discussion on this topic if you would like more information. 8

12 Copyright 2012, BridgeSight Inc. All Rights Reserved Improved Modeling of Sidewalks and Barriers Previous versions of PGSuper hadd a very simple model for distributing barrier and sidewalk dead loads to girders that works well for narrow sidewalks and tightly spaced girders. TxDOT recognized this deficiency and funded a complete re-working re of the load distribution model. The distribution of barriers and sidewalks is now more rational and applicable to a wide variety of bridge configuration. Distribution of Barrier and Sidewalk Dead Loads In previous versions of PGSuper, the dead load of barriers and sidewalks were distributed to N exterior girders, mating surfaces, or webs.. This doesn t make sense in situations where an interior barrier is used to separate a wide sidewalk from the travelling lanes, lanes, or when the sidewalk is directly supported by more than N girders, mating surfaces or webs. The dead ead load of exterior and interior barriers is distributed as follows: Distribute the weight of the barrier evenly to the N nearest girders, mating surfaces, or webs (GMSW s). Nearest distance is measured from the C.G. of the barrier in a bridge cross section sect taken at mid-span. span. For cases when the weight of a barrier can be distributed to either of two GMSW s that are equal distance left and right of the barrier C.G., and these GMSW s are furthest from the barrier, the load will be distributed to the exterio exterior-most most GMSW. If the span contains 2N or fewer GMSW s, the railing load will be distributed evenly to all GMSW s. Sidewalk and pedestrian edestrian loads are distributed using a similar method and use the same N value as barriers. However, if the sidewalk is wider than th N GMSW s; the load will be distributed to all GMSW s lying directly beneath the sidewalk. Hence, the definition is a follows: Distribute the sidewalk weight and pedestrian live load evenly to the greater of: all girders, mating surfaces, or webs (GMSW s) (GMSW s) lying directly under the sidewalk; or the N nearest GMSW s measured from centerline sidewalk using a bridge cross section taken at mid-span. mid For cases when the sidewalk weight can be distributed to either of two GMSW s that are equal distance left and right ght of C.L. sidewalk, and these GMSW s are furthest from the C.L. sidewalk, the load will be distributed to the exterior exterior-most most GMSW. If the span contains 2N or fewer GMSW s, the load will be distributed evenly to all GMSW s. A new section has been added to the Loading Details chapter of the Details Report that lists the fraction of the total barrier and sidewalk dead load that is applied to a girder. Figure 6 Load Distribution Data 9

13 Pedestrian Live Load Version 2.7 of PGSuper gives you more control of how the pedestrian live load is modeled. The pedestrian live load can now be independently controlled for the limit states relating to Design, Fatigue, and Permit loading situations. The pedestrian live load can be omitted, applied concurrently with the vehicular live load, or enveloped with the vehicular live load. The pedestrian live load is distributed to the same girders, webs, or mating surfaces as the sidewalk dead load. To specify how pedestrian live load is to be modeled: 1) Select Loads Live Loads to open the Design Live Loads window. 2) When sidewalks are modeled in the structure, pedestrian live loads are activated using these options. For the Design, Fatigue, and Permit limit states, select the method of applying pedestrian live load. Accounting for Crack Spacing in Shear Capacity Calculations Previous versions of PGSuper assumed that the minimum amount transverse reinforcement requirement specified in LRFD was always satisfied. It was recognized that this assumption was not always valid, so PGSuper now determines if the minimum amount of transverse reinforcement is provided and performs the shear capacity calculations accordingly. When shear reinforcement is not required, but it is provided, and the amount provided is less than the minimum amount specified in LRFD , the β factor is computed with LRFD Equation when the general method is used and with LRFD Equation B5.2-2 when the Appendix B General Procedure with Tables method is used. These equations take crack spacing into account. 10

14 Copyright 2012, BridgeSight Inc. All Rights Reserved Improved Reporting of Reactions Previous ous versions of PGSuper report reported only the total reaction at piers and abutments. This was fine for pier/foundation design, but inadequate for designing bearings at intermediate piers. When a bridge has simple span girders framing into both sides of an intermediate intermediate pier, as is typically done in Texas, the girder reactions on each side of the pier are needed to design the bearing pads. BridgeSight, working under contract with TxDOT, improved the reporting of reactions. PGSuper now reports girder bearing reactions and total girder line reactions reactions. A girder bearing reaction is the reaction for loads applied directly to a simply supported girder. For structures that are made continuous for superimposed dead and live loads, girder bearing reactions include loads loads applied to the girder up to the time of continuity. A total girder line reaction is simply the sum of the girder bearing reactions on both sides of a pier. Figure 7 Total Girder Line Reaction Figure 8 Girder Bearing Reaction 11

15 Customizing PGSuper PGSuper has an advanced software architecture that allows third parties to extend and enhance its capabilities. At BridgeSight Software, we can add new analysis capabilities to meet your needs. For details, contact us at BridgeSight Inc P.O. Box South Lake Tahoe, CA PGSuper Professional BridgeSight Software is offering an enhanced version of PGSuper called PGSuper Professional. In addition to all the great features in the free version of PGSuper you get: BridgeSight s one-of-a-kind Girder Design Dashboard PGSuper to AASHTOWare Bridge Exporter 3D Visualization Export Analysis Results to Excel Enhanced Library Management LandXML Data Exchange Enhanced Reporting Toll-free telephone support Direct support High priority treatment in the PGSuper.com Support Forums Exceptional customer service from a reputable and proven company If you like PGSuper, step up to PGSuper Professional! Visit our web site at for more information and a free trial offer. 12

