CHALLENGES IN DESIGNING ONCE-THROUGH CIRCULATING WATER SYSTEMS. Santosh Pansare Black & Veatch Consulting Private Ltd. India

Size: px
Start display at page:

Download "CHALLENGES IN DESIGNING ONCE-THROUGH CIRCULATING WATER SYSTEMS. Santosh Pansare Black & Veatch Consulting Private Ltd. India"

Transcription

1 CHALLENGES IN DESIGNING ONCE-THROUGH CIRCULATING WATER SYSTEMS Santosh Pansare Black & Veatch Consulting Private Ltd. India Once-through circulating water systems have been the most popular arrangement for power plant cycle heat rejection. In this system, water is taken from a river, lake or ocean, pumped through the plant condenser and discharged back to the source. It has the most efficient cycle heat rejection system design with the lowest capital and operating costs; however, a lot of planning, detailing and collaboration are required early in the project to successfully optimize the system design. Once-through systems are generally more restrictive because of varying pump suction conditions. Intake and outfall require thermal plume model studies to determine appropriate locations and arrangements to control temperatures at intake, and to mitigate possible impact on marine life. An environmental permit is required and careful techno-economic evaluation of multiple intake and outfall options must be carried out. A sump model study and transient analysis of the intake structure are vital in ensuring that the circulating water pump intake structure is sufficiently sized and equipped to mitigate the undesirable flow conditions for circulating water pumps in all possible operating scenarios. Appropriate siphon recovery can be considered by selecting an optimum seal weir elevation to reduce the circulating water pump head. Hydraulic gradient calculations are required to understand vacuum levels formed in the system. Vacuum priming systems are 1

2 required to establish system prime during startup and operation. A seal weir constructed with removable sections can help in commissioning to keep the pump on its curve. Material of construction for various equipments such as screens and stop logs, circulating water pumps, pipes and valves shall be compatible with the fluid being handled. Each of these factors must be considered and analyzed for specific site conditions. This paper provides an overview of the challenges associated with once-through system designs and also shares some of the recent experiences in the design of a once-through system using seawater. INTRODUCTION Condenser cooling water is supplied by the circulating water system. It takes the heat from the condenser and rejects it to a heat sink such as a cooling tower or a body of water. In a once-through system, water taken from a body of water such as a river, lake or ocean is pumped through the condenser and returned back to the source. The heat is then slowly transferred to the atmosphere by evaporation, convection and radiation. In a closed-cycle or recirculating cooling system, the circulating water serves as an intermediate heat transfer medium from which the waste heat is directly rejected to the atmosphere. The main disadvantages of recirculating cooling systems are lower plant efficiencies, higher capital costs and higher maintenance compared to once-through cooling systems. A schematic of a once-through system is shown on Figure 1. The major equipment in a once-through system includes the circulating water pumps, circulating water piping and valves, condenser, closed-cycle cooling water heat exchangers and/or auxiliary cooling water heat exchangers, vacuum priming system, traveling water screens, intake structure and outfall structure. Debris filters and condenser tube cleaning systems may also be used, depending on the client s preference. For many years, the once-through system has been the most popular arrangement for power plant cycle heat rejection systems. A once-through system has two significant advantages over a closed-cycle system. First, the relatively low temperature of most water sources used for once-through cooling makes this the most efficient cycle heat rejection system design. Second, the simple system arrangement typically makes once-through cooling the cycle heat rejection system design with the lowest capital and operating costs. 2

3 Figure 1. Once-Through System The main disadvantage of a once-through system is that the heated water is discharged back to the original water source, where the added heat is gradually dissipated to the Earth s atmosphere. However, it may take a long time for the source water temperature to return to normal, or it may reach a new equilibrium temperature higher than the normal temperature for the life of the plant. There are other disadvantages to the once-through system. The use of a once-through cooling system is greatly affected by local water quality regulations. Also, the large cooling water requirement of a once-through system limits potential plant sites to locations near large rivers, lakes and oceans. Although a once-through system has the most efficient cycle heat rejection system design with the lowest capital and operating costs, a lot of planning and collaboration is required on a number of different aspects of a once-through system early in the project. The following sections briefly discuss the design considerations of various components of a once-through system, and also share some of the recent experiences in designing a seawater based oncethrough system. SEA INTAKE AND OUTFALL STRUCTURE For a once-through system, intake structures are located on a river, lake, ocean or cooling pond. The primary function of an intake structure is to have environmentally acceptable withdrawal conditions from the water source. An outfall structure is typically included as a means to return the discharge circulating water flow to the waterway. Many once-through 3

4 system piping arrangements can incorporate siphon recovery to reduce the system pumping head requirement. This is discussed separately in the following sections. Environmental permits typically require determination of flow and temperature patterns around the circulating water discharge to estimate the thermal plume impact on the body of water. A computational fluid dynamics (CFD) model is prepared early in the project to determine the impact of circulating water discharge on the body of water. The requirements include meeting the expected inflow and outflow with the given temperature rise across the condenser. Most countries have set restrictions on allowable temperature rise from intake to outfall (typically 5 to 6 degrees C). Apart from that, specific restrictions are imposed on the temperature rise within the body of water to protect marine life. A typical example of this would be not allowing temperature over coral to reach beyond a certain level. A CFD model helps determine the thermal plume and helps predict the temperature rise in vertical and horizontal directions. A typical result of CFD thermal plume model is shown on Figure 2. Recirculation between outfall and intake is prevented by ensuring that the intake always draws from cooler water below the surface warmed water field. The velocities at the intake head are controlled to prevent drawdown of warmed water from the surface and inflow of debris and solid material from the seabed or from the water column. The outfall structure is typically provided with diffusers to impart an optimal discharge direction and velocity to the discharge circulating water for proper dispersion into the body of water. Figure 2. Thermal Plume CFD Model 4

5 Multiple options are available for the intake and outfall from the body of water depending on the location and arrangement. The primary options include channel-type surface intake and outfall and pipe-type seabed intake and outfall. The seabed is primarily categorized as sandy or rocky bottom. In sandy bottoms, there is a tendency for the movement of sand into the intake channels, causing possible erosion of channel walls or resulting in sand being deposited in the channel. This deposit of sand could result in blockage of the channel, requiring redredging to keep the channel open. On the other hand, a rocky bottom poses challenges in laying pipe-type systems. Pipes laid in an uneven bed will be supported only at high spots, resulting in high localized stresses. In addition, the rocky bottoms increase the danger of abrasion to the pipelines. Generally, a sandy sea bottom calls for a pipe-type intake system, whereas a rocky bottom calls for a channel-type intake system. The recent project being discussed uses pipe-type intake and outfall design that draws and returns seawater at seabed elevation. Pipe material options that are composite steel and concrete pipes and high density polyethylene (HDPE) were considered and HDPE was selected based on the techno-economic evaluation. The HDPE pipes are supported on seabeds using concrete saddles. The intake heads that are mounted on top of intake pipes draw water from the seabed horizontally. Refer to Figure 3 for the typical intake head structure. Screens are provided on intake heads to protect the intake pipeline from marine life. Chlorination dosing pipes are routed to the intake structure to perform shock dosing to control the biofouling. The intake and outfall pipes are provided with expansion joints at an onshore interface to ensure required flexibility. Suitable cathodic protection is provided wherever steel material components are used. The outfall pipes are provided with diffusers to direct the water in a seaward direction. CIRCULATING WATER PUMP INTAKE STRUCTURE The plan view of a typical intake structure for vertical wet pit pumps is shown on Figure 4. Two major design parameters are considered for the once-through intake structure. The first parameter is the hydraulic/hydrologic characteristics of the water source. For a river or lake intake structure, the water level may vary on a seasonal basis. For an ocean intake structure, the water level varies hourly depending on tidal influences. In either case, the intake structure must be designed to provide adequate pump submergence and net positive suction head (NPSH) at low water levels, while ensuring that the pumps and motors will not be flooded at high water levels. 5

6 Figure 3. Intake Head Structure with Concrete Block Support Figure 4. Plan View of Circulating Water Pump Intake Structure The second design parameter is the environmental regulations applicable to each plant location. An intake structure located on a natural body of water is usually subject to regulations concerning the water approach velocity to protective intake screens, intake structure location and other site-specific environmental concerns. Intake structures located on a lake, river, ocean or cooling pond require a screening system for debris removal. To be considered practical for use in protected power plant circulating water pumps, a screening system must effectively screen the required amount of water without clogging or allowing bypass of screened materials. It is important that the 6

