Co-production of Bioethanol and Power

Size: px
Start display at page:

Download "Co-production of Bioethanol and Power"

Transcription

1 14 Co-production of Bioethanol and Power Atsushi Tsutsumi and Yasuki Kansha Collaborative Research Centre for Energy Engineering, Institute of Industrial Science The University of Tokyo, Komaba, Meguro-ku, Tokyo Japan 1. Introduction Recently, biomass usage for fuel has attracted increased interest in many countries to suppress global warming caused mainly by the consumption of fossil fuels. (Mousdale, 2010). In particular, many researchers expect that bioethanol may be a substitute for petroleum. In fact, bioethanol loses less energy and exergy potential during chemical reactions, saccharification and fermentation for ethanol production, because it is produced merely through energy conversion by chemical reactions (Cardona et al. 2010). However, after fermentation, the product contains a large amount of water, which prevents maximizing the heat value of the product. Therefore, separation of the ethanol-water mixture is required to obtain pure ethanol for fuel (Zamboni et al. 2009a, 2009b, Huang et al. 2008). In practice, distillation is widely used for the separation of this mixture (Fair 2008). However, conventional distillation is well-known to be an energy-consuming process, and also pure ethanol fuel cannot be produced directly from a distillation column, because ethanol and water form an azeotropic mixture. To separate pure ethanol from ethanol-water mixtures by distillation, it is necessary to use an entrainer (azeotrope breaking agent), because the azeotropic mixture is one that vaporizes without any change in composition. Benzene, cyclohexane, or isopropyl alcohol can be used as entrainers for the ethanol-water mixture. Therefore, at least two separation units are required to produce pure ethanol, leading to further increases in energy consumption (Doherty& Knapp 2008). In fact, it is believed that about half of the heat value of bioethanol is required to distill the ethanol from the mixture. To reduce energy consumption during bioethanol production, many researchers have proposed membrane separations (Baker 2008, Wynn 2008) or pressure swing adsorption (PSA) (Modla & Lang, 2008) as alternatives to azeotropic distillation, often successfully developing appropriate membranes or sorbents to achieve an efficient separation. However, in many cases, they have paid little attention to the overall process scheme or have developed heat integration processes based on conventional heat recovery technologies, such as the well known heat cascading utilization. As a result, the minimum energy requirement of the overall process has not been reduced, because changes to the condition of the process stream are constrained in conventional heat recovery technologies (Hallale 2008, Kemp 2007). Moreover, most cost minimization analyses for bioethanol plants have been conducted based on these conventional processes and technologies. Thus, the price of product bioethanol still remains high compared to fossil fuels. Nowadays, by reconsidering the energy and production system from an improvement of energy conversion efficiency and energy saving point of view, the concept of co-production of energy and products has been developed. However, to realize co-production, it is

2 318 Biofuel's Engineering Process Technology necessary to analyze and optimize the heat and power required for production in each process. Therefore, the authors have developed self-heat recuperation technology based on exergy recuperation (Kansha et al. 2009) and applied it to several chemical processes for coproduction (Fushimi et al. 2011, Kansha et al. 2010a, 2010b, 2010c, 2011, Matsuda et al.2010). In this chapter, self-heat recuperation technology is introduced and applied to the separation processes in bioethanol production for co-production. Moreover, the feasibility and energy balance for co-production of bioethanol and power using biomass gasification based on self-heat recuperation is discussed. 2. Energy balance for conventional bioethanol production It assumed that the amount of energy in feed stock wet biomass is 100 and that 50% of this energy consists of that from reactant sugars, such as starch, cellulose and others. Thus, the amount of energy of the original component of sugar (50) transfers to ethanol (46) and heat (4) through chemical reactions (saccharification and fermentation) with water. This energy is estimated from the following calculation; the caloric value of sugar is 685 kcal/mol, the caloric value of ethanol is 316 kcal/mol and 2 mol ethanol is produced from 1 mol sugar through the above reaction. The pure ethanol product is then separated by distillation and additional heat energy (23) is required for this distillation work when azeotropic distillation is used for the separation. Non-reactants contain a large amount of water, for which the higher heat value is almost equal to the evaporation heat, leading to a net heat value of 0. The above energy relation is shown in Fig. 1. Beyond this, some additional energy is required to produce heat energy from the wet biomass for distillation (23). This additional energy (15) is used to dry the wet biomass in a heater to produce dry biomass that is used as fuel for distillation. Figure 2 shows the total energy balance including this additional energy. It is noted that 50-80% moisture content in wet biomass is assumed in this energy analysis, because many types of wet biomass exist in this range, such as those that originate from ligneous, garbage and sludge. It can be seen from Fig. 2 that 138 units of energy in the wet biomass feed stock is required to produce 46 energy units of ethanol and that about 1/3 of the energy of the wet biomass can be utilized as bioethanol for fuel. Thus, 2/3 of the wet biomass feed stock energy is wasted. Even though this wasted heat energy could potentially be heat sources for other processes, the exergy ratio and temperature of the waste heats are quite low. Thus, it is difficult to achieve energy saving from this by heat integration technologies such as cascading utilization. In fact, the highest required temperature during bioethanol production is normally at the distillation column reboiler and this temperature is lower than 150 C. This heat is exhausted from the condenser at below 100 C. To utilize the biomass energy more effectively, it is clear that the energy consumption during distillation for separating water and product ethanol and for drying of the wet biomass must be reduced. When an integrated system of distillation and membrane separation processes are utilized to substitute for azeotropic distillation, the energy required can be decreased from 23 to 12 units (8: distillation, 4: membrane separation). However, the pressure difference for membrane separation requires electric power. If we assume that the power generation efficiency from dry biomass is 25% and 75% of the energy for the membrane separation process is provided by electricity, 35 energy units from wet biomass are required for distillation and dehydration by membrane separation.

3 Co-production of Bioethanol and Power 319 heat 23 distillation wet biomass 100 chemical reaction 46 ethanol 4 heat 50 wet residue Fig. 1. Energy balance for bioethanol production wet biomass 38 wet biomass 100 heat 23 distillation chemical reaction 15 waste heat 23 waste heat 46 ethanol 4 heat 50 wet residue Fig. 2. Total energy balance for bioethanol production 3. Self-heat recuperation technology and self-heat recuperative processes Self-heat recuperation technology (Kansha et al. 2009) facilitates recirculation of not only latent heat but also sensible heat in a process, and helps to reduce the energy consumption of the process by using compressors and self-heat exchangers based on exergy recuperation. In this technology, i) a process unit is divided on the basis of functions to balance the heating and cooling loads by performing enthalpy and exergy analysis, ii) the cooling load is recuperated by compressors and exchanged with the heating load. As a result, the heat of