16 References 1. American Association of State Highway and Transportation Officials (AASHTO), 2010, AASHTO LRFD Bridge Design Specifications. 5 th Edition, Washington DC. 2. American Association of State Highway and Transportation Officials (AASHTO), 2012, AASHTO LRFD Bridge Design Specifications. 6 th Edition, Washington DC. 3. AASHTO T-10 Concrete Design Committee, Agenda Book for PCI Committee Days, Chicago, IL, March 29, PCI Bridge Design Manual, 3rd Edition, First Release, Precast/Prestressed Concrete Institute, Chicago, IL, November Washington State Department of Transportation, Bridge Design Manual, Olympia, WA 6. Washington State Department of Transportation (WSDOT), PGSuper User Guide Olympia, WA 13

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example

AASHTOWare BrD 6.8. BrR and BrD Tutorial. PS7-3 Stem PS Bridge Example AASHTOWare BrD 6.8 BrR and BrD Tutorial PS7-3 Stem PS Bridge Example BrR and BrD Training PS7 3 Stem PS Bridge Example From the Bridge Explorer create a new bridge and enter the following description data.

More information

BrD Superstructure Tutorial

BrD Superstructure Tutorial AASHTOWare BrD 6.8 BrD Superstructure Tutorial PS12 Prestressed Concrete I Beam Using BrD LRFD Engine BrD Superstructure Training PS12 - Prestressed Concrete I Beam Using BrD LRFD Engine 1'-9" 55'-6" Total

More information

Prestressed Concrete Structure Tutorial

Prestressed Concrete Structure Tutorial AASHTOWare BrD/BrR 6.8 Prestressed Concrete Structure Tutorial PS5 Void Prestressed Box Beam Example BrR and BrD Training PS5 Void Prestressed Box Beam Example From the Bridge Explorer create a new bridge

More information

TXDOT ENGINEERING SOFTWARE SUPPORT INFORMATION. Prestressed Concrete Girder SUPERstructure Design and Analysis Program (PGSuper TM )

TXDOT ENGINEERING SOFTWARE SUPPORT INFORMATION. Prestressed Concrete Girder SUPERstructure Design and Analysis Program (PGSuper TM ) Last Update: August 22, 2017 TXDOT ENGINEERING SOFTWARE SUPPORT INFORMATION Prestressed Concrete Girder SUPERstructure Design and Analysis Program (PGSuper TM ) and BRIDGELINK TM This document provides

More information

Elevation. Typical Section

Elevation. Typical Section PS1 - Simple Span Prestressed I Beam Example #4 stirrups @ 12" 120'-0" 6" 6" Elevation 1'-6" 51'-0" 48'-0" 1'-6" 8" Future Wearing Surface 2" thick, 150 pcf AASHTO-PCI BT-72 3'-0" 5 spaces @ 9'-0" = 45'-0"

More information

AASHTOWare BrR/BrD 6.8 Reinforced Concrete Structure Tutorial RC5 Schedule Based Tee Example

AASHTOWare BrR/BrD 6.8 Reinforced Concrete Structure Tutorial RC5 Schedule Based Tee Example AASHTOWare BrR/BrD 6.8 Reinforced Concrete Structure Tutorial RC5 Schedule Based Tee Example BrR and BrD Training RC5 Schedule Based Tee Example Topics Covered Reinforced concrete schedule based tee input

More information

AASHTOWare BrDR 6.8 Prestressed Concrete Design Tool Getting Started

AASHTOWare BrDR 6.8 Prestressed Concrete Design Tool Getting Started AASHTOWare BrDR 6.8 Prestressed Concrete Design Tool Getting Started Introduction AASHTOWare Bridge Design and Rating (BrDR) version 6.8 includes the first release of the Prestressed Concrete Design Tool

More information

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E.

BRIDGE DESIGN MANUAL UPDATES. Jamie F. Farris, P.E. BRIDGE DESIGN MANUAL UPDATES Jamie F. Farris, P.E. October 2015 Table of Contents 1 BDM Chapter 2 Limit States and Loads 2 BDM Chapter 3 Superstructure Design 3 BDM Chapter 4 Substructure Design 4 Questions

More information

Design Aids of NU I-Girders Bridges

Design Aids of NU I-Girders Bridges Nebraska Transportation Center Report SPR-P1(09) P322 Final Report 26-1120-0042-001 Design Aids of NU I-Girders Bridges Kromel E. Hanna, Ph.D. Department of Civil Engineering University of Nebraska-Lincoln

More information

ADAPT Floor Pro 2009/2010 Tutorial Export Design Strip to ADAPT PT or ADAPT RC

ADAPT Floor Pro 2009/2010 Tutorial Export Design Strip to ADAPT PT or ADAPT RC ADAPT Floor Pro 2009/2010 Tutorial Export Design Strip to ADAPT PT or ADAPT RC Update: May 2010 Copyright ADAPT Corporation all rights reserved ADAPT PT 2010/RC 2010 to ADAPT Floor Pro 2009/2010 Strip

More information

Proposed Modifications to the LRFD Design of U-Beam Bearings

Proposed Modifications to the LRFD Design of U-Beam Bearings Proposed Modifications to the LRFD Design of U-Beam Bearings Charles D. Newhouse, Scott A. Bole, W. R. Burkett, Phillip T. Nash, Mostafa El-Shami Performed in Cooperation with the Texas Department of Transportation

More information

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine

AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine AASHTOWare BrR 6.8 Steel Tutorial Steel Plate Girder Using LRFR Engine STL6 - Two Span Plate Girder Example 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf 3'-6" 3

More information

Design and Rating of Steel Bridges

Design and Rating of Steel Bridges 2014 Bentley Systems, Incorporated Parametric and Integrated Bridge Design LEAP Bridge Steel Steve Willoughby Design and Rating of Steel Bridges 2 WWW.BENTLEY.COM 2014 Bentley Systems, Incorporated 1 Discussion