7 screening system is maintainable without interfering with the requirements of the cooling water supply. Some countries have specific environmental regulations that require the screening system to be effective in screening and protecting aquatic life. Screening systems that satisfy the above requirements are typically classified into traveling screen systems and passive screen systems. The most commonly used traveling screen is the vertically rotating, single-entry, single-exit, through-flow screen mounted facing the water source. The vertical traveling screen consists of screens attached to a continuous belt that travels in the vertical plane between two sprockets. The screen, which is typically 10 mm mesh, is usually supplied in individual removable panels referred to as baskets or trays. The entire screen assembly is supported by two or four steel posts. The drive for the screen system is typically a two-speed drive, with normal operation at low speed to reduce equipment wear, and at highspeed operation during periods of high debris loading. Screens are available in vertical lengths up to 30 meters and widths up to 4 meters. Operation of the system can be performed manually at regular intervals or automatically through continuously monitoring the differential pressure drop across the screen. A typical differential head to initiate operation of the screens is 150 to 250 mm of water. Another type of vertical traveling screen used in power plant intake facilities is the dualflow screen. Dual-flow screens are installed with the screens in parallel to the direction of water flow to the intake structure. The advantage of the dual-flow screen is that twice as much screen area per screen is available compared to the through-flow arrangement. There are several disadvantages associated with the vertical traveling screens. Experience has shown that the screens require high maintenance, especially if located in a high debris or sediment-laden environment, or if located in a severely corrosive environment such as seawater. In through-flow arrangements there is sometimes debris carryover to the pump side of the screen. Also, the screens may be environmentally unacceptable because of damage to aquatic life. A fish handling and bypass system is available to attempt to save fish impinged against the screens. The major difference between traveling screens and passive screens is that passive screens have no moving parts. Passive screens are typified by low approach velocities, low through-screen velocities and minimum debris impingement and blockage. Any debris or material that becomes impinged on the screens can be removed by a periodic air or water 7

8 backwash. Alternatively, scrappers can also be provided which can clean the passive screens periodically. The screens typically are designed for a maximum intake velocity of 0.15 meters per second through the screen. The low velocity reduces the flow forces that cause the entrainment and impingement of debris and aquatic life. The intake structure must provide acceptable pump suction hydraulic operating conditions at all possible water levels, accommodate the selected screening system and satisfy applicable environmental regulations. The commonly used standard for intake structure sizing is the Hydraulic Institute Standards. The basic criteria considered for the design of the intake structure is to provide uniform flow approaching the pumps across the width of the pump cell by dissipating the turbulence well in advance of the pumps. All flow obstructions should be streamlined to minimize flow separation near the intake structure. Average velocities must be kept below 0.6 m/s on the approach to the pump sump and 0.3 m/s or below on the approach to the pump bell mouth. In addition, the trash racks and screens should be located so they can also act as flow straighteners. The recent project being discussed uses dual-flow traveling screens coupled with passive screens. The screen material is carbon steel with cathodic protection and coating. The passive screens are provided with a common scrapper to clear them regularly. The traveling screens are provided with screen wash pump connections for regular wash down. A small transient analysis is performed for the intake structure to determine the volume sufficiency in transient events such as all circulating water pump trips. The transient analysis was performed to check the following two possibilities: When all the running circulating water pumps trip and the seawater intake momentum continues to draw in water, what is the increase in water level and are there chances of overflow circulating water pump intake structure? When one or more circulating water pumps are started with no momentum in place for seawater, what is the drop in water level and are there any chances that water level will drop to pump trip level? Through this transient analysis, it was concluded early in the project that the selected size of the circulating water pump intake structure is sufficient. 8

9 INTAKE STRUCTURE MODEL STUDY Sump model testing is recommended by the Hydraulic Institute for intake structures using pumps with capacities greater than 4,700 liters per second and for smaller pumps if there are conditions in the intake approach that generate unusual circulation. Intake structure modeling offers several benefits including the following: Possibly reduces costs by optimizing the size of the pump cells. Identifies the need for intake structure flow baffles, fillets and other pump structure modifications required to eliminate pump damaging surface and subsurface vortex formations. Provides physical verification of the effectiveness of these modifications. Helps reduce maintenance and improve efficiency for the pumps. These tests, as determined by the designer and pump manufacturer, would consist of a number of simulated flow conditions within the circulating water pump intake structure to confirm the intake structure design. Normally, these tests are included in the pump purchase specifications and sometimes become part of a combined pump and intake structure arrangement guarantee. These simple, inexpensive tests could preclude limited pump operation, pump damage and costly redesign of the intake structure after installation of the facility. There are many good references for pump intake piping and structure design that a designer should consult during pump selection and detailed design. The Hydraulic Institute offers many good recommendations, and the specific pump manufacturers should also be consulted for their recommendations. The sump model study was performed on the recent project being discussed here. The outcome of this model was the requirement of using some flow straightening walls to avoid disturbances near circulating water pumps. CIRCULATING WATER PUMP OUTFALL STRUCTURE Once-through systems typically use a siphon piping arrangement. It works on the principle that no pumping head is lost in a pumping system between two points having the same elevation because of elevation differences that may occur between the points. When pumping from one point to another at the same elevation, the only losses are caused by friction and valves, 9

10 elbows, etc. Most once-through systems can use a siphon to some degree because the condenser elevation is usually well above the water level of the water source. The siphon principle holds true provided that the circulating water piping flows full and is free of vapor and air. These requirements impose a limiting height for an effective siphon. The pressure in a siphon is a minimum at the highest point in the system, typically the top of the outlet condenser water box. To prevent vaporization of the liquid at the highest point, the pressure must exceed the vapor pressure of the water. Thus, the siphon may need to be broken in the circulating water discharge piping ahead of the outfall structure by installation of a seal well. The seal well exposes the circulating water flow to atmospheric pressure. The elevation of the seal well is determined so as to maintain sufficient back-pressure in the condenser outlet water box to prevent flashing of the circulating water. A minimum 1,800 mm of water absolute pressure head at any point in the system is recommended. The elevation of the water in the seal well is typically maintained by a sharp-crested weir formed with adjustable stop logs. Stop logtype construction of seal weir is recommended because it gives flexibility to adjust the weir height to keep the pump on its curve if the calculations do not accurately predict reality. In a seawater system, the back-pressure from the sea at high astronomical tide (HAT) level also imposes restrictions on seal weir height. While finalizing seal well elevation, sufficient (300 mm to 500 mm) free fall margin should be maintained to ensure free discharge over the seal well with sea in HAT condition. CIRCULATING WATER PUMPS Circulating water pumps are high-capacity low-head pumps that provide the cooling water flow for the circulating water system. Because of their large size and continuous operation, circulating water pumps must be carefully selected for economical and reliable operation over the lifetime of the plant. Circulating water pumps are typically selected from one of three pump designs: vertical wet pit, horizontal dry pit and vertical dry pit pumps. For oncethrough systems, vertical wet pit pumps are most commonly used. Vertical wet pit pumps are typically of the mixed flow, single-stage, single-suction type for circulating water service. Location of the motor directly above the pump column minimizes horizontal space requirements. Vertical wet pit pumps may be of pull-out or nonpull-out design. Pull-out design allows the rotating elements and critical nonrotating components such as the 10