4 320 Biofuel's Engineering Process Technology the process stream is perfectly circulated without heat addition, and thus, the energy consumption for the process can be greatly reduced. By applying this technology to each process (distillation and dehydration), the energy balance for the ethanol production can be changed significantly from that described above. In this section, the design methodology for self-heat recuperative processes is introduced by using a basic thermal process, and the selfheat recuperative processes applied to the separation processes are then introduced. 3.1 Self-heat recuperative thermal process To reduce the energy consumption in a process through heat recovery, heating and cooling functions are generally integrated for heat exchange between feed and effluent to introduce heat circulation. A system in which such integration is adopted is called a self-heat exchange system. To maximize the self-heat exchange load, a heat circulation module for the heating and cooling functions of the process unit has been proposed, as shown in Figure 3 (Kansha et al. 2009). Figure 3 (a) shows a thermal process for gas streams with heat circulation using self-heat recuperation technology. In this process, the feed stream is heated with a heat exchanger (1 2) from a standard temperature, T 0, to a set temperature, T 1. The effluent stream from the following process is pressurized with a compressor to recuperate the heat of the effluent stream (3 4) and the temperature of the stream exiting the compressor is raised to T 1 through adiabatic compression. Stream 4 is cooled with a heat exchanger for self-heat exchange (4 5). The effluent stream is then decompressed with an expander to recover part of the work of the compressor. This leads to perfect internal heat circulation through selfheat recuperation. The effluent stream is finally cooled to T 0 with a cooler (6 7). Note that the total heating duty is equal to the internal self-heat exchange load, Q HX, without any external heating load, as shown in Fig. 3 (b). In the case of ideal adiabatic compression and expansion, the input work provided to the compressor performs a heat pumping role in which the effluent temperature can achieve perfect internal heat circulation without any exergy dissipation. Therefore, self-heat recuperation can dramatically reduce energy consumption. Figure 3 (c) shows a thermal process for vapor/liquid streams with heat circulation using the self-heat recuperation technology. In this process, the feed stream is heated with a heat exchanger (1 2) from a standard temperature, T 0, to a set temperature, T 1. The effluent stream from the subsequent process is pressurized with a compressor (3 4). The latent heat can then be exchanged between feed and effluent streams because the boiling temperature of the effluent stream is raised to T b by compression. Thus, the effluent stream is cooled through the heat exchanger for self-heat exchange (4 5) while recuperating its heat. The effluent stream is then depressurized by a valve (5 6) and finally cooled to T 0 with a cooler (6 7). This leads to perfect internal heat circulation by self-heat recuperation, similar to the above gas stream case. Note that the total heating duty is equal to the internal self-heat exchange load, Q HX, without any external heating load, as shown in Fig. 3 (d). It can be understood that the vapor and liquid sensible heat of the feed stream can be exchanged with the sensible heat of the corresponding effluent stream and the vaporization heat of the feed stream is exchanged with the condensation heat of the effluent stream. As a result, the energy required by the heat circulation module is reduced to 1/22 1/2 of the original by the self-heat exchange system in gas streams and/or vapor/liquid streams.

5 Co-production of Bioethanol and Power 321 Fig. 3. Self-heat recuperative thermal process a) process flow of gas streams, b) temperatureheat diagram of gas streams, c) process flow of vapor/liquid streams, d) temperature-heat diagram of vapor/liquid streams 3.2 Self-heat recuperative distillation Expanding the self-heat recuperative thermal process to distillation processes in particular (Kansha et al. 2010a, 2010b), a system including not only the distillation column but also the preheating section, is developed in order to minimize the required energy, as shown in Fig. 4. A distillation process can be divided into two sections, namely the preheating and distillation sections, on the basis of functions that balance the heating and cooling load by performing enthalpy and exergy analysis, and the self-heat recuperation technology is applied in these two sections. In the preheating section, one of the streams from the distillation section is a vapor stream and the stream to the distillation section has a vapor liquid phase that balance the enthalpy of the feed streams and that of the effluent streams in the section. In balancing the enthalpy of the feed and effluent streams in the preheating section, the enthalpy of the streams in the distillation section is automatically balanced. Thus, the reboiler duty is equal to the condenser duty of the distillation column. Therefore, the vapor and liquid sensible heat of the feed streams can be exchanged with the sensible heat of the corresponding effluent streams and the vaporization heat can be exchanged with the condensation heat in each section.

6 322 Biofuel's Engineering Process Technology Fig. 4. Self-heat recuperative distillation process a) process flow diagram, b) temperatureheat diagram Figure 4 (a) shows the structure of a self-heat recuperative distillation process consisting of two standardized modules, namely, the heat circulation module and the distillation module. Note that in each module, the summation of the enthalpy of the feed streams and that of the effluent streams are equal. The feed stream in this integrated process module is represented as stream 1. This stream is heated to its boiling point by the two streams independently

7 Co-production of Bioethanol and Power 323 recuperating heat of the distillate (12) and bottoms (13) by the heat exchanger (1 2). A distillation column separates the distillate (3) and bottoms (9) from stream 2. The distillate (3) is divided into two streams (4, 12). Stream 4 is compressed adiabatically by a compressor and cooled down by the heat exchanger (2). The pressure and temperature of stream 6 are adjusted by a valve and a cooler (6 7 8), and stream 8 is then fed into the distillation column as a reflux stream. Simultaneously, the bottoms (9) is divided into two streams (10, 13). Stream 10 is heated by the heat exchanger and fed to the distillation column (10 11). Streams 12 and 13 are the effluent streams from the distillation module and return to the heat circulation module. In addition, the cooling duty of the cooler in the distillation module is equal to the compression work of the compressor in the distillation module because of the enthalpy balance in the distillation module. The effluent stream (12) from the distillation module is compressed adiabatically by a compressor (12 14). Streams 13 and 14 are successively cooled by a heat exchanger. The pressure of stream 17 is adjusted to standard pressure by a valve (17 18), and the effluents are finally cooled to standard temperature by coolers (15 16, 18 19). The sum of the cooling duties of the coolers is equal to the compression work of the compressor in the heat circulation module. Streams 16 and 19 are the products. Figure 4 (b) shows the temperature and heat diagram for the self-heat recuperative distillation process. In this figure, each number corresponds to the stream numbers in Figure 4 (a), and T s and T b are the standard temperature and the boiling temperature of the feed stream, respectively. Both the sensible heat and the latent heat of the feed stream are subsequently exchanged with the sensible and latent heat of effluents in heat exchanger 1. The vaporization heat of the bottoms from the distillation column is exchanged with the condensation heat of the distillate from the distillation column in the distillation module. The heat of streams 4 and 12 are recuperated by the compressors and exchanged with the heat in the module. It can be seen that all the self-heat is exchanged. As a result, the exergy loss of the heat exchangers can be minimized and the energy required by the distillation process is reduced to 1/6 1/8 of that required by the conventional heat exchanged distillation process Self-heat recuperative azeotropic distillation for dehydration Conventional azeotropic distillation processes, which have one distillation column for dehydration to separate ethanol and another to separate water from their mixture, are divided into three modules. The sum of the feed enthalpy is made equal to that of the effluent stream enthalpy in each module to analyze the heating and cooling loads of all process streams by following self-heat recuperation technology. According to this analysis, the recovery streams are selected and the internal heat of the process stream in each module can be recovered and recirculated using a compressor and heat exchanger through self-heat recuperation technology. Figure 5 a) shows the structure of the self-heat recuperative azeotropic distillation module (Kansha et al. 2010c), consisting of three modules, namely, the first distillation module, the heat circulation module, and the second distillation module. In this self-heat recuperative distillation module, stream 1 represents a feed stream of the ethanol-water azeotropic mixture and stream 2 represents an entrainer (benzene and cyclohexane) feed stream. These streams are fed into the distillation column of the first distillation module. The vapor stream from the first distillation process is compressed adiabatically by a compressor (4 5). Subsequently, stream 5 is cooled in a heat exchanger (5 6), and the pressure and

8 324 Biofuel's Engineering Process Technology Fig. 5. Self-heat recuperative azeotropic distillation process for dehydration a) process flow diagram, b) temperature-heat diagram temperature of stream 6 are adjusted by a valve and a cooler (6 7 8). The liquid stream (8) is divided into two streams (9 and 10) in a decanter. Stream 9 consists mainly of the entrainer, which is recycled to the feed benzene (3). The bottom (11) of the distillation