More information

Slab Bridge Designer 2.1 Help: Example Analysis

Slab Bridge Designer 2.1 Help: Example Analysis August 21, 2006 Slab Bridge Designer 2.1 Help: Example Analysis Using data from the Portland Cement Association Engineering Bulletin 232, AASHTO LRFD Design of Cast-In-Place Concrete Bridges This example

More information

Flexure Design Sequence

Flexure Design Sequence Prestressed Concrete Beam Design Workshop Load and Resistance Factor Design Flexure Design Flexure Design Sequence Determine Effective flange width Determine maximum tensile beam stresses (without prestress)

More information

Prestressed Concrete Girder Continuity Connection

Prestressed Concrete Girder Continuity Connection Report No: Title: Developing Organization: Precast/Prestressed Concrete Institute Technical Committee Phone - 888-700-5670 Email contact@pcine.org Website- www.pcine.org Report Date: Revision Date: Status

More information

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example

AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example AASHTOWare BrDR 6.8 Steel Tutorial STL6 Two Span Plate Girder Example STL6 - Two Span Plate Girder Example (BrDR 6.5) 1'-6" 37'-0" 34'-0" 1'-6" 8 1/2" including 1/2" integral wearing surface FWS @ 25 psf

More information

Hyperstatic (Secondary) Actions In Prestressing and Their Computation

Hyperstatic (Secondary) Actions In Prestressing and Their Computation 5.5 Hyperstatic (Secondary) Actions In Prestressing and Their Computation Bijan O Aalami 1 SYNOPSIS This Technical Note describes the definition, computation, and the significance of hyperstatic (secondary)

More information

ADAPT-PT 2010 Tutorial Idealization of Design Strip in ADAPT-PT

ADAPT-PT 2010 Tutorial Idealization of Design Strip in ADAPT-PT ADAPT-PT 2010 Tutorial Idealization of Design Strip in ADAPT-PT Update: April 2010 Copyright ADAPT Corporation all rights reserved ADAPT-PT 2010-Tutorial- 1 Main Toolbar Menu Bar View Toolbar Structure

More information

The use of 0.5 and 0.6 in. (13 and 15 mm) diameter

The use of 0.5 and 0.6 in. (13 and 15 mm) diameter Benefits of using.7 in. (18 mm) diameter strands in precast, pretensioned girders: A parametric investigation Jessica Salazar, Hossein Yousefpour, Alex Katz, Roya Alirezaei Abyaneh, Hyun su Kim, David

More information

Bijan Khaleghi, Ph, D. P.E., S.E.

Bijan Khaleghi, Ph, D. P.E., S.E. 0 Submission date: July, 0 Word count: 0 Author Name: Bijan Khaleghi Affiliations: Washington State D.O.T. Address: Linderson Way SW, Tumwater WA 0 INTEGRAL BENT CAP FOR CONTINUOUS PRECAST PRESTRESSED

More information

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode

ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode ADAPT-PTRC 2016 Getting Started Tutorial ADAPT-PT mode Update: August 2016 Copyright ADAPT Corporation all rights reserved ADAPT-PT/RC 2016-Tutorial- 1 This ADAPT-PTRC 2016 Getting Started Tutorial is

More information

LRFD Bridge Design Manual Changes

LRFD Bridge Design Manual Changes LRFD Bridge Design Manual Changes Dave Dahlberg Bridge Design Manual & Policy Engineer May 17, 2017 Bridge Office mndot.gov/bridge Overview 1) Concrete mix designations 2) Reinforcing bar development and

More information

SUMMARY BIOGRAPHY LEAN-ON CROSS- FRAME BRACING FOR STEEL GIRDERS WITH SKEWED SUPPORTS

SUMMARY BIOGRAPHY LEAN-ON CROSS- FRAME BRACING FOR STEEL GIRDERS WITH SKEWED SUPPORTS LEAN-ON CROSS- FRAME BRACING FOR STEEL GIRDERS WITH SKEWED SUPPORTS Reagan Herman, Ph.D. Todd Helwig, Ph.D., P.E. John Holt, P.E. Ronald Medlock, P.E. Michelle Romage, P.E. Chong Zhou BIOGRAPHY Dr. Reagan

More information

Discussion on AASHTO LRFD Load Distribution Factors for Slab-on-Girder Bridges

Discussion on AASHTO LRFD Load Distribution Factors for Slab-on-Girder Bridges Discussion on AASHTO LRFD Load Distribution Factors for Slab-on-Girder Bridges C. S. Cai, P.E., M.ASCE 1 Abstract: The present study developed a new set of formulas for load distribution factors that are

More information

AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example

AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example AASHTOWare BrD 6.8 Substructure Tutorial Solid Shaft Pier Example Sta 4+00.00 Sta 5+20.00 (Pier Ref. Point) Sta 6+40.00 BL SR 123 Ahead Sta CL Brgs CL Pier CL Brgs Bridge Layout Exp Fix Exp CL Brgs Abut

More information

ADAPT PT7 TUTORIAL FOR ONE-WAY SLAB 1

ADAPT PT7 TUTORIAL FOR ONE-WAY SLAB 1 Structural Concrete Software System TN187_PT7_tutorial_one_way_slab 012705 ADAPT PT7 TUTORIAL FOR ONE-WAY SLAB 1 1. ONE-WAY SLAB SUPPORTED ON BEAMS The objective of this tutorial is to demonstrate the

More information

Innovative Design of Precast/Prestressed Girder Bridge Superstructures using Ultra High Performance Concrete