11 impeller shroud and pump bowl/diffuser/volute to be quickly removed without removing the column or disconnecting the pump discharge. Nonpull-out design has a 20 percent to 25 percent lower capital cost; however, pump disassembly is more difficult and requires a longer pump outage. Another design variable for vertical wet pit pumps is the location of the discharge relative to the baseplate. An above-floor discharge indicates that the pump discharge is above the baseplate, whereas a below-floor or belowground discharge refers to the opposite. The below-floor discharge is more difficult to disconnect because access to the discharge is usually limited. Because disconnecting the discharge is required for disassembly of nonpull-out pumps, below-floor discharge combined with nonpull-out design may create maintainability problems. Other pump types that are horizontal and vertical dry pit pumps are not discussed here. The selection of a circulating water pump for a specific circulating water system application requires an evaluation of several design criteria. Pump design criteria include pump capacity and total developed head, NPSH, submergence, suction specific speed and rotative speed. Design capacity per pump is determined based on the design circulating water flow rate, including main condenser flow and auxiliary cooling water flow, and the number of pumps. The design circulating water flow rate is determined based on the maximum circulating water requirement and the number of pumps being provided. Typically, 2x50 precent configuration is preferred for circulating water pumps. The Hydraulic Institute Standards require circulating water pump manufacturers to meet the design capacity with margins of plus 10 percent and minus 0 percent. For this reason, no flow margin is included in the pump design capacity. No head margin is included in the design total dynamic head (TDH) due to conservatism in the head calculation. Also, the Hydraulic Institute Standards require manufacturers of low-head pumps to meet the design TDH with margins of plus 5 percent and minus 0 percent. For circulating water pumps, the basis for the net positive suction head required (NPSHR) value is dependent on the pump operating scenario or runout conditions. Satisfying NPSH criteria at the pump design point and appropriate runout points generally ensures that NPSH requirements will be met at all points of operation. However, the entire range of pump operation must be checked for NPSH acceptability. 11

12 Submergence is a measure of the water depth in the pump sump above the pump suction. Submergence must be adequate to meet NPSH requirements and to prevent vortexing. The Hydraulic Institute has provided guidance on minimum submergence to prevent vortexing for vertical wet pit pumps. These recommendations, along with recommendations provided by the pump manufacturer, should be considered when designing the pump intake structure for vertical wet pit pumps. Submergence may also be set by the sump depth required to meet traveling screen or trash rack approach velocities. The minimum acceptable submergence is established based on meeting all of the above criteria. In the selection of a pump for a once-through system, the variance in the level of the cooling water body dictates the required depth of the pump suction to satisfy submergence requirements at the low water level. The required depth of the pump suction may make use of a dry pit pump impractical because of the required depth and complexity of the intake structure. Also, a deep pump suction may require a very long vertical pump column, and may lead to consideration of a short column vertical pump. Equally important, the possibility of flooding must be considered if a dry pit or short column vertical pump is selected, in which case the pump drives cannot be mounted above flood level. Each of these factors must be weighed and analyzed for the specific site conditions. On the project in consideration, it was found that the nonpull-out design with aboveground pump discharge is at least a 20 percent to 25 percent less expensive option compared to a pull-out design with belowground pump discharge. The material of circulating water pump components varies based on the water quality. For seawater application, the requirement of super duplex or duplex stainless steel can be avoided by using impressed current cathodic protection except for complex geometry-type shapes that are shaft, shaft sleeves, keys, etc. CIRCULATING WATER PIPING AND VALVES The line sizing of circulating water piping should be determined by velocity. However, if the pipeline is significantly longer than normal, e.g., a once-through system with long separation between the intake and discharge, the line sizing may be determined by other criteria, such as pressure drop or water hammer mitigation. For pressure drop calculation, the absolute roughness 12

13 of pipe internal surfaces should include an allowance of 15 to 20 percent over the new and clean absolute roughness. Generally, most of the circulating water piping is routed underground. However, branch lines that are routed to the closed-cycle cooling water heat exchangers and auxiliary cooling water heat exchangers are routed aboveground. The aboveground piping shall be routed as directly as possible, and local high spots shall be avoided. The purpose of this routing is to mitigate water hammer potential. A hydraulic gradient calculation shall be performed, as discussed below to determine the potential for vapor cavity formation at high points. Depending on the type of water, the material of circulating water pipe and its coating and cathodic protection requirements change. For freshwater applications, carbon steel or fiberglass reinforced plastic (FRP) pipes are the preferred aboveground piping materials. For seawater aboveground application, rubber lined carbon steel and FRP are the options for smaller size pipes (less than 500 mm), whereas larger sized pipes can use carbon steel pipes with impressed current cathodic protection and coal tar epoxy interior coating. For underground piping, prestressed concrete pipe is a preferred option over carbon steel pipes with cathodic protection. Smaller underground pipes (less than 500 mm) could use HDPE material. All the circulating water piping and inline components including condenser water boxes in once-through systems are typically designed for full vacuum, apart from the positive design pressure that is calculated based on circulating water pump shutoff head. Pitot tubes are used for the measurement of circulating water pump flow to the condenser. The purpose of circulating water valves is to isolate equipment and to control the flow of water in the system. The pump discharge valves shall have motor operators. CONDENSER Condensers are classified as single pressure or multipressure, depending on whether the circulating water flow path creates one or more turbine back pressures. The condenser is described further as either a single-pass or a two-pass type, depending on the number of parallel water flow paths through each shell. The portions of the condenser that come into contact with the circulating water system include the condenser water box tubes and tubesheets. The materials of construction for water boxes shall be carbon steel with suitable coating. 13

14 Type 304 stainless steel is typically used for condenser tubes for freshwater systems with chloride concentrations less than 250 parts per million (ppm); for chloride concentrations greater than 250 ppm Type 316 stainless steel is recommended. For systems with chloride concentrations greater than 1,000 ppm, the condenser tube material should be titanium. Copper bearing tube materials shall not be used because of condensate water chemistry issues. The tubesheet material shall be compatible with the condenser tube material with regard to galvanic corrosion. Depending on the client s preference, automatic debris filtration systems and/or condenser online tube cleaning systems are used to prevent macrofouling of the condenser tubesheets and condenser tubes. AUXILIARY HEAT EXCHANGERS The purpose of cooling water heat exchangers is to reject waste heat from the plant equipment to the circulating water system. The pressure drop across the closed-cycle cooling water heat exchanger, including the filtration equipment and piping, shall equal the pressure drop across the condenser for balancing purposes. A plate heat exchanger is provided with a strainer upstream of the circulating water inlet. Strainer mesh size shall be coordinated with the heat exchanger manufacturer. Heat exchanger plate material shall be the same as the condenser tube material. HYDRAULIC GRADIENT A hydraulic gradient calculation should be performed for all once-through systems. A hydraulic gradient calculation allows quick determination of where protective devices may need to be located on a circulating water system. All hydraulic gradient calculations for multiple pump systems shall include the hydraulic gradient associated with the minimum flow, design flow and maximum flow conditions at the minimum static head condition. The hydraulic gradient calculation should also be performed for the no-flow condition. 14

15 SIPHON RECOVERY The seal weir elevation is set such that the absolute pressure head will be at least 1.52 meters of water greater than the fluid vapor pressure at all points in the system for any expected steady-state condition, including the no-flow system at rest case. Because the downstream dynamic loss is typically larger than the velocity head at the high point in the system, the most constraining steady-state case for siphon recovery will usually be the no-flow case. The maximum allowable elevation difference between the system high point (typically the top of the condenser water box) and the top of the weir should be calculated based on the siphon recovery. Seal weir design should consist of a sharp crested weir made of adjustable stop logs. Seal weirs that have adjustable weir elevations shall have instrumentation that alarms the operator when the system vacuum approaches the maximum allowable vacuum. Vapor pressure shall be calculated based on the operative fluid at the maximum fluid temperature that the system is expected to experience during steady-state operation. VACUUM PRIMING SYSTEM Air should be eliminated from the circulating water system prior to starting the circulating water pumps and should remain out of the system for proper operation. For most recirculating systems, this can be accomplished during system startup by simply bleeding the air out of the system through vents when filling the system. However, once-through systems operate with a siphon, which means that there is negative gauge pressure at the high points in the system. Therefore, a vacuum priming system is required to remove the air from the system. Circulating water systems that use a siphon tend to accumulate air at the condenser and auxiliary cooling water heat exchanger outlet water boxes during operation. This is because of the decrease in solubility of air in water associated with the pressure drop and temperature rise in the system. The purpose of the vacuum priming system is to remove air from the high points in the circulating water system during initial commissioning, as well as during the operation of the plant. 15