9 Co-production of Bioethanol and Power 325 column is divided into two streams (12 and 14). Stream 14 becomes a product stream (pure ethanol). Stream 12 is heated in the heat exchanger and fed into the distillation column. In the heat circulation module, the effluent stream (10) from the first distillation module is heated in a heat exchanger and fed to the distillation column in the second distillation module. At the same time, the recycled stream, which is the distillate stream from the second distillation module, is adiabatically compressed by a compressor (18 27) and cooled by exchanging heat in the heat exchanger (27 28). The pressure and temperature of stream 28 are adjusted by a valve and cooler ( ) and stream 30 is fed into the distillation column of the first distillation module as the recycled stream. Next, in the second distillation module, the feed stream (15) is separated into the distillate (16) and the bottoms (17) by the distillation column. The vapor distillate (16) is divided into two streams (18 and 19) by a separator. Stream 18 is recycled to the heat circulation module, while stream 19 is adiabatically compressed (19 20) and exchanged with the heat in a heat exchanger (20 21). The temperature and pressure of stream 21 are adjusted by a valve and a cooler ( ), and then the effluent stream is fed into the distillation column. Subsequently, the bottom stream (17) from the distillation column is divided into two streams (24 and 25). Stream 25 is the product water. The other stream (24) is vaporized in the heat exchanger and fed into the distillation column (26). Figure 5 b) shows a temperature heat diagram for the self-heat recuperative distillation module for azeotropic distillation. Note that numbers beside the composite curve correspond to the stream numbers in Figure 5 a). It can be seen that the latent heats of the effluent streams are exchanged with those of the feed streams, as well as the sensible heats in each module, leading to minimization of the exergy loss in the heat exchangers. From this figure, it can be understood that all of process heat is recirculated without any heat addition and the total heating duty was covered by internal heat recovery. All of the compression work in each module was discarded into coolers in each module, because the sum of enthalpy in the feed streams was equal to that of the effluent streams in each module when using internal heat recovery. As this relationship indicates, the compression work was used for inducing heat recovery and circulation in each module and exhausted as low exergy heat. As a consequence, the energy required of the self-heat recuperative distillation module for azeotropic distillation is 1/8 of that of the conventional azeotropic distillation process Self-heat recuperative drying Biomass resources usually contain a large amount of moisture, leading to higher transportation costs, debasement during storage, and reduction of thermal efficiency during conversion. Drying is a key technology for utilizing the biomass (McCormick & Mujumdar 2008). In addition to the use of biomass for fuel, the energy required for drying occupies a large amount of energy in the production due to the large latent heat of water during evaporation. Moreover, this characteristic of the drying process is the same as for the thermal and distillation processes. Therefore, a drying process based on self-heat recuperation technology was recently proposed (Fushimi et al., 2011). Figure 6 a) shows a schematic image of a self-heat recuperative drying process. The wet sample is heated in a heat exchanger (1 2). The heated wet sample and vapor are then fed into an evaporator (dryer) with dry gas to assist evaporation (16). The heat for evaporation is supplied by superheated steam and gas (7). The hot dry sample (3) is separated and cooled by the dry gas (15) (3 5). After eliminating the unseparated sample to prevent it from entering the compressor, the evaporated steam and gas (4) are compressed (7) by a

10 326 Biofuel's Engineering Process Technology Fig. 6. Self-heat recuperative drying process for dehydration a) process flow diagram, b) temperature-heat diagram compressor. The sensible and latent heats of the compressed steam and gas are exchanged in the heat exchanger (7 8) and fed into a condenser to separate the water and gas; the water is then drained (10). The pressure and temperature of drain water are adjusted by a valve

11 Co-production of Bioethanol and Power 327 and cooler ( ). Simultaneously, the pressure energy of the gas (9) is partially recovered in an expander. The temperature of the gas is then cooled by a cooler (13). This exhausted gas can be recycled as the gas feed (15). To use this gas as the dry gas feed, makeup gas is necessary to compensate for the loss, because a small amount of gas dissolves in water in the condenser. Considering a real application for a drying process, the dried sample is separated immediately after the evaporation and reversed back to the heat exchanger for heat utilization. However, with the aim of reducing drying time (higher drying rate) and providing the driving force required in the drying process, gas that has been preheated by the sample enters the evaporator. It should be noted that an increase in gas flow rate causes an increase in the energy required for compression for the following reasons: (1) an excess amount of gas must be compressed and (2) a smaller partial pressure of steam requires larger compression pressure for condensation. Consequently, the gas flow rate should be optimized. Figure 6 b) shows a temperature-heat diagram of the self-heat recuperative drying process. Note that the numbers beside the composite curve in this temperature-heat diagram correspond to the stream numbers in Figure 6 a). It can be seen that the condensation heat of the steam in the effluent stream (7 8) is exchanged with the evaporation heat of the feed stream (1 2), as well as the sensible heats in a heat exchanger. At the same time, the heat of solid sample after evaporation is exchanged with the heat of the gas stream in the other heat exchanger and this heat is supplied to the feed solid sample. These lead to minimization of the exergy loss in the heat exchangers. From this figure, it can be understood that all process heat is recirculated without heat addition, and that the total heating duty is covered by internal heat recovery. All of the compression work in each module was discarded into coolers, because the base conditions of the stream are fixed at standard conditions. As a consequence, to circulate the process stream heat in the process using heat exchangers and a compressor, the energy required for the self-heat recuperative drying process is 1/7 of that of the conventional heat recovered drying process. 4. Integration with biomass gasification To adopt self-heat recuperative processes, it is necessary to generate power in substitution for heat energy. According to the energy balance shown in Figs. 1 and 2, much residue with insufficient heat value for utilization due to its high moisture content is produced during bioethanol production. By integrating the self-heat recuperative drying process with power generation, this wet biomass can be utilized for energy. In this section, an integrated system for self-heat recuperative bioethanol production with biomass gasification is introduced. 4.1 Biomass gasification and its impact on the system One of the easiest ways to generate power from biomass is direct combustion of biomass in a boiler, wherein thermal energy is produced and power is generated from this thermal energy by using a steam turbine (boiler and turbine generator). However, energy conversion efficiency under this procedure is not good enough. To increase the conversion efficiency of energy from biomass to power, biomass gasification reaction is used. Gasification reactions can be divided into two mechanisms; pyrolysis and gasification by chemical reaction (partial oxidation, etc.) Biomass gasification normally passes through both of these. After passing through a series of gasification procedures, the gases are fed into a gas turbine, and then the

12 328 Biofuel's Engineering Process Technology power is generated. Gasification reactions are normally endothermic reactions, and must be provided with heat during reactions. However, the overall energy conversion efficiency will be increased compared with the boiler and turbine generator. In addition, a further increase in energy conversion efficiency, through a biomass-based integrated gasification combined cycle (IGCC) technology has been investigated (Bridgwater 1995). It is currently assumed that the energy conversion efficiency of biomass through power generation and biomass gasification is 25%. The energy amount of the wet residue is 50 in Figs. 1 and 2. It assumed that half of the energy amount of this wet residue can be utilized for drying the biomass. According to the analysis of self-heat recuperative drying above, 1/8 of the amount of energy for water evaporation is required for power to dry this wet residue using self-heat recuperative drying. This means that power (8) can be generated and a part of this power (3) is used for drying, leading to 4% of the initial wet biomass being converted to power as net energy (5) from the wet residue as shown in Fig waste heat 50 wet residue 3 power 5 power 28 Fig. 7. Power generation from wet residue during bioethanol production 5. Energy balance for self-heat recuperative bioethanol production exhausted steam The same assumption as for section 2 is assumed; the amount of energy in the wet biomass feed stock is 100, 50% of the energy value of the wet biomass consists of the energy value of reactant sugars such as starch, cellulose and others, and the amount of energy of the original sugar component (50) transfers to ethanol (46) and heat (4) through chemical reactions (saccharification and fermentation) with water. By applying the self-heat recuperative distillation and azeotropic distillation process to the distillation and dehydration process, the additional heat energy for distillation is converted to power. At the same time, the energy (23) in Figure 1 is reduced to 4. This value was estimated from the energy reduction results from the self-heat recuperative processes in section 3. By integrating the aforementioned biomass gasification in section 4 with the self-heat recuperative processes introduced in section 3, bioethanol (46) and power (1) can be produced as co-products from wet biomass (100) during bioethanol production, as shown in Fig. 8. Wet residue (non-reactants contain a large amount of water, for which the higher heat value is almost equal to the required evaporation heat, leading to net heat value of 0) in Figs.