Innovative Design of Precast/Prestressed Girder Bridge Superstructures using Ultra High Performance Concrete Innovative Design of Precast/Prestressed Girder Bridge Superstructures using Ultra High Performance Concrete Husham Almansour, Ph.D. and Zoubir Lounis, Ph.D., P. Eng. Paper prepared for presentation at

More information

AUGUST 2016 LRFD BRIDGE DESIGN 3-1

AUGUST 2016 LRFD BRIDGE DESIGN 3-1 AUGUST 2016 LRFD BRIDGE DESIGN 3-1 3. LOADS AND LOAD FACTORS The loads section of the AASHTO LRFD Specifications is greatly expanded over that found in the Standard Specifications. This section will present

More information

Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading

Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading Live Load Distribution Factors Suitable For Concrete Bridges Under Ecp 201 And Euro Code 1991 Loading Ahmed M. Saleh, Mohamed Rabie and Ezz-El-Din Kamel Structural Engineering Department, Faculty of Engineerin,g

More information

ST7008 PRESTRESSED CONCRETE

ST7008 PRESTRESSED CONCRETE ST7008 PRESTRESSED CONCRETE QUESTION BANK UNIT-I PRINCIPLES OF PRESTRESSING PART-A 1. Define modular ratio. 2. What is meant by creep coefficient? 3. Is the deflection control essential? Discuss. 4. Give

More information

AASHTOWare BrDR 6.8 Feature Tutorial ADJ1 Analysis with Routine Traffic in Adjacent Lane

AASHTOWare BrDR 6.8 Feature Tutorial ADJ1 Analysis with Routine Traffic in Adjacent Lane AASHTOWare BrDR 6.8 Feature Tutorial ADJ1 Analysis with Routine Traffic in Adjacent Lane Topics Covered Methodology implemented for considering routine traffic in adjacent lane Allow distribution factors

More information

Parapet/railing terminal walls shall be located on the superstructure.

Parapet/railing terminal walls shall be located on the superstructure. GENERAL INFORMATION: This section of the chapter establishes the practices and requirements necessary for the design and detailing of deck slab extensions at abutments. For general requirements and guidelines

More information

JULY 2014 LRFD BRIDGE DESIGN 5-1

JULY 2014 LRFD BRIDGE DESIGN 5-1 JULY 014 LRFD BRIDGE DESIGN 5-1 5. CONCRETE STRUCTURES Reinforced and prestressed concrete are used extensively in bridge projects. In addition to general design guidance and information on detailing practices,

More information

Analysis and design of balanced cantilever prestressed box girder bridge considering constructions stages and creep redistribution

Analysis and design of balanced cantilever prestressed box girder bridge considering constructions stages and creep redistribution Analysis and design of balanced cantilever prestressed box girder bridge considering constructions stages and creep redistribution 1. Introduction Assoc. Prof. Dr. Amorn Pimanmas Sirindhorn International

More information

AASHTOWare Bridge Rating/DesignTraining. STL8 Single Span Steel 3D Example (BrR/BrD 6.4)

AASHTOWare Bridge Rating/DesignTraining. STL8 Single Span Steel 3D Example (BrR/BrD 6.4) AASHTOWare Bridge Rating/DesignTraining STL8 Single Span Steel 3D Example (BrR/BrD 6.4) Last Modified: 7/26/2012 STL8-1 AASHTOWare BrR/BrD 6.4 AASHTOWare Bridge Rating/DesignTraining STL8 Single Span Steel

More information

Example. Monday, October 19, 2015

Example. Monday, October 19, 2015 Example Monday, October 19, 2015 11:26 AM Using a prestressed Y4 beam with reinforced concrete deck slab as the deck example as shown in Fig.1; the deck having a 10 skew, a span of 20m and carrying a 7.3m

More information

Improving Predictions for Camber in Precast, Prestressed Concrete Bridge Girders

Improving Predictions for Camber in Precast, Prestressed Concrete Bridge Girders Research Report Agreement T2695, Task 68 Camber Prediction Improving Predictions for Camber in Precast, Prestressed Concrete Bridge Girders by Michael A. Rosa John F. Stanton Marc O. Eberhard Bridge Engineer

More information

Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE

Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE Design of continuity slabs and the 020 Gajanan Chaudhari Principal Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE Anand Panpate Senior Bridge Engineer Middle East & India Atkins Abu Dhabi, UAE

More information

Table of Contents. July

Table of Contents. July Table of Contents 36.1 General... 3 36.1.1 Bridge or Culvert... 3 36.1.2 Box Culvert Size Restrictions... 4 36.1.3 Stage Construction for Box Culverts... 4 36.2 Dead Loads and Earth Pressure... 5 36.3

More information

MIDAS Training Series

MIDAS Training Series MIDAS midas Civil Title: All-In-One Super and Sub Structure Design NAME Edgar De Los Santos / MIDAS IT United States 2016 Substructure Session 1: 3D substructure analysis and design midas Civil Session

More information

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1 Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction Bijan Khaleghi 1 Abstract Ductility of precast prestressed girder bridges can be achieved by proper detailing of pier

More information

Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer

Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced Polymer Journal of Civil Engineering and Architecture 9 (2015) 1034-1046 doi: 10.17265/1934-7359/2015.09.003 D DAVID PUBLISHING Assessment of Long-Time Behavior for Bridge Girders Retrofitted with Fiber Reinforced

More information

Appendix D.2. Redundancy Analysis of Prestressed Box Girder Superstructures under Vertical Loads

Appendix D.2. Redundancy Analysis of Prestressed Box Girder Superstructures under Vertical Loads Appendix D.2 Redundancy Analysis of Prestressed Box Girder Superstructures under Vertical Loads By Jian Yang, Giorgio Anitori, Feng Miao and Michel Ghosn Contents 1. Introduction...1 2. Prestressed Concrete