16 LIQUID TRANSIENT ANALYSIS The large flow rates of a typical circulating water system with flow velocities ranging from 1.8 to 3.6 m/s introduce the potential for significant pressure transients that could be damaging. Liquid transient analyses are performed on circulating water systems to prevent costs associated with damage to system components from water hammer and other unsteady flow phenomena. The potential risk of destruction of the large capital investment of a circulating water system and the threat of forced shutdown of the power plant are compelling reasons to perform such an analysis. A conservative selection of design pressure for all circulating water system components should provide a sufficient margin to protect against damage from water hammer. However, these design margins are not always sufficient and each system should be reviewed for water hammer potential. The modeling techniques available are accurate and the results are often used in the preparation of system operating procedures as well as the selection of surge protection devices, if needed. The typical analysis reviews normal valve and pump operating scenarios and foreseeable abnormal operating scenarios such as tripping of one or more large circulating water pumps or closure or opening of a valve within a circulating water system. To avoid a water hammer event, it is necessary to prevent the formation of a vapor cavity. This is accomplished by installing a vacuum breaking system. The purpose of a vacuum breaking system is to prevent the pressure in the system from dropping below vapor pressure. This is typically accomplished by admitting air into the system through an air valve or solenoid valve. The need for a vacuum breaking system is determined while performing a liquid transient analysis, as well as defining the system components. Once the general layout of the circulating water system is established and the pump capacities and pipe sizes are known, a study of water hammer potential should be performed. INITIAL FILLING AND PUMP LOGIC The circulating water pumps should not be used to fill the circulating water system. The entire circulating water system must be filled and be confirmed as full prior to starting the circulating water pumps. The use of the circulating water pumps to fill the circulating water system can lead to large transient pressures as the system becomes full of water. Water hammer pressure experienced during the filling of the circulating water system is directly proportional to the 16

17 circulating water flow rate. Circulating water pump flow rates cannot be throttled by the use of a pump discharge valve to effectively fill the circulating water system. Although the water hammer pressure can be reduced by controlling the fill rate using the circulating water pump discharge valve, the required valve position leads to excessive cavitation across the valve, and the circulating water pump is typically well below its rated minimum flow rate. These two conditions can lead to severe damage of the circulating water pump and its associated pump discharge valve. Once-through cooling systems should fill with a screen wash pump or an auxiliary cooling water pump. If the system is located on a tidally influenced water source, it is possible to reduce the time that is required to fill the system by filling during periods of high tide. This allows some system piping to be partially filled with water before other means of filling are started. A vacuum priming system should be used to complete the filling procedure. Condenser water boxes should be provided with level switches to ensure that water boxes are filled before starting the circulating water pumps. Certain pump logic must be used to ensure that the circulating water system components are protected during system transients. Typically, water hammer transient analysis provides detailed operating recommendations to prevent a water hammer event. The important cases that should be considered in pump logic include unscheduled circulating water pump trip, controlled circulating water pump start and shutdown. The pump start or shutdown is closely coordinated with its associated discharge valve operation to prevent water hammer events. All circulating water pumps shall be equipped with automatic air release valves located directly upstream of the circulating water pump discharge butterfly valve or located on the pump column above the discharge line. The air valve should be sufficiently sized to allow any air located in the pump column and piping upstream of the valve to be evacuated during a pump start without exceeding piping maximum design pressure. The valve should also allow for the air to be evacuated in a reasonable amount of time, so that the circulating water pump does not operate near its dead-head (no-flow) condition for an extended period of time. If the pump operates at its dead-head condition for an extended amount of time, the pump may experience excessive vibration. 17

18 SPACE CONSIDERATIONS/ACCESSIBILITY The available space for the pump intake structure and the degree of access required by the owner must be considered. Vertical wet pit pumps require the least amount of space; however, the rotating elements must be pulled out of the pit for bearing or impeller access. Vertical pumps with a pull-out design do allow easier maintenance, but at an increased capital cost. Typically, a double girder bridge crane is provided for maintenance of circulating water pumps, screens and stop logs. CONCLUSIONS Once-through circulating water system design provides the most efficient cycle heat rejection with the lowest capital and operating costs. However, it poses a number of challenges that need to be addressed during the design process. Selection and sizing of each component of a once-through circulating water system need special considerations. Studies such as a thermal plume model study, sump model study and liquid transient analysis are key to the safe design of a circulating water system. Selection of appropriate material and coating system based on water quality is important. Other special design considerations specific to a once-through circulating water system include use of siphon recovery to reduce circulating water pump head, use of hydraulic gradient plot to determine need of protective devices, use of vacuum priming systems to establish system prime during startup and operation, stop log-type seal weir construction to help in commissioning, and development of detailed procedure to fill, start and stop the circulating water system. All these factors need sufficient attention during once-through circulating water system design. REFERENCES 1. Lawrence F. Drbal, et. al., Power Plant Engineering Black & Veatch, Springer, Black & Veatch Holding Company All Rights Reserved. The Black & Veatch name and logo are registered trademarks of Black & Veatch Holding Company. 18

Contents Page. Foreword... xi. 9.8 Pump intake design Introduction Purpose Scope...1

Contents Page. Foreword... xi. 9.8 Pump intake design Introduction Purpose Scope...1 Contents Page Foreword... xi 9.8 Pump intake design...1 9.8.1 Introduction...1 9.8.1.1 Purpose...1 9.8.1.2 Scope...1 9.8.1.3 Nomenclature, primary symbols, and units...1 9.8.2 Design objectives...8 9.8.3

More information

American Eco Systems Corporation Elmosa Seawater Intake and Outfall Systems 2013 Elmosa Brochure

American Eco Systems Corporation Elmosa Seawater Intake and Outfall Systems 2013 Elmosa Brochure American Eco Systems Corporation Elmosa Seawater Intake and Outfall Systems 2013 Elmosa Brochure The InvisiHead, The Natural Intake and Outfall System. Nature does all the work. All you do is just turn

More information

InvisiHead SEA WATER INTAKE SYSTEM

InvisiHead SEA WATER INTAKE SYSTEM InvisiHead SEA WATER INTAKE SYSTEM CES has developed an innovative system that contributes positively to the economic and environmental status of vital operations that require drawing large amounts of

More information

University of Delaware

University of Delaware University Contact: Energy & Engineering Group (302) 831-1744 SECTION 22 13 00 _SANITARY SEWER PIPING SYSTEMS PART 1 GENERAL 1.1 SUMMARY A. Section Includes: 1. Sanitary sewer piping buried 2. Sanitary

More information

The planning and design of effective wet duct/stack systems For coal fired utility power plants

The planning and design of effective wet duct/stack systems For coal fired utility power plants The planning and design of effective wet duct/stack systems For coal fired utility power plants David K. Anderson David Anderson is currently a Principal/Owner of Alden Research Laboratory, the oldest

More information

Minerals. WARMAN Centrifugal Slurry Pumps WBV Vertical Cantilever Slurry Sump Pump Series

Minerals. WARMAN Centrifugal Slurry Pumps WBV Vertical Cantilever Slurry Sump Pump Series Minerals WARMAN Centrifugal Slurry Pumps WBV Vertical Cantilever Slurry Sump Pump Series The Warman WBV ultra heavy-duty range of vertical cantilevered slurry pumps sets a new industry benchmark for general

More information

Pretreatment Improvement for Membrane and Thermal Desalination Systems

Pretreatment Improvement for Membrane and Thermal Desalination Systems Goals for Seawater Intake, Outfall and Pretreatment Improvement for Membrane and Thermal Desalination Systems CENTER OF EXCELLENCE FOR SEAWATER DESALINATION TECHNOLOGIES OVERVIEW 1. Seawater System Classification

More information

TECHNICAL INFORMATION Bulletin

TECHNICAL INFORMATION Bulletin Peerless Pump Company 2005 Dr. M.L. King Jr. Street, P.O. Box 7026, Indianapolis, IN 46207-7026, USA Telephone: (317) 925-9661 Fax: (317) 924-7338 www.peerlesspump.com www.epumpdoctor.com TECHNICAL INFORMATION

More information

AMCOT COOLING TOWER CORPORATION LRC-H & LRC-LNS CROSS FLOW COOLING TOWER OPERATIONS AND MAINTAINENCE MANUAL

AMCOT COOLING TOWER CORPORATION LRC-H & LRC-LNS CROSS FLOW COOLING TOWER OPERATIONS AND MAINTAINENCE MANUAL AMCOT COOLING TOWER CORPORATION LRC-H & LRC-LNS CROSS FLOW COOLING TOWER 1. Preface OPERATIONS AND MAINTAINENCE MANUAL 1-800-444-8693 Operation and Maintenance Manual For Amcot LRC-H Cooling Tower & LRC-LNS