13 Co-production of Bioethanol and Power and 2 can be utilized as the energy supply. Thus, it can be understood that 46% of the energy of the wet biomass is transferred to the bioethanol and 1% of the energy to power. Furthermore, the additional wet biomass (38) required to provide the distillation heat (23) is no longer necessary for this bioethanol production. Thus, power (4) can be generated from the additional wet biomass by using a self-heat recuperative drying process and biomass gasification, as shown in Fig. 9. As a result, 33% (= 46/ ) of the energy of the wet biomass is transferred to bioethanol and 4% (= 5/ ) is transferred to power for coproduction. It can be said that this bioethanol production procedure achieves not only energy savings but also reduction of exergy dissipation for the whole process, leading to achievement of optimal co-production. In addition, substituting the azeotropic distillation process by dehydration uses a membrane separation. All of the self-heat recuperative processes and biomass gasification are applied to produce this energy. The energy required can be decreased to 4 as power, where the same assumptions as used for the results described above are used in the calculation, such that power generation efficiency from dry biomass is 25% and 75% of the energy required for the membrane separation process is provided by electricity. This value of power is the same as the energy required by applying self-heat recuperative processes to the distillation and dehydration processes. Although the energy required by membrane separation process is smaller than that of azeotropic distillation in the conventional processes, it becomes equal after applying the self-heat recuperative processes. 4 heat wet biomass 100 chemical reaction distillation 46 ethanol 5 power 5 waste heat 50 wet residue 3 power 20 1 waste heat power 28 exhausted steam Fig. 8. Energy balance for bioethanol production with self-heat recuperation

14 330 Biofuel's Engineering Process Technology 4 heat wet biomass 100 chemical reaction distillation 46 ethanol 5 power 5 waste heat 20 waste heat 50 wet residue 3 power 1 power 28 exhausted steam wet biomass 38 4 power 34 exhausted steam Fig. 9. Total energy balance for bioethanol production with self-heat recuperation 6. Conclusion In this chapter, a newly developed self-heat recuperation technology is introduced and the feasibility of co-production of bioethanol and power by integration of self-heat recuperative processes and biomass gasification for power generation is examined based on energy balances. From analysis of the energy balance for the conventional bioethanol production processes, a large amount of energy is consumed for separation of water (distillation and drying) so that the operational costs for bioethanol production are high, limiting the potential contribution of bioethanol to society. However, by incorporating self-heat recuperative processes for distillation, azeotropic distillation and drying, not only are the energy requirements reduced dramatically due to heat circulation in the processes, but also wasted residue can be utilized as a power source through biomass gasification. Thus, it is shown that co-production of bioethanol and power is feasible, enabling the economic impact of the bioethanol product. Finally, this system is expected to help the uptake of bioethanol and decrease global CO 2 emissions. 7. References Baker, R.W. (2008). Membrane Technology, Introduction, In: Kirk-Othmer Separation Technology 2nd Ed. Vol. 2, A. Seidel, (Ed.), , John Wiley & Sons, ISBN , NJ, USA

15 Co-production of Bioethanol and Power 331 Bridgwater, A.V. (1995). The technical and economic feasibility of biomass gasfication for generation, Fuel, Vol. 74, No. 5, pp , ISSN Cardona, C.A.; Sanchez, O.J. & Gutierrez, L.F. (2010). Process Synthesis for Fuel Ethanol Production, ISBN , FL, USA Doherty, M.F. & Knapp, J.P. (2008). Distillation, Azeotropic and Extractive, In: Kirk-Othmer Separation Technology 2nd Ed. Vol. 1, A. Seidel, (Ed.), , John Wiley & Sons, ISBN , NJ, USA Fair J.R. (2008). Distillation, In: Kirk-Othmer Separation Technology 2nd Ed. Vol. 1, A. Seidel, (Ed.), , John Wiley & Sons, ISBN , NJ, USA Fushimi, C.; Kansha, Y.; Aziz, M.; Mochidzuki, K.; Kaneko, S.; Tsutsumi, A.; Matsumoto, K.; Yokohama, K.; Kosaka, K.; Kawamoto, N.; Oura, K.; Yamaguchi, Y. & Kinoshita, M. (2011). Novel drying process based on self-heat recuperation technology, Drying Technology, Vol. 29, No. 1, pp , ISSN Hallale, N. (2008). Process Integration technology, In: Kirk-Othmer Separation Technology 2nd Ed. Vol. 2, A. Seidel, (Ed.), , John Wiley & Sons, ISBN , NJ, USA Huang, H.-J.; Ramaswamy, S.; Tschirner, U.W. & Ramarao, B.V. (2008). A review of separation technologies in current and future biorefineries, Separation and Purification Technology, Vol. 62, No. 1, pp.1-21, ISSN: Kansha, Y.; Tsuru, N.; Sato, K.; Fushimi, C. & Tsutsumi, A. (2009). Self-heat recuperation technology for energy saving in chemical processes, Industrial and Engineering Chemistry Research, Vol. 48, No. 16, pp , ISSN Kansha, Y.; Tsuru, N.; Fushimi, C.; Shimogawara, K. & Tsutsumi, A. (2010a). An innovative modularity of heat circulation for fractional distillation, Chemical Engineering Science, Vol. 65, No.1, pp , ISSN Kansha, Y.; Tsuru, N.; Fushimi, C. & Tsutsumi, A. (2010b). Integrated process module for distillation processes based on self-heat recuperation technology, Journal of Chemical Engineering of Japan, Vol. 43, No. 6, pp , ISSN Kansha, Y.; Tsuru, N.; Fushimi, C. & Tsutsumi, A. (2010c). New design methodology based on self-heat recuperation for production by azeotropic distillation, Energy & Fuels, Vol. 24, No. 11, pp , ISSN Kansha, Y.; Kishimoto, A.; Nakagawa, T. & Tsutsumi, A (2011). A novel cryogenic air separation process based on self-heat recuperation, Separation and Purification Technology, Vol. 77, No. 3, pp , ISSN Kemp, I.C. (2007). Pinch Analysis and Process Integration A User Guide on Process Integration for the Efficient Use of Energy 2nd Ed., Elsevier, ISBN , Oxford, UK Matsuda, K.; Kawazuishi, K.; Hirochi, Y.; Sato, R.; Kansha, Y.; Fushimi, C.; Shikatani, Y.; Kunikiyo, H. & Tsutsumi, A. (2010). Advanced energy saving in the reaction section of the hydro-desulfurization process with self-heat recuperation technology, Applied Thermal Engineering, Vol. 30, No. 16, pp , ISSN McCormick, P.Y. & Mujumdar, A.S. (2008). Drying, In: Kirk-Othmer Separation Technology 2nd Ed. Vol. 1, A. Seidel, (Ed.), , John Wiley & Sons, ISBN , NJ, USA Modla, G. & Lang P. (2008). Feasibility of new pressure swing batch distillation methods, Chemical Engineering Science, Vol. 63, No. 11, pp , ISSN Mousdale, D.M. (2010). Introduction to Biofules, CRC Press, ISBN , FL, USA Wynn, N.P. (2008). Pervaporation, In: Kirk-Othmer Separation Technology 2nd Ed. Vol. 2, A. Seidel, (Ed.), , John Wiley & Sons, ISBN , NJ, USA