More information

Lecture-06 Analysis and Design of Slab Systems

Lecture-06 Analysis and Design of Slab Systems Lecture-06 Analysis and Design of Slab Systems By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Organization of the

More information

PENNDOT e-notification

PENNDOT e-notification PENNDOT e-notification Bureau of Design Engineering Computing Management Division BRADD No. 029 December 5, 2011 Release of Version 3.1.6.0 PennDOT's Bridge Automated Design and Drafting Software (BRADD)

More information

CSiBridge Version Release Notes

CSiBridge Version Release Notes CSiBridge Version 20.0.0 Release Notes Copyright Computers and Structures, Inc., 2017 Notice Date: 2017-12-14 This file lists all changes made to CSiBridge since the previous version. Most changes do not

More information

Continuous for Live Load: A Texas Historical Perspective

Continuous for Live Load: A Texas Historical Perspective Continuous for Live Load: A Texas Historical Perspective Scott Walton, M.S.C.E., E.I.T. 1, and Timothy E. Bradberry, M.S.E., P.E. 2 Abstract A significant number of engineers in the United States have

More information

STEEL SPAN WEIGHT CURVES STEEL BRIDGE RESOURCE

STEEL SPAN WEIGHT CURVES STEEL BRIDGE RESOURCE STEEL SPAN WEIGHT CURVES STEEL BRIDGE RESOURCE AISC 216 by American Institute of Steel Construction All rights reserved. This book or any part thereof must not be reproduced in any form without the written

More information

DESIGN RECOMMENDATIONS FOR THE OPTIMIZED CONTINUITY DIAPHRAGM FOR PRESTRESSED CONCRETE BULB-T BEAMS

DESIGN RECOMMENDATIONS FOR THE OPTIMIZED CONTINUITY DIAPHRAGM FOR PRESTRESSED CONCRETE BULB-T BEAMS FINAL CONTRACT REPORT VTRC 09-CR1 DESIGN RECOMMENDATIONS FOR THE OPTIMIZED CONTINUITY DIAPHRAGM FOR PRESTRESSED CONCRETE BULB-T BEAMS STEPHANIE KOCH Graduate Research Assistant CARIN L. ROBERTS-WOLLMANN

More information

APPENDIX B ABC STRUCTURES DESIGN GUIDE

APPENDIX B ABC STRUCTURES DESIGN GUIDE APPENDIX B ABC STRUCTURES DESIGN GUIDE The Cohos Evamy Partners TABLE OF CONTENTS Page No. DISCLAIMER... I 1. STRUCTURAL DESIGN GUIDELINES... 1 2. GENERAL REQUIREMENTS (FIGURE B.2, STEP 1)... 1 3. GENERAL

More information

HIGH PERFORMANCE CONCRETE. by John J. Roller CTLGroup

HIGH PERFORMANCE CONCRETE. by John J. Roller CTLGroup HIGH PERFORMANCE CONCRETE by John J. Roller CTLGroup Early Louisiana HPC Research Law & Rasoulian (1980) Adelman & Cousins (1990) Bruce, Russell & Roller (1990-1993) Law & Rasoulian (1980) Concrete strengths

More information

Praveen Chompreda. Dead Loads: DC/DW Live Loads of Vehicles: LL. Dynamic (Impact) Loads: IM. Loads on Bridge. Typical Loads.

Praveen Chompreda. Dead Loads: DC/DW Live Loads of Vehicles: LL. Dynamic (Impact) Loads: IM. Loads on Bridge. Typical Loads. Outline EGCE 406 Bridge Design Loads on Bridge Praveen Chompreda Mahidol University First Semester, 2009 Loads on Bridges Typical Loads Dead Load Live Load Live Load of Vehicle Pedestrian Load Dynamic

More information

TXDOT ENGINEERING SOFTWARE SUPPORT INFORMATION

TXDOT ENGINEERING SOFTWARE SUPPORT INFORMATION Last Update: 2/2/2016 TXDOT ENGINEERING SOFTWARE SUPPORT INFORMATION TxDOT Prestressed Concrete Beam Design/Analysis (PSTRS14) CONTENTS ABOUT PSTRS14... 3 GENERAL SUPPORT INFORMATION... 4 End User Support...

More information

Using your logo with Your Home Loan Toolkit

Using your logo with Your Home Loan Toolkit INSTRUCTIONS Using your logo with Your Home Loan Toolkit If you plan to use Your Home Loan Toolkit with customers and clients, you may want to add your logo to the cover of the booklet. Below you ll find

More information

Don Theobald, V.P., Gulf Coast Pre-Stress. Standardizing Existing Spliced Girder Systems

Don Theobald, V.P., Gulf Coast Pre-Stress. Standardizing Existing Spliced Girder Systems Standardizing Existing Spliced Girder Systems Hugh D. Ronald, P.E. Abstract: Correlation of the span and girder spacing requirements for an existing spliced girder system can be completed using a parametric

More information

Operational Reporting Metrics. Document Version: 1.4 April 2018

Operational Reporting Metrics. Document Version: 1.4 April 2018 Operational Reporting Metrics Document Version: 1.4 April 2018 Contents Introduction... 3 Operational Reports in LiveEngage... 3 Reports for Agents... 3 Agent Real-time Data Bar... 3 Agent Real-time Dashboard...