More information

FXV. Closed Circuit Cooling Towers. Closed Circuit Cooling Towers. Product Detail FXV - C 1. Engineering Data FXV Models... C2

FXV. Closed Circuit Cooling Towers. Closed Circuit Cooling Towers. Product Detail FXV - C 1. Engineering Data FXV Models... C2 - C 1 Product Detail Engineering Data Models... C2 Structural Support Models... C6 Engineering Specifications... C8 - C 2 Engineering Data Models REMARK: Do not use for construction. Refer to factory certified

More information

Supplemental Pumps Pay Off During Low River Conditions

Supplemental Pumps Pay Off During Low River Conditions Author: Rich Wendel, PE, Plant Mechanical Engineer, Kansas City Board of Public Utilities Jason Eichenberger, Project Engineer, Burns & McDonnell Terry Larson, PE, Project Manager, Burns & McDonnell Presented

More information

The importance of optimising sump design for the reliable operation of rotodynamic pumps

The importance of optimising sump design for the reliable operation of rotodynamic pumps The importance of optimising sump design for the reliable operation of rotodynamic pumps Richard Brewis Project Engineer BHR Group Steve Graham Sales Director Bedford Pumps Ltd 02 Why is it important to

More information

DEPARTMENT OF CIVIL ENGINEERING CE6403/ APPLIED HYDRAULIC ENGINEERING QUESTION BANK TWO MARKS UNIT I UNIFORM FLOW 1. Differentiate open channel flow from pipe flow. 2. What is specific energy and is the

More information

Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance

Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance Example Pressurized Water Reactor Defense-in-Depth Measures For GSI-191, PWR Sump Performance ATTACHMENT Introduction This paper describes a range of defense-in-depth measures that either currently exist

More information

University of Delaware

University of Delaware University Contact: Energy & Engineering Group (302) 831-1744 SECTION 22 14 00 _STORM WATER PIPING SYSTEMS PART 1 GENERAL 1.1 SUMMARY A. Section Includes: 1. Storm water piping 2. Roof drains. 3. Area

More information

SECTION COOLING TOWER

SECTION COOLING TOWER PART 1 GENERAL 1.1 SECTION INCLUDES A. Mechanical induced draft Cooling Tower B. Controls C. Ladder and handrails 1.2 REFERENCES SECTION 23 65 00 COOLING TOWER A. ANSI/AFBMA 9 - Load Rating and Fatigue

More information

Module 9 : Sewage And Storm water Pumping Stations. Lecture 11 : Sewage And Storm water Pumping Stations

Module 9 : Sewage And Storm water Pumping Stations. Lecture 11 : Sewage And Storm water Pumping Stations 1 P age Module 9 : Sewage And Storm water Pumping Stations Lecture 11 : Sewage And Storm water Pumping Stations 2 P age 9.1 Introduction There are certain locations where it is possible to convey sewage

More information

Chapter 5.5 Inlets, Outlets, and Flow Control

Chapter 5.5 Inlets, Outlets, and Flow Control Chapter 5.5 Inlets, Outlets, and Flow Control There are common structural elements of SCMs that are designed to safely route water. Engineered flow control devices are used to effectively route water at

More information

Types of Hydropower Facilities

Types of Hydropower Facilities Types of Hydropower Facilities 1 Impoundment Hydropower- uses a dam to store water. Water may be released either to meet changing electricity needs or to maintain a constant water level. 2 Run-of-River

More information

CONTENTS 3 SPLIT CASE PUMPS 4 HORIZONTAL END-SUCTION PUMPS 5 MULTI STAGE PUMPS. HORIZONTAL 6 MULTI STAGE PUMPS. VERTICAL 7 VERTICAL IN LINE PUMPS

CONTENTS 3 SPLIT CASE PUMPS 4 HORIZONTAL END-SUCTION PUMPS 5 MULTI STAGE PUMPS. HORIZONTAL 6 MULTI STAGE PUMPS. VERTICAL 7 VERTICAL IN LINE PUMPS G IN ER EN GI NE GM BH PE N VA LV ES PU M M S MP AU RU PU INDUSTRIAL FOR WATER APPLICATIONS Water Supply Well Systems Irrigation Cooling Water Waste Water Sludge Desalination Fire Fighting CONTENTS 2 3

More information

Pump Performance Curves and Matching a Pump to a Piping System

Pump Performance Curves and Matching a Pump to a Piping System Pump Performance Curves and Matching a Pump to a Piping System Fundamental Parameters Some fundamental parameters are used to analyze the performance of a pump Mass flow rate (Volumetric Flow rate in case

More information

Pump Performance Curves and Matching a Pump to a Piping System

Pump Performance Curves and Matching a Pump to a Piping System Pump Performance Curves and Matching a Pump to a Piping System Fundamental Parameters Some fundamental parameters are used to analyze the performance of a pump Mass flow rate (Volumetric Flow rate in case

More information

Designing wet duct/stack systems for coal-fired plants

Designing wet duct/stack systems for coal-fired plants Page 1 of 8 Designing wet duct/stack systems for coal-fired plants As limits on SO 2 emissions become tighter, many coal-fired utility power plants are adding new flue gas desulfurization (FGD) systems

More information

DIAGRAM FOR CALCULATING PIPE SIZES, DISCHARGE VELOCITIES AND LOSS OF HEAD IN STANDARD STEEL PIPE PIPE FRICTION LOSS CHART

DIAGRAM FOR CALCULATING PIPE SIZES, DISCHARGE VELOCITIES AND LOSS OF HEAD IN STANDARD STEEL PIPE PIPE FRICTION LOSS CHART DIAGRAM FOR CALCULATING PIPE SIZES, DISCHARGE VELOCITIES AND LOSS OF HEAD IN STANDARD STEEL PIPE PIPE FRICTION LOSS CHART (For Cast Iron and Concrete Pipes See Note at Right) Lay a straightedge on scales

More information

A. This Section includes the following sump pumps and accessories, inside the building, for building storm drainage systems:

A. This Section includes the following sump pumps and accessories, inside the building, for building storm drainage systems: SECTION 221429 - SUMP PUMPS PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections,

More information

AP1000 European 9. Auxiliary Systems Design Control Document

AP1000 European 9. Auxiliary Systems Design Control Document 9.2 Water Systems 9.2.1 Service Water System The service water system (SWS) supplies cooling water to remove heat from the nonsafety-related component cooling water system (CCS) heat exchangers in the

More information

Pump Company. Simsite Structural Composite Pumps. The only Pump that is Impervious to Salt Water Corrosion. Since 1919 VERTICAL PIT

Pump Company. Simsite Structural Composite Pumps. The only Pump that is Impervious to Salt Water Corrosion. Since 1919 VERTICAL PIT Pump Company Since 1919 Simsite Structural Composite Pumps VERTICAL PIT SERIES 10000 MARINE & INDUSTRIAL SERIES 6000 VERTICAL IN LINE NAVY STANDARD VERTICAL TURBINE HORIZONTAL VORTEX The only Pump that

More information

Annex A Turbine Passage Modification Plan

Annex A Turbine Passage Modification Plan Appendix D Annex A Turbine Passage Modification Plan Table A1 Model Turbine Performance Table A2 Model Turbine Performance Table A3 Model Turbine Performance Table A4 Model Turbine Performance Table A5

More information

CHAPTER 5 SEWAGE PUMPS AND LIFT STATIONS

CHAPTER 5 SEWAGE PUMPS AND LIFT STATIONS 15 October 1973 FM 5-163 CHAPTER 5 SEWAGE PUMPS AND LIFT STATIONS 5-1. General Pumps for lifting sanitary sewage, storm water, and plant-unit effluents are usually high-capacity, low-head types with large

More information

General Cooling Water Product Presentation October Energy Group Power & Intakes, Americas

General Cooling Water Product Presentation October Energy Group Power & Intakes, Americas General Cooling Water Product Presentation October 2012 Energy Group Power & Intakes, Americas Overall for Circulating Cooling Water Systems Debris Filter ATCS Ball Strainer Band Screens Raking Machine

More information

/ /

/ / Pump stations Solutions designed for traditional dry pit, flood-proof dry pit and wet pit installation What s your view on efficient fluid handling? Is it a question of being able to turn to a single partner?