16 332 Biofuel's Engineering Process Technology Zamboni, A.; Shah, N. & Bezzo, F. (2009a). Spatially Explicit Static Model for the Strategic Design of Future Bioethanol Production Systems. 1. Cost Minimization, Energy & Fuels, Vol. 23, No. 10, pp , ISSN Zamboni, A.; Shah, N. & Bezzo, F. (2009b). Spatially Explicit Static Model for the Strategic Design of Future Bioethanol Production Systems. 2. Multi-Objective Environmental Optimization, Energy & Fuels, Vol. 23, No. 10, pp , ISSN

Thermal Desalination Process Based on Self-Heat Recuperation

Thermal Desalination Process Based on Self-Heat Recuperation A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 29, 2012 Guest Editors: Petar Sabev Varbanov, Hon Loong Lam, Jiří Jaromír Klemeš Copyright 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-20-4; ISSN

More information

Energy Saving Bioethanol Distillation Process with Self-heat Recuperation Technology

Energy Saving Bioethanol Distillation Process with Self-heat Recuperation Technology Journal of the Japan Petroleum Institute, 58, (3), 135-140 (2015) 135 [Review Paper] Energy Saving Bioethanol Distillation Process with Self-heat Recuperation Technology Takafumi KIUCHI 1), Masayoshi YOSHIDA

More information

Chapter 2 Reaction Section

Chapter 2 Reaction Section Chapter 2 Reaction Section Abstract The naphtha hydrodesulfurization (HDS) process in the refinery has a reaction section which is a heating and cooling thermal process consisting of a feed-effluent heat

More information

Efficient Power Generation from Low Temperature Heat Source

Efficient Power Generation from Low Temperature Heat Source 1519 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 56, 2017 Guest Editors: Jiří Jaromír Klemeš, Peng Yen Liew, Wai Shin Ho, Jeng Shiun Lim Copyright 2017, AIDIC Servizi S.r.l., ISBN 978-88-95608-47-1;

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation technology

Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation technology Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (14 ) 131 136 The 6 th International Conference on Applied Energy ICAE14 Advanced energy saving in the evaporation system of ammonium

More information

Energy-Efficient Co-production of Hydrogen and Power from Brown Coal Employing Direct Chemical Looping

Energy-Efficient Co-production of Hydrogen and Power from Brown Coal Employing Direct Chemical Looping 721 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 52, 2016 Guest Editors: Petar Sabev Varbanov, Peng-Yen Liew, Jun-Yow Yong, Jiří Jaromír Klemeš, Hon Loong Lam Copyright 2016, AIDIC Servizi S.r.l.,

More information

A Novel Thermal Desalination Process Using Fluidized Bed

A Novel Thermal Desalination Process Using Fluidized Bed 181 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

HEAT INTEGRATION OF FERMENTATION AND RECOVERY STEPS FOR FUEL ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS R. Grisales 1, C.A.

HEAT INTEGRATION OF FERMENTATION AND RECOVERY STEPS FOR FUEL ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS R. Grisales 1, C.A. HEAT INTEGRATION OF FERMENTATION AND RECOVERY STEPS FOR FUEL ETHANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS R. Grisales 1, C.A. Cardona 1 *, O.J. Sánchez 1,2, Gutiérrez L.F. 1 1 Department of Chemical

More information

Combined Heat and Power

Combined Heat and Power Lecture 12 Combined Heat and Power Combustion Turbines and Co-generation Combustion Turbines and Combined Heat and Power (CHP) Systems See B. K. Hodge, Chapter 5 and Chapter 11. ISBN: 978-0-470-14250-9

More information

Ethanol from lignocellulosic biomass: a comparison between conversion technologies

Ethanol from lignocellulosic biomass: a comparison between conversion technologies 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 Ethanol from lignocellulosic biomass: a comparison between

More information

Module 2: Solid Fossil Fuel (Coal) Lecture 12: Combustion of coal and coke making

Module 2: Solid Fossil Fuel (Coal) Lecture 12: Combustion of coal and coke making 1 P age Module 2: Solid Fossil Fuel (Coal) Lecture 12: Combustion of coal and coke making 2 P age Keywords: Coal tar, distillation, caustic washing, deoiling 2.4 Combustion of coal and coke making 2.4.3

More information

Vapor and Combined Power Cycles

Vapor and Combined Power Cycles 9 CHAPTER Vapor and Combined Power Cycles 9-1 The Simple Ideal Rankine Cycle The 9-2 Rankine Cycle: Actual Vapor Power Deviation and Pump and Turbine Irreversibilities (a) Deviation of actual vapor power

More information

Active Magnetic Regenerative Heat Circulator for Energy Saving in Thermal Process

Active Magnetic Regenerative Heat Circulator for Energy Saving in Thermal Process A publication o CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seerlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi S.r.l.,

More information

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author

THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES. Finland *corresponding author THE CONCEPT OF INTEGRATED CRYOGENIC ENERGY STORAGE FOR LARGE SCALE ELECTRICITY GRID SERVICES Sakari Kaijaluoto 1, Markus Hurskainen 1,* and Pasi Vainikka 2 1 VTT Technical Research Centre of Finland, Koivurannantie

More information

Toward Sustainable Agricultural: Integrated System of Rice Processing and Electricity Generation

Toward Sustainable Agricultural: Integrated System of Rice Processing and Electricity Generation 1669 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 70, 2018 Guest Editors: Timothy G. Walmsley, Petar S. Varbanov, Rongxin Su, Jiří J. Klemeš Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-67-9;

More information

Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation technical challenges for future generations

Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation technical challenges for future generations Open Access Journal Journal of Power Technologies 92 (2) (2012) 90 100 journal homepage:papers.itc.pw.edu.pl Advanced integrated gasification combined cycle (A-IGCC) by exergy recuperation technical challenges

More information

Optimization and improvement of bio-ethanol production processes

Optimization and improvement of bio-ethanol production processes Optimization and improvement of bio-ethanol production processes Dr. Kang Qian Prof. Jan Baeyens Date: 17/03/2017 Contents 1. Characteristics and worldwide potential 2. The uses of bio-ethanol 3. Bio-ethanol

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Biomass Applications

Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Biomass Applications Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Biomass Applications Copyright 2009, 2010, Kalex LLC. Kalex LLC's Kalina Cycle for Biomass Applications

More information

ENERGY SAVING IN CRYOGENIC AIR SEPARATION PROCESS APPLYING SELF HEAT RECUPERATION TECHNOLOGY

ENERGY SAVING IN CRYOGENIC AIR SEPARATION PROCESS APPLYING SELF HEAT RECUPERATION TECHNOLOGY Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 05 (ICMERE05) 6 9 November, 05, Chittagong, Bangladesh ICMERE05-PI-03 ENERGY SAVING IN CRYOGENIC AIR SEPARATION

More information

Power Generation from Low Temperature Waste Heat Using Magnetic Phase Transition

Power Generation from Low Temperature Waste Heat Using Magnetic Phase Transition 43 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 70, 2018 Guest Editors: Timothy G. Walmsley, Petar S. Varbanov, Rongxin Su, Jiří J. Klemeš Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-67-9;