More information

Implementation of 0.7 in. Diameter Strands in Prestressed Concrete Girders

Implementation of 0.7 in. Diameter Strands in Prestressed Concrete Girders Implementation of 0.7 in. Diameter Strands in Prestressed Concrete Girders Nebraska Department of Roads (NDOR) Project Number: SPR-P1(13) M333 October 2013 Implementation of 0.7 in. Diameter Strands in

More information

IF YOU DO NOT AGREE TO THESE TERMS, DO NOT DOWNLOAD, INSTALL OR USE BSS.

IF YOU DO NOT AGREE TO THESE TERMS, DO NOT DOWNLOAD, INSTALL OR USE BSS. Bitvise SSH Server End User License Agreement Bitvise Limited, a Texas corporation with its principal office at 4105 Lombardy Court, Colleyville, Texas 76034, USA, ("Bitvise"), develops a Windows SSH server

More information

Presentation in support of

Presentation in support of Presentation in support of Proposed Acceptance Criteria For Continuous or Semi- Continuous Fiber-Reinforced Grid Connectors used in combination with Rigid Insulation in Concrete Sandwich Panel Construction

More information

AASHTOWare Bridge Rating/DesignTraining. STL9 Curved Steel 3D Example (BrR/BrD 6.5)

AASHTOWare Bridge Rating/DesignTraining. STL9 Curved Steel 3D Example (BrR/BrD 6.5) AASHTOWare Bridge Rating/DesignTraining STL9 Curved Steel 3D Example (BrR/BrD 6.5) Last Modified: 7/31/2013 STL9-1 AASHTOWare BrR/BrD 6.5 Last Modified: 7/31/2013 STL9-2 AASHTOWare BrR/BrD 6.5 AASHTOWare

More information

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders

Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders Catbas, Darwash, Fadul / 0 0 0 Title Page: Modeling & Load Rating of Two Bridges Designed with AASHTO and Florida I-Beam Girders F.N. Catbas, H. Darwash and M. Fadul Dr. F. Necati Catbas, P.E. Associate

More information

Inventory Inspection and Load Rating of a Complex Segmental Concrete Bridge. Presented by Matthew J. Lengyel, PE, SE

Inventory Inspection and Load Rating of a Complex Segmental Concrete Bridge. Presented by Matthew J. Lengyel, PE, SE Inventory Inspection and Load Rating of a Complex Segmental Concrete Bridge Presented by Matthew J. Lengyel, PE, SE Introduction Project Overview Parallel Segmental Bridges (1F 763 and 3F 763) Number of

More information

Session 2: Basic Load Rating Calculations

Session 2: Basic Load Rating Calculations Agenda Day 1 8:00 am 8:15 am Introductions and House Keeping 8:15 am 8:45 am Session 1: Load Rating Basics 8:45 am 9:30 am Session 2: Basic Load Rating Calculations 9:30 am 9:45 am Break 9:45 am 11:45

More information

Field and Laboratory Study of the Mn/DOT Precast Slab Span System

Field and Laboratory Study of the Mn/DOT Precast Slab Span System Field and Laboratory Study of the Mn/DOT Precast Slab Span System Matthew Smith Department of Civil Engineering University of Minnesota 500 Pillsbury Drive SE Minneapolis, MN 55455 smit1475@umn.edu Whitney

More information

Comprehensive Update to AASHTO LRFD Provisions for Flexural Design of Bridge I-Girders. D.W. White 1 and M.A. Grubb 2

Comprehensive Update to AASHTO LRFD Provisions for Flexural Design of Bridge I-Girders. D.W. White 1 and M.A. Grubb 2 Comprehensive Update to AASHTO LRFD Provisions for Flexural Design of Bridge I-Girders D.W. White 1 and M.A. Grubb 2 1 School of Civil and Environmental Engineering, Georgia Institute of Technology, 790

More information

CIVIL BREADTH Exam Specifications

CIVIL BREADTH Exam Specifications NCEES Principles and Practice of Engineering Examination CIVIL BREADTH and STRUCTURAL DEPTH Exam Specifications Effective Beginning with the April 2015 Examinations The civil exam is a breadth and depth

More information

Introduction to Decks and Deck Systems

Introduction to Decks and Deck Systems AASHTO- Load and Resistance Factor Design (LRFD) Introduction to Decks and Deck Systems V 1.1 Rev. 12.03.07 Credits The content for this class has been provided by the following PB employees: Ed Skrobacz,

More information

INNOVATIVE USE OF FRP FOR SUSTAINABLE PRECAST STRUCTURES

INNOVATIVE USE OF FRP FOR SUSTAINABLE PRECAST STRUCTURES INNOVATIVE USE OF FRP FOR SUSTAINABLE PRECAST STRUCTURES: Using carbon-fiber-reinforced grids in walls and other components Sami H. Rizkalla, PhD, North Carolina State University Gregory Lucier, PhD, North

More information

North Mountain IMS Medical Office Building

North Mountain IMS Medical Office Building North Mountain IMS Medical Office Building Phoenix, Arizona Michael Hopple Technical Assignment 1 October 5 th, 2007 AE 481W-Senior Thesis The Pennsylvania State University Faculty Adviser: Dr. Ali Memari,

More information

BRIDGE GIRDERS TECHNICAL GUIDE

BRIDGE GIRDERS TECHNICAL GUIDE ARMTEC.COM BRIDGE MATERIALS / / TECHNICAL GUIDE REGIONal SPECIFICATIONS / AB / MB / SK PRECAST CONCRETE GIRDERS AND BEAMS DESIGNED TO SUPPORT BRIDGE DECKS AND TRAFFIC LOADS Proven strength In-house engineering