More information

Prohibition of Boiler Feed Water Pump Failure in Power Plant

Prohibition of Boiler Feed Water Pump Failure in Power Plant Int J Advanced Design and Manufacturing Technology, Vol. 5/ No. 5/ December - 2012 77 Prohibition of Boiler Feed Water Pump Failure in Power Plant B. Soleimani Roody Bandar Abbas Power Plant, Iran E-mail:

More information

Optimization, Cooperation and Design between Components and Wet Contour Regarding System Efficiency

Optimization, Cooperation and Design between Components and Wet Contour Regarding System Efficiency Optimization, Cooperation and Design between Components and Wet Contour Regarding System Efficiency Uwe Dortmund (Presenter) Björn Behrends KSB Aktiengesellschaft 67227 Frankenthal (D) 1 Purpose of Intake

More information

Series Sump and Sewage Systems

Series Sump and Sewage Systems Series 000 Sump and Sewage Systems file no: 0. date: may 17, 13 supersedes: 0. date: march 29, 13 Series 000 Sump Series 0 & 2 Armstrong offers a complete range of high performance, easily maintained Column

More information

6. PUMPS AND PUMPING SYSTEM

6. PUMPS AND PUMPING SYSTEM 6. PUMPS AND PUMPING SYSTEM Syllabus Pumps and Pumping System: Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities 6.1 Pump Types Pumps

More information

Elmosa Seawater Intake and Outfall Systems Intelligent, Natural, and Simple

Elmosa Seawater Intake and Outfall Systems Intelligent, Natural, and Simple Elmosa Seawater Intake and Outfall Systems Intelligent, Natural, and Simple Super Seawater Intake Technology with Site Recognition Capabilities The low velocity InvisiHead detects pump energy pulses, recognizes

More information

The Islamic University of Gaza- Environmental Engineering Department Networks Design and Pumping Stations EENV Lecture 9: Pumping Station

The Islamic University of Gaza- Environmental Engineering Department Networks Design and Pumping Stations EENV Lecture 9: Pumping Station The Islamic University of Gaza- Environmental Engineering Department Networks Design and Pumping Stations EENV 5315 Lecture 9: Pumping Station Water supply pumping system Pumps are used to increase the

More information

Our Cyprus strategic alliance associates presentation TAPROGGE

Our Cyprus strategic alliance associates presentation TAPROGGE Page 1 of 36 Our Cyprus strategic alliance associates presentation TAPROGGE Page 2 of 36 ABOUT TAPROGGE For more than 50 years, Taprogge has been operating in the sector of optimization of water circuits,

More information

C o l u m n S u m p P u m p s

C o l u m n S u m p P u m p s Column Sump Pumps Column Sump Pumps Regent Column Sump Pumps are column versions of the popular Regent end suction centrifugal models. This style of pump is advantageous when pumping high temperature liquids

More information

Best Practice Pump Control

Best Practice Pump Control Best Practice Pump Control Contents 1 Introduction 4 General Recommendations 5 2 Eff icient Pumping System Operation 6 3 Types of Control 7 3.1 Stop/start control 7 3.2 Flow control valve 7 3.3 By-pass

More information

Aqua-Swirl Stormwater Treatment System

Aqua-Swirl Stormwater Treatment System Aqua-Swirl Stormwater Treatment System Inspection and Maintenance Manual AquaShield TM, Inc. 2705 Kanasita Drive Chattanooga, TN 37343 Toll free (888) 344-9044 Phone: (423) 870-8888 Fax: (423) 826-2112

More information

The Bernoulli Filter

The Bernoulli Filter The Bernoulli Filter Simple and ingenious filtration Table of content 1. The Bernoulli history 2. Introduction of the Bernoulli Filter 3. The target application, protection of PHE 4. Bernoulli recommendations

More information

Advanced Grit Removal Technology

Advanced Grit Removal Technology Advanced Grit Removal Technology Superior Performance Lowest Total Cost of Ownership Unequalled Experience Since pioneering the first flat-floor vortex grit removal system, S&L Engineering leads the water

More information

Created by Simpo PDF Creator Pro (unregistered version) Asst.Prof.Dr. Jaafar S. Maatooq

Created by Simpo PDF Creator Pro (unregistered version)  Asst.Prof.Dr. Jaafar S. Maatooq Lect.No.9 2 nd Semester Barrages, Regulators, Dams 1 of 15 In order to harness the water potential of a river optimally, it is necessary to construct two types of hydraulic structures, as shown in Figure

More information

COLLECTION AND DISTRIBUTION OF WATER

COLLECTION AND DISTRIBUTION OF WATER COLLECTION AND DISTRIUTION OF WATER Addis Ababa University Addis Ababa Institute of Technology Department of Civil Engineering Collection and Distribution of Water Deals with the transport of water from

More information

Stretching NPSHA vs. NPSHR to the Limit

Stretching NPSHA vs. NPSHR to the Limit Feedwater Systems Reliability Users Group (Jan 2017) Austin, TX Stretching NPSHA vs. NPSHR to the Limit Presenter: Art Washburn P.E. DISCUSSION POINTS Two Rules to Get You Home and Plant Priorities Customer

More information

SECTION PACKAGED, SUBMERSIBLE SEWERAGE PUMP UNITS

SECTION PACKAGED, SUBMERSIBLE SEWERAGE PUMP UNITS PART 1 - GENERAL 1.1 DESCRIPTION SECTION 22 13 33 PACKAGED, SUBMERSIBLE SEWERAGE PUMP UNITS SPEC WRITER NOTES: 1. Delete between //----// if not applicable to project. Also delete any other item or paragraph

More information

Appendix J Effluent Pump Station

Appendix J Effluent Pump Station Appendix J Effluent Pump Station TECHNICAL MEMORANDUM Salmon Creek Treatment Plant Effluent Pump Station Hydraulics and Phasing Analysis for the Phase 5A Project Columbia River Outfall and Effluent Pipeline

More information

Chapter 5 Hydraulic Structures

Chapter 5 Hydraulic Structures Chapter 5 Hydraulic Structures 5.1 Flow Splitter Designs 5.1.1 General Design Criteria A flow splitter must be designed to deliver the WQ design flow rate specified in this volume to the WQ treatment facility.

More information

LABORATORY & DEIONIZED WATER SYSTEMS DESIGN AND CONSTRUCTION STANDARD

LABORATORY & DEIONIZED WATER SYSTEMS DESIGN AND CONSTRUCTION STANDARD PART 1: GENERAL 1.01 Purpose A. This standard is intended to provide useful information to the Professional Service Provider (PSP) to establish a basis of design. The responsibility of the engineer is

More information

.1 All equipment, controls and accessories to be compatible with system design, and matched to the steam boiler(s) by the boiler Manufacturer.

.1 All equipment, controls and accessories to be compatible with system design, and matched to the steam boiler(s) by the boiler Manufacturer. Construction of Sodium Hypochlorite and Chemical Storage Buildings Page 1 of 7 1. GENERAL 1.1 Scope.1 Boiler feed tank and pumps..2 Blowdown tanks..3 Water Softener System 1.2 Quality Assurance.1 All equipment,

More information

Minimum grade (%) Velocity at full flow (m s 1 )

Minimum grade (%) Velocity at full flow (m s 1 ) 1.6 Pipes Effluent can be conveyed by channels or pipes under gravity or in dedicated pipelines under pressure. If pipes are used, pressure rating, water-hammer and excessive friction losses must be considered

More information

IMPACT AND PUNCTURING OF JARI TUNNEL AND ENLARGEMENT OF EXISTING TAPPINGS FOR ADDITIONAL WATER SUPPLY AND POWER GENERATION

IMPACT AND PUNCTURING OF JARI TUNNEL AND ENLARGEMENT OF EXISTING TAPPINGS FOR ADDITIONAL WATER SUPPLY AND POWER GENERATION 117 Paper No. 738 IMPACT AND PUNCTURING OF JARI TUNNEL AND ENLARGEMENT OF EXISTING TAPPINGS FOR ADDITIONAL WATER SUPPLY AND POWER GENERATION JAVED MUNIR, SYED ABBAS ALI, IRFAN MAHMOOD 118 Javed Munir,