More information

Cryogenic Carbon Capture

Cryogenic Carbon Capture Cryogenic Carbon Capture Sustainable Energy Solutions Sustainable Energy Solutions Sustainable Energy Solutions (SES) was founded in 2008 in response to a growing need for solutions to sustainability problems

More information

Available online at Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

Available online at   Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10 Available online at www.sciencedirect.com Energy Procedia 4 (2011) 1260 1267 Energy Procedia 00 (2010) 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-10 Low-temperature

More information

A Novel Synergistic 4-column Methanol Distillation Process

A Novel Synergistic 4-column Methanol Distillation Process 937 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

ECONOMIC OPTIMIZATION OF AN ETHYLBENZENE PROCESS. by Erin Leigh Dyer. Oxford May 2015

ECONOMIC OPTIMIZATION OF AN ETHYLBENZENE PROCESS. by Erin Leigh Dyer. Oxford May 2015 ECONOMIC OPTIMIZATION OF AN ETHYLBENZENE PROCESS by Erin Leigh Dyer A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell

More information

Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids

Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids Jayaram Bhat 1, G.L. Arunkumar 2 Deapartment of mechanical engineering, NMIT Bangalore Abstract ORC (Organic Rankine Cycle)

More information

Example SPC-2: Effect of Increasing Column P on a C3 splitter

Example SPC-2: Effect of Increasing Column P on a C3 splitter Example SPC-2: Effect of Increasing Column P on a C3 splitter Consider the separation of a mixture of 50 mol/hr of propane C 3 H 8 (1) and 50 mol/hr propene, C 3 H 6 (2) at a pressure of 1.1 bar and a

More information

Chapter 1 STEAM CYCLES

Chapter 1 STEAM CYCLES Chapter 1 STEAM CYCLES Assoc. Prof. Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan 1 Chapter 1 STEAM CYCLES 1 Chapter Objectives To carry

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

The Separation and Liquefaction of Oxygenated CBM Yang Kejian and Zhang Wu

The Separation and Liquefaction of Oxygenated CBM Yang Kejian and Zhang Wu The Separation and Liquefaction of Oxygenated CBM Yang Kejian and Zhang Wu Abstract CBM, or Coal Bed Methane, with air released during coal mining production has been a long time issue. It has not been

More information

TEP Energy Utilization and Process Integration in Industrial Plants, or for short: Energy and Process

TEP Energy Utilization and Process Integration in Industrial Plants, or for short: Energy and Process Department of Energy and Process Engineering - Energy Utilization and in Industrial Plants, or for short: Energy and Process The Objective is to convey Systems Thinking and Systematic Methods for: Analysis

More information

Energy Procedia

Energy Procedia Available online at www.sciencedirect.com Energy Procedia 4 (2011) 1066 1073 Energy Procedia 00 (2010) 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-10 Development

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission

A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission Proceedings of the International Gas urbine Congress 2003 okyo November 2-7, 2003 IGC2003okyo S-087 A Novel LNG and Oxygen Stoichiometric Combustion Cycle without CO 2 Emission Wei WANG, Ruixian CAI, Na

More information

CONTROL STRTEGIES FOR FLEXIBLE OPERATION OF POWER PLANT INTEGRATED WITH CO2 CAPTURE PLANT

CONTROL STRTEGIES FOR FLEXIBLE OPERATION OF POWER PLANT INTEGRATED WITH CO2 CAPTURE PLANT CONTROL STRTEGIES FOR FLEXIBLE OPERATION OF POWER PLANT INTEGRATED WITH CO2 CAPTURE PLANT Yu-Jeng Lin a, Chun-Cheng Chang a, David Shan-Hill Wong a Shi-Shang Jang a * and Jenq-Jang Ou b a National Tsing-Hua

More information

Efficient Integration of Biofuel and Chemical Production Processes with Pulp Mills and Energy Production

Efficient Integration of Biofuel and Chemical Production Processes with Pulp Mills and Energy Production Efficient Integration of Biofuel and Chemical Production Processes with Pulp Mills and Energy Production Kristian Melin*, Markku Hurme and Kari Parviainen Aalto University School of Chemical Technology

More information

GATE Solution 2000 to 2015 GATE SOLUTION to Detailed solution of each question CHEMICAL ENGINEERING GATE SOLUTION

GATE Solution 2000 to 2015 GATE SOLUTION to Detailed solution of each question CHEMICAL ENGINEERING GATE SOLUTION SAMPLE STUDY MATERIAL GATE SOLUTION 000 to 015 Detailed solution of each question CHEMICAL ENGINEERING GATE SOLUTION Subject-wise reducing year CONTENTS GATE Solution 1. Process Calculations 1-19. Thermodynamics

More information

1. Process Description:

1. Process Description: 1. Process Description: The coal is converted to Raw Syngas in the Gasification Section. The Raw Syngas produced out of the Gasifier would be shifted (water gas shift) to adjust required H2/CO ratio and

More information

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions.

Enthalpy Calculations. Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Calculations Change in enthalpy can occur because of change in temperature, change in phase, or mixing of solutions and reactions. Enthalpy Change as a Result of Temperature Sensible heat is the

More information

*Revised Manuscript with Changes Marked

*Revised Manuscript with Changes Marked *Revised Manuscript with Changes Marked 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Process Analysis of Pressurized Oxy-Coal Power Cycle

More information

Investigation of Heat Exchanger Network Flexibility of Distillation Unit for Processing Different Types of Crude Oil

Investigation of Heat Exchanger Network Flexibility of Distillation Unit for Processing Different Types of Crude Oil A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

Industrial Waste Heat Recovery

Industrial Waste Heat Recovery Industrial Waste Heat Recovery Industrial Energy RoundTable Kathey Ferland Project Manager Texas Industries of the Future kferland@mail.utexas.edu Riyaz Papar, PE, CEM Director, Energy Assets & Optimization

More information

NEW RECYCLE PROCESS SCHEME FOR HIGH ETHANE RECOVERY NEW PROCESS SCHEME FOR HIGH NGL RECOVERY INTRODUCTION. Abstract PROCESS FUNDAMENTALS

NEW RECYCLE PROCESS SCHEME FOR HIGH ETHANE RECOVERY NEW PROCESS SCHEME FOR HIGH NGL RECOVERY INTRODUCTION. Abstract PROCESS FUNDAMENTALS Author: Jorge Foglietta, ABB Randall Corporation Tel (713) 821-4313, Fax (713) 821-3544 Mailing Address: Randall Division ABB Lummus Global Inc. P.O. Box 420087 Houston, Texas 77242-0087 NEW PROCESS SCHEME

More information

pinch 70 C 70 C 4 We want to cool both the hot streams to the pinch temperature. The next step is to find the duty for the two heat exchangers:

pinch 70 C 70 C 4 We want to cool both the hot streams to the pinch temperature. The next step is to find the duty for the two heat exchangers: Ene-47.5130 Process Integration (3 ECTS credits) P Espoo 2016 EXERCISE 2 SOLUTIONS 1 MER heat exchanger network First we draw the stream-grid and calculate the enthalpy rate change, Q, above and below

More information

ProSimPlus Library (Standard version + rate base option)

ProSimPlus Library (Standard version + rate base option) ProSimPlus Library (Standard version + rate base option) Contents UNIT OPERATIONS... 5 Absorber... 5 Absorber with reboiler... 5 Rigorous two-phase distillation (L-V) with partial condenser and decanter...