More information

OPTIMIZED ALTERNATIVE STRUCTURAL FORMS FOR STANDARD HIGHWAY BRIDGE BEAMS WITH HIGHER STRENGTH CONCRETES

OPTIMIZED ALTERNATIVE STRUCTURAL FORMS FOR STANDARD HIGHWAY BRIDGE BEAMS WITH HIGHER STRENGTH CONCRETES OPTIMIZED ALTERNATIVE STRUCTURAL FORMS FOR STANDARD HIGHWAY BRIDGE BEAMS WITH HIGHER STRENGTH CONCRETES Abstract K S M Silva, Department of Civil Engineering, University of Moratuwa. Email: mangala_xp@yahoo.com

More information

TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS

TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS TORSION SIMPLIFIED: A FAILURE PLANE MODEL FOR DESIGN OF SPANDREL BEAMS Gary Klein, Gregory Lucier, Sami Rizkalla, Paul Zia and Harry Gleich Biography: Gary Klein, FACI, is Executive Vice President and

More information

THEORETICAL AND EXPERIMENTAL STUDY OF UNBOUNDED POST-TENSIONED CONTINUOUS SLAB DECKS CONSISTING OF HIGH STRENGTH SCC

THEORETICAL AND EXPERIMENTAL STUDY OF UNBOUNDED POST-TENSIONED CONTINUOUS SLAB DECKS CONSISTING OF HIGH STRENGTH SCC CD02-017 THEORETICAL AND EXPERIMENTAL STUDY OF UNBOUNDED POST-TENSIONED CONTINUOUS SLAB DECKS CONSISTING OF HIGH STRENGTH SCC A.A. Maghsoudi 1, M. Torkamanzadeh 2 1 Associate. Prof., Civil Engineering.

More information

Bridge Superstructure Design. SNiP

Bridge Superstructure Design. SNiP Bridge Superstructure Design SNiP 2.05.03-84 CSiBridge Bridge Superstructure Design Russian Bridge Code SNiP 2.05.03-84 ISO BRG102816M13 Rev. 0 Proudly developed in the United States of America October

More information

Continuous Beam Design with Moment Redistribution (ACI )

Continuous Beam Design with Moment Redistribution (ACI ) Continuous Beam Design with Moment Redistribution (ACI 318-14) Continuous Beam Design with Moment Redistribution (ACI 318-14) A structural reinforced concrete continuous beam at an intermediate floor level

More information

Predicted vs Measured Initial Camber in Precast Prestressed Concrete Girders

Predicted vs Measured Initial Camber in Precast Prestressed Concrete Girders University of Arkansas, Fayetteville ScholarWorks@UARK Civil Engineering Undergraduate Honors Theses Civil Engineering 5-2017 Predicted vs Measured Initial Camber in Precast Prestressed Concrete Girders

More information

2013 VIRGINIA CONCRETE CONFERENCE LESSONS LEARNED / CHALLENGES NOVA MEGAPROJECTS PROGRAM STRUCTURE AND BRIDGE FIELD PERSPECTIVE. Fawaz K. Saraf, P.E.

2013 VIRGINIA CONCRETE CONFERENCE LESSONS LEARNED / CHALLENGES NOVA MEGAPROJECTS PROGRAM STRUCTURE AND BRIDGE FIELD PERSPECTIVE. Fawaz K. Saraf, P.E. 2013 VIRGINIA CONCRETE CONFERENCE LESSONS LEARNED / CHALLENGES NOVA MEGAPROJECTS PROGRAM STRUCTURE AND BRIDGE FIELD PERSPECTIVE Fawaz K. Saraf, P.E. CHALLANGES Poor Detailing a challenge on some bridge

More information

JULY 2016 LRFD BRIDGE DESIGN 11-1

JULY 2016 LRFD BRIDGE DESIGN 11-1 JULY 016 LRFD BRIDGE DESIGN 11-1 11. ABUTMENTS, PIERS, AND WALLS This section contains guidance for the design and detailing of abutments, piers, retaining walls, and noise walls. Abutments and piers are

More information

DEVELOPMENT OF BRIDGE LOAD TESTING PROCESS

DEVELOPMENT OF BRIDGE LOAD TESTING PROCESS DEVELOPMENT OF BRIDGE LOAD TESTING PROCESS FOR LOAD EVALUATION Iowa DOT Project TR-445 CTRE Project -65 Sponsored by the Iowa Department of Transportation and the Iowa Highway Research Board Bridge Engineering

More information

Part B: Design Calculations

Part B: Design Calculations Part B: Design Calculations Table of Contents Part B: Design Calculations... i Chapter 1: Introduction... 1-1 Chapter 2 Project Statement... 2-1 2.1 Introduction... 2-2 2.2 Geometric properties... 2-3

More information

Analysis of a Severely Skewed Prestressed Concrete Beam Bridge

Analysis of a Severely Skewed Prestressed Concrete Beam Bridge Analysis of a Severely Skewed Prestressed Concrete Beam Bridge Gary L. Gardner, Jr., P.E. Bridge Technical Service Manager ms consultants, inc. August 19 th, 2015 MIDAS Special Elite Engineers Webinar

More information

CFRP CONCRETE PROTECTION AND STRENGTHENING

CFRP CONCRETE PROTECTION AND STRENGTHENING CFRP CONCRETE PROTECTION AND STRENGTHENING Graham Bettis, P.E. TxDOT Bridge Construction & Maintenance Section TxDOT s Use of Carbon Fiber Reinforced Polymer Wraps Until now, used primarily for confinement

More information

THE NEW AASHTO MANUAL FOR BRIDGE EVALUATION 2008

THE NEW AASHTO MANUAL FOR BRIDGE EVALUATION 2008 LOAD & RESISTANCE FACTOR RATING OF HIGHWAY BRIDGES FHWA LRFR Seminar SESSION 5 THE NEW AASHTO MANUAL FOR BRIDGE EVALUATION 2008 Bala Sivakumar, P.E. HNTB Corp. 2005 AASHTO BRIDGE MEETING AASHTO Adopted