More information

Engineering & Expertise Designing Pump Sumps

Engineering & Expertise Designing Pump Sumps Engineering & Expertise Designing Pump Sumps Large submersible centrifugal pumps Engineering & Expertise Total solution engineering increases operational efficiency Introduction The proper design of the

More information

Aqua-Swirl Stormwater Treatment System

Aqua-Swirl Stormwater Treatment System Aqua-Swirl Stormwater Treatment System Inspection and Maintenance Manual AquaShield TM, Inc. 2733 Kanasita Drive Suite 111 Chattanooga, TN 37343 Toll free (888) 344-9044 Phone: (423) 870-8888 Fax: (423)

More information

T Series. Self-Priming Centrifugal Pumps

T Series. Self-Priming Centrifugal Pumps T Series Self-Priming Centrifugal Pumps The World Leader in Solids Handling Self-Priming Pumps. When industry looks for more reliable and efficient ways to move waste, they look to Gorman-Rupp self-priming

More information

u m p a n d u m p i n g y s t e m p e c i a l i s t s i n c e

u m p a n d u m p i n g y s t e m p e c i a l i s t s i n c e P P S S S u m p a n d u m p i n g y s t e m p e c i a l i s t s i n c e 1 9 6 2 Ft Worth Waco Austin Houston San Antonio 2 3 Vertical Turbine Fabricated Steel Components Smith Pump specializes in engineered

More information

The City of Baltimore Back River Wastewater. No more backups Reducing SSOs with headworks improvements in Baltimore

The City of Baltimore Back River Wastewater. No more backups Reducing SSOs with headworks improvements in Baltimore No more backups Reducing SSOs with headworks improvements in Baltimore Brian Balchunas, Meredith Welle, Jason Kerns, Gurminder Singh, Misrak Shiferaw, Ben Asavakarin, Thomas Demlow, and Kara Hurtig The

More information

UNIT I FLUID PROPERTIES AND FLUID STATICS

UNIT I FLUID PROPERTIES AND FLUID STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM & HM (16CE112) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech

More information

Observations from Several Condition Assessments of Prestressed Concrete Cylinder Pipe used at Energy Generation Facilities

Observations from Several Condition Assessments of Prestressed Concrete Cylinder Pipe used at Energy Generation Facilities 147 Observations from Several Condition Assessments of Prestressed Concrete Cylinder Pipe used at Energy Generation Facilities Todd Stong PE 1, Ron R. Jorgenson 2, and Jacob Sauer 3 1 Senior Engineer,

More information

Preface to the First Edition Preface to the Second Edition. Acknowledgment

Preface to the First Edition Preface to the Second Edition. Acknowledgment Dedication Preface to the First Edition Preface to the Second Edition Forewords Acknowledgment iii xiii xv xvii xix Chapter 1 Introduction to Pipeline Systems 1 1.1 Introduction 1 1.2 Liquid Pipelines

More information

FAIRBANKS NIJHUIS VERTICAL TURBINE PUMP. TYPE VDL/VDF

FAIRBANKS NIJHUIS VERTICAL TURBINE PUMP.  TYPE VDL/VDF FAIRBANKS NIJHUIS VERTICAL TURBINE PUMP TYPE VDL/VDF www.fairbanksnijhuis.com PENTAIR S FAIRBANKS NIJHUIS VertIcal Turbine pumps Intake Sump Configurations Vertical turbine pumps are available in customized

More information

level control gates Waterman Industries of Egypt WATERMAN

level control gates Waterman Industries of Egypt WATERMAN Automatic level control gates WATERMAN DOWNSTREAM LEVEL CONTROL Waterman Types "A" and "B" Automatic gates provide constant downstream water level control regardless of upstream level conditions or downstream

More information

PG&E Flow Loop Simulator

PG&E Flow Loop Simulator CALIFORNIA POLYTECHNIC STATE UNIVERSITY PG&E Flow Loop Simulator Senior Project 6/4/2010 Cole Brooks, Seth Berger, Ben Thacker Contents Contents... 1 Table of Figures... 4 1.0 Executive Summary... 6 2.0

More information

Open Channel Flow. Ch 10 Young, Handouts

Open Channel Flow. Ch 10 Young, Handouts Open Channel Flow Ch 10 Young, Handouts Introduction Many Civil & Environmental engineering flows have a free surface open to the atmosphere Rivers, streams and reservoirs Flow in partially filled pipes

More information

This consumes a high amount of space, and exacerbates the susceptibility of fully ventilated stacks to rapid pressure changes.

This consumes a high amount of space, and exacerbates the susceptibility of fully ventilated stacks to rapid pressure changes. Trickle-Down effect: Understanding the latest, space-saving developments in water management Introduction Plumbing and sanitary systems are a central part of any building project, and consume significant

More information

PUMPS FOR INDUSTRY. The Vertical Pump Specialists CONTENTS: Introduction & User List. Product Overview. Vertical Process Pumps...

PUMPS FOR INDUSTRY. The Vertical Pump Specialists CONTENTS: Introduction & User List. Product Overview. Vertical Process Pumps... PUMPS FOR INDUSTRY CONTENTS: The Vertical Pump Specialists Introduction & User List Product Overview Vertical Process Pumps... Series 600 Vertical Sewage Pumps... Series 700 Vertical Sump Pumps... Series

More information

W ater T alk. Field Corrosion Testing using Coupons

W ater T alk. Field Corrosion Testing using Coupons W ater T alk Field Corrosion Testing using Coupons Volume 12, Issue 1 April 2012 Most Cooling Water systems are continuously in use. Therefore it is rare to have access to inspect the actual system to

More information

Overhaul Issues on Vertical Pumps

Overhaul Issues on Vertical Pumps Overhaul Issues on Vertical Pumps EPRI/NMAC Pump Users Group August 10, 2004 Kurt Schumann ProPump ProPump Services Services Vertical Pumps Come in All Sizes Repair Goals Repair Only Get what you got Solve

More information

Power Recovery Turbines

Power Recovery Turbines Power Recovery Turbines Fixed and Variable Geometry Vertical Horizontal Bulletin PS-90-1 (E/A4) Pump Supplier To The World Flowserve is the driving force in the global industrial pump marketplace. No other

More information

SMALL HYDRO BIG CHALLENGES Renewable Energy World Asia 2016 Martin P. Bieri. September 21, 2016

SMALL HYDRO BIG CHALLENGES Renewable Energy World Asia 2016 Martin P. Bieri. September 21, 2016 SMALL HYDRO BIG CHALLENGES Renewable Energy World Asia 2016 Martin P. Bieri September 21, 2016 CONTENT Introduction Potential in Southeast Asia Challenges in Small Hydro Main Design Steps (Bad) Examples

More information

Installation Guidelines for Flygt Pumps Pump Anchoring Recommendations

Installation Guidelines for Flygt Pumps Pump Anchoring Recommendations Issued: Installation Guidelines for Flygt Pumps Pump Anchoring Recommendations Introduction Proper installation and anchorage of Flygt pumps and installation accessories is critical to limiting vibration

More information

Water Control Structures Selected Design Guidelines Alberta Environment Page 13-1

Water Control Structures Selected Design Guidelines Alberta Environment Page 13-1 Alberta Environment Page 13-1 13.0 DROP INLET SPILLWAYS 13.1 General The drop inlet spillway is commonly used for providing flood protection for earth dams which have smaller reservoirs and/or smaller

More information

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety

Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety IEA/SHC Task 57, Subtask B Draft proposals for new test procedures B4: Final Draft Draft proposals for Test methods for close-coupled solar water heating systems - Reliability and safety HE Zinian Beijing

More information

Harvesting Rainwater. Kevin Johnson; CID, CIC, CLWM, CLIA, CGIA Director, National Sales Munro Companies

Harvesting Rainwater. Kevin Johnson; CID, CIC, CLWM, CLIA, CGIA Director, National Sales Munro Companies Harvesting Rainwater Kevin Johnson; CID, CIC, CLWM, CLIA, CGIA Director, National Sales Munro Companies Background Used since ancient times to capture and hold water for later use! Reduces consumption

More information

Glossary Irrigation Terminology

Glossary Irrigation Terminology Glossary Irrigation Terminology ANGLE VALVE A valve configured so its outlet is oriented 90 from its inlet. In irrigation, these valves are generally installed with the inlet at the bottom of the valve.