More information

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT Harendra Singh 1, Prashant Kumar Tayal 2 NeeruGoyal 3, Pankaj Mohan

More information

Rankine cycle. Contents. Description

Rankine cycle. Contents. Description Page 1 of 7 Rankine cycle From Wikipedia, the free encyclopedia The Rankine cycle is a model that is used to predict the performance of steam turbine systems. The Rankine cycle is an idealized thermodynamic

More information

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India

Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India The 6 th International Symposium-Supercritical CO2 Power Cycles, March 27-29, 2018, Pittsburgh, PA Potential of Allam cycle with natural gas to reduce carbon dioxide emission in India Amit Mulchand Nabros

More information

GTC TECHNOLOGY. GT-UWC SM How a Uniting Wall Column Maximizes LPG Recovery. Engineered to Innovate WHITE PAPER

GTC TECHNOLOGY. GT-UWC SM How a Uniting Wall Column Maximizes LPG Recovery. Engineered to Innovate WHITE PAPER GTC TECHNOLOGY GT-UWC SM How a Uniting Wall Column Maximizes LPG Recovery WHITE PAPER Engineered to Innovate Maximizing LPG Recovery from Fuel Using a Uniting Wall Column Refiners have a challenge to recover

More information

Overview of Distillation Techniques and Process in Recovery and Reuse of Volatile Liquids

Overview of Distillation Techniques and Process in Recovery and Reuse of Volatile Liquids Overview of Distillation Techniques and Process in Recovery and Reuse of Volatile Liquids Syed Abdul Jilani Dept. of Chemical Engineering, Vignan University Abstract: Distillation is a process in which

More information

Energy Balances and Numerical Methods Design Project. Production of Cumene

Energy Balances and Numerical Methods Design Project. Production of Cumene Process Description Energy Balances and Numerical Methods Design Project Production of Cumene Figure 1 is a preliminary process flow diagram (PFD) for the cumene production process. The raw materials are

More information

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland

Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Modelling of CO 2 capture using Aspen Plus for EDF power plant, Krakow, Poland Vipul Gupta vipul.gupta@tecnico.ulisboa.pt Instituto Superior Técnico,Lisboa, Portugal October 2016 Abstract This work describes

More information

Technical Description Package Micro Auto Gasification System (MAGS )

Technical Description Package Micro Auto Gasification System (MAGS ) 1 Technical Description Package Micro Auto Gasification System (MAGS ) written consent of Terragon Environmental Technologies Inc. is forbidden. Date 2 1. TECHNOLOGY DESCRIPTION 1.1. Process Overview Terragon

More information

HETEROGENEOUS AZEOTROPIC DEHYDRATION OF ETHANOL TO OBTAIN A CYCLOHEXANE-ETHANOL MIXTURE

HETEROGENEOUS AZEOTROPIC DEHYDRATION OF ETHANOL TO OBTAIN A CYCLOHEXANE-ETHANOL MIXTURE HETEROGENEOUS AZEOTROPIC DEHYDRATION OF ETHANOL TO OBTAIN A CYCLOHEXANE-ETHANOL MIXTURE Chemical Engineering Department University of Alicante (Spain) e-mail: vgomis@ua.es Vicente Gomis Mª Dolores Saquete

More information

Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Ocean Thermal Energy Conversion Applications

Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Ocean Thermal Energy Conversion Applications Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Ocean Thermal Energy Conversion Applications Copyright 2011, Kalex LLC. Introduction: Ocean Thermal Energy

More information

Lecture No.1. Vapour Power Cycles

Lecture No.1. Vapour Power Cycles Lecture No.1 1.1 INTRODUCTION Thermodynamic cycles can be primarily classified based on their utility such as for power generation, refrigeration etc. Based on this thermodynamic cycles can be categorized

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

Rankine cycle. Contents. Description

Rankine cycle. Contents. Description 페이지 1 / 6 Rankine cycle From Wikipedia, the free encyclopedia The Rankine cycle is a cycle that converts heat into work. The heat is supplied externally to a closed loop, which usually uses water. This

More information

Waste Heat to Power Economic Tradeoffs and Considerations

Waste Heat to Power Economic Tradeoffs and Considerations Waste Heat to Power Economic Tradeoffs and Considerations By Dr. Arvind C. Thekdi E3M, Inc. Presented at 3 rd Annual Waste Heat to Power Workshop 2007 September 25, 2007 Houston, TX. Waste Heat Sources

More information

Evaluating the Potential of a Process Site for Waste Heat Recovery

Evaluating the Potential of a Process Site for Waste Heat Recovery 1069 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

Proposition of alternative configurations of the distillation columns for bioethanol production using vacuum extractive fermentation process

Proposition of alternative configurations of the distillation columns for bioethanol production using vacuum extractive fermentation process Proposition of alternative configurations of the distillation columns for bioethanol production using vacuum extractive fermentation process Tassia L. Junqueira 1, Marina O. S. Dias 1, Rubens Maciel Filho

More information

Raymond A. Adomaitis. March 7, 2012

Raymond A. Adomaitis. March 7, 2012 Raymond A. Adomaitis March 7, 2012 To be covered: Class syllabus (http://www.isr.umd.edu/ adomaiti/ench446), grading Team selection (4 members per team) Initial project description Approximate schedule

More information

Nitrogen production plants HPN

Nitrogen production plants HPN INDEX Nitrogen production plants HPN 1. Introduction 1.1. Membrane permeation 1.2. PSA 2. HPN (High Pressure Nitrogen) 3. HPN plant advantages 4. Choice of the process 5. Customer HPN technical form generator

More information

Topsøe Methanol Technology for Coal Based Plants

Topsøe Methanol Technology for Coal Based Plants Topsøe Methanol Technology for Coal Based Plants By Carsten Sejrbo Nielsen Topsøe Methanol Technology for Coal Based Plants 2/7 Fig 1 Introduction Due to the high cost of natural gas and oil, the more

More information

THE EFFECTS OF THE M-CYCLE ON THE PERFORMANCE OF A GAS TURBINE

THE EFFECTS OF THE M-CYCLE ON THE PERFORMANCE OF A GAS TURBINE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16-18 July 2012 Malta THE EFFECTS OF THE M-CYCLE ON THE PERFORMANCE OF A GAS TURBINE Peter E. Jenkins*, University

More information

Quiz Questions. For Process Integration. Fill in the blanks type Questions

Quiz Questions. For Process Integration. Fill in the blanks type Questions Quiz Questions For Process Integration Fill in the blanks type Questions 1. is the key parameter used in the Pinch Technology. ( T min ) 2. In onion diagram pinch technology in applied at. (the boundary

More information

San Joaquin Valley Unified Air Pollution Control District Best Performance Standard (BPS) x.x.xx

San Joaquin Valley Unified Air Pollution Control District Best Performance Standard (BPS) x.x.xx San Joaquin Valley Unified Air Pollution Control District Best Performance Standard (BPS) x.x.xx Class Category Steam Generators New Industrial Steam Generators Fired Exclusively on Natural Gas or LPG

More information

Heat Integration Improvement for Benzene Hydrocarbons Extraction from Coke-Oven Gas

Heat Integration Improvement for Benzene Hydrocarbons Extraction from Coke-Oven Gas Heat Integration Improvement for Benzene Hydrocarbons Extraction from Coke-Oven Gas Leonid Tovazhnyansky, Petro Kapustenko, Leonid Ulyev, Stanislav Boldyryev * National Technical University "Kharkiv Polytechnic

More information

Chapter page 1

Chapter page 1 Chapter 04-04 page 1 04-04: Odd biomass fractions Properties and processes Introduction There are mainly five different processes to choose from to produce useful energy from any type of biomass. Three

More information

Available online at Energy Procedia 1 (2009) (2008) GHGT-9. Sandra Heimel a *, Cliff Lowe a