More information

Behavior of a multiple spans cable-stayed bridge

Behavior of a multiple spans cable-stayed bridge Tailor Made Concrete Structures Walraven & Stoelhorst (eds) 2008 Taylor & Francis Group, London, ISBN 978-0-415-47535-8 Behavior of a multiple spans cable-stayed bridge S. Arnaud, N. Matsunaga, S. Nagano

More information

Survey Reports Document Version: 1.1 November 2015

Survey Reports Document Version: 1.1 November 2015 Survey Reports Document Version: 1.1 November 2015 Survey Reports Overview Survey Reports allow Agent Managers and Campaign Managers to view survey results, including overall completion rates of survey

More information

Substructure systems, specifically retaining walls

Substructure systems, specifically retaining walls Design principles of totally prefabricated counterfort retaining wall system compared with existing cast-in-place concrete structures Maen Farhat and Mohsen Issa An alternative to cast-in-place concrete

More information

Structural Option April 7 th, 2010

Structural Option April 7 th, 2010 Gravity System (Depth Topic I) Post Tensioned Slab A new floor system was designed in an attempt to create a more consistent flooring system throughout the entire building. This new design consists of

More information

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc.

Design and Construction of the SH58 Ramp A Flyover Bridge over IH70. Gregg A. Reese, PE, CE, Summit Engineering Group, Inc. Design and Construction of the SH58 Ramp A Flyover Bridge over IH70 Gregg A. Reese, PE, CE, Summit Engineering Group, Inc., Littleton, CO ABSTRACT: The SH58 Ramp A bridge in Golden, CO is the latest on

More information

CONCRETE SPLICED GIRDERS IN TEXAS. Nicholas Nemec, P.E. TxDOT-BRG

CONCRETE SPLICED GIRDERS IN TEXAS. Nicholas Nemec, P.E. TxDOT-BRG CONCRETE SPLICED GIRDERS IN TEXAS Nicholas Nemec, P.E. TxDOT-BRG October 15, 2014 What is a Concrete Spliced Girder? 2 What is a Concrete Spliced Girder? What it is NOT : Continuous For Live Load 3 What

More information

About the Causes of the Koror Bridge Collapse

About the Causes of the Koror Bridge Collapse Open Journal of Safety Science and Technology, 2014, 4, 119-126 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojsst http://dx.doi.org/10.4236/ojsst.2014.42013 About the Causes of the

More information

Interaction between ductile RC perimeter frames and floor slabs containing precast units

Interaction between ductile RC perimeter frames and floor slabs containing precast units Interaction between ductile RC perimeter frames and floor slabs containing precast units R. C Fenwick,. J. Davidson and D.. N. Lau Department of Civil and Environmental Engineering, University of uckland.

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

!"#$ % 1( =4+0(1*0)4 A)*.(.)44)4 8(: 4 0, 2(3*05. Page 1A of 10 11

!#$ % 1( =4+0(1*0)4 A)*.(.)44)4 8(: 4 0, 2(3*05. Page 1A of 10 11 !"#$ % 9 8 8 8784 867 *-+(+ +,- 40. -8/5 '()* +,-. *()/ 0,, 0, (*0 )4 *, /)(*0)4 06&5 &60 455678 ()() 90( (:8; +,- (7)4 4 0 4(+0()*0/ 0()*5 ', 0@A' +,- -* =B9C+ ()( 0 0, +0(0 8(:5 ', =40(*0( +,- (?)/ 4

More information

Load Rating of Timber Bridges in Western Australia

Load Rating of Timber Bridges in Western Australia Load Rating of Timber Bridges in Western Australia ABSTRACT Main Roads Western Australia (MRWA) inspects, load rates, and maintains (repairs, upgrades or replaces) all bridges for which it is responsible.

More information

Strength Design of Reinforced Concrete Structures

Strength Design of Reinforced Concrete Structures Chapter 6 Strength Design of Reinforced Concrete Structures 6.1 Analysis and Design General Considerations 6.1.1 Convention and Notation Unless otherwise explicitly stated, the following units shall be

More information

7.1 Transmission of Prestress (Part I)

7.1 Transmission of Prestress (Part I) 7.1 Transmission of Prestress (Part I) This section covers the following topics. Pre-tensioned Members 7.1.1 Pre-tensioned Members The stretched tendons transfer the prestress to the concrete leading to

More information

CHAPTER 11: PRESTRESSED CONCRETE

CHAPTER 11: PRESTRESSED CONCRETE CHAPTER 11: PRESTRESSED CONCRETE 11.1 GENERAL (1) This chapter gives general guidelines required for the design of prestressed concrete structures or members with CFRM tendons or CFRM tendons in conjunction

More information

Steel Pipelines Crossing Railroads and Highways

Steel Pipelines Crossing Railroads and Highways Steel Pipelines Crossing Railroads and Highways API RECOMMENDED PRACTICE 1102 SEVENTH EDITION, DECEMBER 2007 ERRATA, NOVEMBER 2008 ERRATA 2, MAY 2010 ERRATA 3, SEPTEMBER 2012 ERRATA 4, FEBRUARY 2014 ERRATA

More information

Bridge PBEE Overview & Pilot Next Generation Bridge Studies

Bridge PBEE Overview & Pilot Next Generation Bridge Studies Bridge PBEE Overview & Pilot Next Generation Bridge Studies Kevin Mackie Central Florida BozidarStojadinovic UC Berkeley AdyAviram UC Berkeley PEER Annual Meeting San Francisco, CA 2009/10/15 Next Generation

More information