More information

Mobile Nitrogen Vaporizer Skid

Mobile Nitrogen Vaporizer Skid A NEWSLETTER FROM CRYOGENIC INDUSTRIES WINTER 2013 Mobile Nitrogen Vaporizer Skid ryoquip Europe recently C designed and manufactured a mobile nitrogen ISO container vaporizer skid for large flow rate

More information

2. Circulating Water System

2. Circulating Water System SUPPLEMENTAL OXYGENATION OF ELECIRIC GENERATING STATION COOLING WATER G. FRED LEE and GEORGE A. FREY* Department of Civil Engineering, Colorado State University, Fort Collins, CO 80523, U.S.A. (Received

More information

Temporary Watercourse Crossing: Culverts

Temporary Watercourse Crossing: Culverts Temporary Watercourse Crossing: Culverts DRAINAGE CONTROL TECHNIQUE Low Gradient Velocity Control Short Term Steep Gradient Channel Lining Medium-Long Term Outlet Control Soil Treatment Permanent Symbol

More information

PUMPING TECHNOLOGY TRAINING COURSES GUIDE

PUMPING TECHNOLOGY TRAINING COURSES GUIDE PUMPING TECHNOLOGY TRAINING COURSES GUIDE Pumping Fundamentals I Pump Selection I Pump Testing I Pump Systems I Pump Hydraulics PUMPING TECHNOLOGY PUMPING TECHNOLOGY TRAINING COURSES INFORMATION w w w.

More information

Self-Priming pumps, when it really matters

Self-Priming pumps, when it really matters Self-Priming pumps, when it really matters Horizontal Self-Priming pump www.komak.nl Engineered pump solutions Specially designed and manufactured, by KOMAK, to operate under the most difficult conditons.

More information

C. ASSE 1013 Performance Requirements for Reduced Pressure Principle Backflow Preventers.

C. ASSE 1013 Performance Requirements for Reduced Pressure Principle Backflow Preventers. PART 1: GENERAL 1.01 Purpose: A. This standard is intended to provide useful information to the Professional Service Provider (PSP) to establish a basis of design. The responsibility of the engineer is

More information

VEY Molten Salt Pump for Concentrated Solar Power

VEY Molten Salt Pump for Concentrated Solar Power VEY Molten Salt Pump for Concentrated Solar Power Main Applications The VEY is a vertical mixed flow pump with high capacity and medium to high head. Its design includes hydraulics from proven ranges.

More information

KRS DEWATERING PUMPS

KRS DEWATERING PUMPS www.tsurumi-global.com DEWATERING PUMPS Submersible General-Purpose Dewatering Pumps Tsurumi's -series of submersible heavy-duty pumps are designed and built to handle high volume pumping jobs. The series

More information

Asst.Prof.Dr. Jaafar S. Maatooq. 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 1 of 26

Asst.Prof.Dr. Jaafar S. Maatooq. 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 1 of 26 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 1 of 26 1 st Semester HYDRAULIC STRUCTUER, KINDS & FUNCTIONS 2 of 26 Water is often more useful to people when it is properly controlled, conveyed,

More information

MECHANICAL EQUIPMENT DESIGN Online Course Part I: Introduction to Mechanical Equipment

MECHANICAL EQUIPMENT DESIGN Online Course Part I: Introduction to Mechanical Equipment MECHANICAL EQUIPMENT DESIGN Online Course Part I: Introduction to Mechanical Equipment STUDY NOTES Curso impartido por: Instructor: Javier Tirenti www.etcfunsafe.com Table of contents Introduction... 3

More information

Technologies For Longer Pump Life

Technologies For Longer Pump Life Technologies For Longer Pump Life Pump manufacturers continue to design and develop impellers, bowls, wear rings and other innovations to curb the abrasive & damaging effects of sand in a water well. The

More information

Rugged, reliable and efficient sump pumps... your assurance of a dry basement!

Rugged, reliable and efficient sump pumps... your assurance of a dry basement! Rugged, reliable and efficient sump pumps... your assurance of a dry basement! TITAN sump pumps provide the performance, value and simplicity you need for your home, farm, cottage or business...count on

More information

Green FSRU for the future

Green FSRU for the future Green FSRU for the future Presentation at GREEN4SEA Athens April 6 th 2016 Dr. John Kokarakis Vice President Technology & Business Development, Africa, S. Europe Hellenic, Black Sea & Middle East Zone

More information

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard

Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain

More information

Hydroelectric power plants

Hydroelectric power plants Hydroelectric power plants Hydroelectric power plants can drive from a water stream or accumulation reservoir. Run-of-river hydroelectric plants (those without accumulation reservoirs) built along a river

More information

SECTION PACKAGED, SUBMERSIBLE, DRAINAGE PUMP UNITS

SECTION PACKAGED, SUBMERSIBLE, DRAINAGE PUMP UNITS SECTION 22 14 36 PACKAGED, SUBMERSIBLE, DRAINAGE PUMP UNITS PART 1 - GENERAL 1.1 DESCRIPTION SPEC WRITER NOTE: Delete between //----// if not applicable to project. Also delete any other item or paragraph

More information

Table of Contents. Foreword... xvii Executive Summary... xxi. Chapter One Pump Fundamentals, 1

Table of Contents. Foreword... xvii Executive Summary... xxi. Chapter One Pump Fundamentals, 1 Foreword................................................ xvii Executive Summary........................................ xxi Chapter One Pump Fundamentals, 1 1.1 Introduction..........................................

More information

Exploration of Utulei Clarigester #1 for Facility Upgrade

Exploration of Utulei Clarigester #1 for Facility Upgrade Pacific Design Build Corporation 1036 Mikole St. Honolulu, HI 96819 Phone #: (808) 841-6685 Fax#: (808) 843-1797 I. Objective: Exploration of Utulei Clarigester #1 for Facility Upgrade At the request of

More information

COMMERCIAL / INDUSTRIAL COOLING TOWER SIDE STREAM FILTER SYSTEMS

COMMERCIAL / INDUSTRIAL COOLING TOWER SIDE STREAM FILTER SYSTEMS COMMERCIAL / INDUSTRIAL COOLING TOWER SIDE STREAM FILTER SYSTEMS When performance & value matters. WHY DO COOLING TOWERS REQUIRE FILTRATION? Cooling towers are excellent air scrubbers. High volumes of

More information

THE USE OF HYDRAULIC TRANSIENT MODELLING IN THE DESIGN OF RESILIENT PIPELINES

THE USE OF HYDRAULIC TRANSIENT MODELLING IN THE DESIGN OF RESILIENT PIPELINES THE USE OF HYDRAULIC TRANSIENT MODELLING IN THE DESIGN OF RESILIENT PIPELINES Alistair Hancox, Grant Pedersen Harrison Grierson Consultants Limited ABSTRACT Pressure surges during the start up, shut down,

More information

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation

Renewable Energy. Visible light. Cool air. Warm air. Condensation. Precipitation. Evaporation Renewable Energy All renewable energy sources derive from the Sun. The Sun provides the energy that drives our weather systems and water cycle. It is the prime source of all energy on Earth and it is essential

More information

Lab #3 Conservation Equations and the Hydraulic Jump CEE 331 Fall 2004

Lab #3 Conservation Equations and the Hydraulic Jump CEE 331 Fall 2004 CEE 33 Lab 3 Page of 8 Lab #3 Conservation Equations and the Hydraulic Jump CEE 33 Fall 004 Safety The major safety hazard in this laboratory is a shock hazard. Given that you will be working with water

More information

FXT Open Cooling Towers... B46. Benefits... B48. Construction Details... B49. Custom Features and Options... B50. Accessories...

FXT Open Cooling Towers... B46. Benefits... B48. Construction Details... B49. Custom Features and Options... B50. Accessories... B 45 Product Detail... B46 Benefits... B48 Construction Details... B49 Custom Features and Options... B Accessories... B51 Engineering Data... B52 Structural Support... B54 Engineering Specifications...

More information

SECTION MOTORS AND PUMPS FOR PLUMBING SYSTEMS

SECTION MOTORS AND PUMPS FOR PLUMBING SYSTEMS PART 1 GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including the General and Supplementary Conditions and Specification Sections, apply to this Section. B. Related

More information