Available online at   Energy Procedia 1 (2009) (2008) GHGT-9. Sandra Heimel a *, Cliff Lowe a Available online at www.sciencedirect.com Energy Procedia 1 (2009) (2008) 4039 4046 000 000 Energy Procedia www.elsevier.com/locate/procedia www.elsevier.com/locate/xxx GHGT-9 Technology Comparison of

More information

PI Heat and Thermodynamics - Course PI 25 CRITERION TEST. of each of the following a. it

PI Heat and Thermodynamics - Course PI 25 CRITERION TEST. of each of the following a. it Heat and Thermodynamics - Course PI 25 CRITERION TESTS PI 25-1 - 1. Define: heat temperature (c) enthalpy 2. State the applies to meaning water: of each of the following a. it saturation temperature subcooled

More information

Table of Contents. iii. vi Tables. Figures. viii Foreword. ix Acknowledgments

Table of Contents. iii. vi Tables. Figures. viii Foreword. ix Acknowledgments Figures vi Tables viii Foreword ix Acknowledgments xi About the authors xiii Chapter 1. Fundamentals 1 Fluid Properties 1 Temperature 2 Pressure 3 Gravity and Miscibility 3 Solubility 4 The Ideal Gas Law

More information

Problems in chapter 9 CB Thermodynamics

Problems in chapter 9 CB Thermodynamics Problems in chapter 9 CB Thermodynamics 9-82 Air is used as the working fluid in a simple ideal Brayton cycle that has a pressure ratio of 12, a compressor inlet temperature of 300 K, and a turbine inlet

More information

PILLER INDUSTRIAL HEAT PUMP WE ARE WORKING ON THERMAL ENERGY

PILLER INDUSTRIAL HEAT PUMP WE ARE WORKING ON THERMAL ENERGY PILLER INDUSTRIAL HEAT PUMP WE ARE WORKING ON THERMAL ENERGY CONTENTS Heat recovery in the process industry: Energy efficiency as a success factor 3 PILLER Industrial Heat Pump vapor compression or steam

More information

Hydrogen oxygen steam generator integrating with renewable energy resource for electricity generation

Hydrogen oxygen steam generator integrating with renewable energy resource for electricity generation Available online at www.sciencedirect.com Energy Procedia 29 (2012 ) 12 20 World Hydrogen Energy Conference 2012 Hydrogen oxygen steam generator integrating with renewable energy resource for electricity

More information

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types INL/EXT-07-13575 Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types M. G. McKellar J. E. O Brien J. S. Herring September 2007 The

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas

Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas Modified Reverse-Brayton Cycles for Efficient Liquefaction of Natural Gas H.M. Chang 1, J.H. Park 1, K.S. Cha 2, S. Lee 2 and K.H. Choe 2 1 Hong Ik University, Seoul, Korea 121-791 2 Korea Gas Corporation,

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

Integrated Nitrogen Production and Conversion of Hydrogen to Ammonia

Integrated Nitrogen Production and Conversion of Hydrogen to Ammonia 571 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 70, 2018 Guest Editors: Timothy G. Walmsley, Petar S. Varbanov, Rongxin Su, Jiří J. Klemeš Copyright 2018, AIDIC Servizi S.r.l. ISBN 978-88-95608-67-9;

More information

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate

GT-LPG Max SM. Maximizing LPG Recovery from Fuel Gas Using a Dividing Wall Column. Engineered to Innovate GTC Technology White Paper GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column Engineered to Innovate GT-LPG Max SM Maximizing LPG Recovery from Fuel Using a Dividing Wall Column

More information

MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT

MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT MODELLING THE LOW-TAR BIG GASIFICATION CONCEPT Lars Andersen, Brian Elmegaard, Bjørn Qvale, Ulrik Henriksen Technical University of Denmark Jens Dall Bentzen 1 and Reto Hummelshøj COWI A/S ABSTRACT A low-tar,

More information

Item Hydrogen Gas Plant

Item Hydrogen Gas Plant Item 6530. Hydrogen Gas Plant Hydro-Chem Hydrogen Generating Plant 90,000 scfh @ 200 psig. Purity 99.99% Hydrogen generating plant engineered by Hydro-Chem built in 1980. Design capacity is 90,000 scfh

More information

Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Cement Kiln Waste Heat Applications

Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Cement Kiln Waste Heat Applications Superior Efficiency Reduced Costs Viable Alternative Energy Kalex Kalina Cycle Power Systems For Cement Kiln Waste Heat Applications Copyright 2010, Kalex LLC. Kalex LLC's Kalina Cycle for Cement Kiln

More information

Energy Balances and Numerical Methods Design Project. Production of Maleic Anhydride

Energy Balances and Numerical Methods Design Project. Production of Maleic Anhydride Energy Balances and Numerical Methods Design Project Production of Maleic Anhydride Maleic anhydride is a chemical intermediate that is used to produce resins, surface coatings, lubricant additives, and

More information

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing

Chapter 13. Thermal Conversion Technologies. Fundamentals of Thermal Processing Chapter 13 Thermal Conversion Technologies Fundamentals of Thermal Processing Thermal processing is the conversion of solid wastes into gaseous, liquid and solid conversion products with the concurrent

More information

THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2

THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2 THE ASSESSMENT OF A WATER-CYCLE FOR CAPTURE OF CO2 Report Number PH3/4 November 1998 This document has been prepared for the Executive Committee of the Programme. It is not a publication of the Operating

More information

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 899 903 The 6 th International Conference on Applied Energy ICAE2014 A novel CO 2 -capturing natural gas combined cycle

More information

Design Features of Combined Cycle Systems

Design Features of Combined Cycle Systems Design Features of Combined Cycle Systems 1.0 Introduction As we have discussed in class, one of the largest irreversibilities associated with simple gas turbine cycles is the high temperature exhaust.

More information

Steam balance optimisation strategies

Steam balance optimisation strategies Steam balance optimisation strategies Publicado en Chemical Engineering, Noviembre 2002 Background Optimising a steam balance in a plant with several steam mains pressures is not always a simple intuitive

More information

Keywords: Eutecic freeze crystallization, Solid-liquid equilibrium, Recovery of acetic acid, Heat of sublimation.

Keywords: Eutecic freeze crystallization, Solid-liquid equilibrium, Recovery of acetic acid, Heat of sublimation. IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Removal of Organic Acids from Effluent via Freeze Crystallization Tarak C. Padhiyar *1, Prof. Suchen B. Thakore 2 *1,2 L.D. College

More information

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis

Heat Integration of an Oxy-Combustion Process for Coal- Fired Power Plants with CO 2 Capture by Pinch Analysis CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021031 181

More information

NLP optimization of a methanol plant by using H 2 co-product in fuel cells

NLP optimization of a methanol plant by using H 2 co-product in fuel cells 17 th European Symposium on Computer Aided Process Engineering ESCAPE17 V. Plesu and P.S. Agachi (Editors) 2007 Elsevier B.V. All rights reserved. 1 NLP optimization of a methanol plant by using H 2 co-product

More information

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS Muammer Alus, Milan V. Petrovic University of Belgrade-Faculty of Mechanical Engineering, Laboratory of Thermal

More information

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process Muhammad A. Al-Arfaj * Chemical Engineering Department King Fahd University of Petroleum and Minerals, Dhahran,

More information

Module 5: Process Integration of Heat and Mass Chapter 10. David R. Shonnard Department of Chemical Engineering Michigan Technological University

Module 5: Process Integration of Heat and Mass Chapter 10. David R. Shonnard Department of Chemical Engineering Michigan Technological University Module 5: Process Integration of Heat and Mass Chapter 10 David R. Shonnard Department of Chemical Engineering Michigan Technological University 1 Module 5: Outline The environmental performance of a process

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information