Problem statement, Standards, Data and Technology

Size: px
Start display at page:

Download "Problem statement, Standards, Data and Technology"

Transcription

1 1 Lesson Plan Title: Wind Turbine Design Challenge Teacher Name: Hwa Tsu Subject: IB Physics SL Grade Level: 11 Problem statement, Standards, Data and Technology Asking questions and defining problems Establish driving question for the lesson plan or define problem students will be solving. Attach any documents used to establish the driving question or define the problem. School: North Central High School Can students design and build the most energy efficient wind turbine? (see project document at the end) Incorporating Next Generation Science Standards, Common Core, or State Standards State the standards that will be covered during this lesson plan. Include all standards which may apply (NGSS, Common Core, or State Standards). NGSS HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are know. NGSS HS-PS3-3: Design, build, refine a device that works within given constraints to convert one form of energy into another form of energy.

2 Obtaining and evaluating information How will students be obtaining and/or collecting the information? STEM Energy Lesson Plan Elements Inclusion To accomplish this task, students will need to: Research and identify the factors which influence wind turbine efficiency. Build and test their wind turbine design. Use the wind generator equation to calculate the maximum theoretical power output for the turbine. Measure the actual power output for their turbine to calculate turbine efficiency. Post efficiency data on a Canvas discussion board and reflect on their design. Create a Sankey diagram to model possible energy losses in their system. 2 Analyzing and interpreting data How will students be analyzing and interpreting the collected data? Students will collect data on the following: wind speed, diameter of their turbine blades, and the measured power output of their wind turbine. Students will use this data to calculate the maximum theoretic power output using the wind generator equation (Power = ½ ρav 3 ). Students will calculate and post on Canvas their turbine efficiency using their actual power output and their theoretical maximum output. Using their turbine efficiency, students will create a Sankey diagram explaining possible sources of energy loss in their turbine. Use of technology and software Indicate the type of technology and software students will be using in order to implement this lesson plan. Prior to starting their wind turbine design and build, students will watch the following videos: Wind Turbine Introduction ( Wind Generator Equation ( Sankey Diagrams ( Students will use a digital anemometer to measure the wind speed at their turbine, a ruler to measure wind blade diameter, a multimeter to measure and calculate the power output (product of voltage and current) from the wind turbine. Students will post efficiency data and reflections on their design on a Canvas discussion board.

3 Collaboration, critical thinking and communication Collaboration Indicate how students will be collaborating during the implementation of the lesson plan Students will work in pairs to collaborate on a design for their wind turbines. Students will also collaborate in pairs for the construction, calculation, and analysis of their design and data. Students will collaborate with their colleagues by posting efficiency data and reflections on an online Canvas discussion board. 3 Critical Thinking How will the students evaluate the question or defined problem to reach an objective conclusion? How will the students being using the learned content and collected data to be able to critically think about the established question and/or problem on this lesson plan? Communication How will the students communicate their findings and conclusion regarding the established question and/or problem? References Students will research wind turbine designs. Students must construct their wind turbines to maximize output efficiency as determined by the maximum theoretical efficiency. Students will reflect on their designs and evaluate potential sources of energy loss from their designs. Efficiencies of the different turbine designs will be posted on a Canvas discussion board. Students will be asked to reflect on their turbine designs and provide feedback for their peers on the Canvas discussion board.

4 Teacher s References Include all references used to develop and implement this lesson plan. STEM Energy Lesson Plan Elements Inclusion Student s References Include all references students will need to complete this lesson plan. Students must cite any sources they used in their wind turbine design. Assessment Plan Assessment Plan How will the students be assessed during and/or at the end of the lesson plan? Include resources that will be used to assess the students for the lesson plan. Students must submit their final calculated efficiency for their design and a reflection on the design process. Specific reflection questions might include: What were the strength and weaknesses of their blade design? What specific improvements would the students do on their next blade and why do they choose those improvements? What would the students do differently if they could redo the activity? The students also need to show their Sankey diagram.

5 5 Resources and Costs Resources Needed List all the resources needed (equipment, facilities, materials or any other resources). Box fan/ wind tunnel Digital anemometer Wind turbine generator Multimeter with leads Ruler Cardboard, card stock, plastic covers, glue, tape, and other blade materials. Costs List the estimated cost of implementing this lesson plan. Include all costs related to equipment, materials and any resource critical to the implementation of the lesson plan. Estimated cost for class (one time purchase): Kidwind Basic Wind Experiment Kit $ Box fan $20-25 Digital Handheld Anemometer $20-25 TOTAL ONE TIME COST: $ for class Repeated supply costs: Cardboard, card stock, dowels, balsa wood, tape, glue, etc. ESTIMATED REPEATED SUPPLY COSTS: $30-50 Implementation Plan Timeline Establish the timeline to implement the lesson plan. Provide an estimate of time and days in order to complete the lesson plan. This design and build will take two class periods. Day 1: Introduce design, background information, and do research. Students are to come to class with a completed or almost completed turbine prototype to test. Day 2: Complete building turbine prototype, test and collect data. Calculate efficiencies and construct Sankey diagrams. Students are to post efficiency data and design reflections on Canvas discussion board.

6 6

7 7 Wind Turbine Design Challenge One souce of renewable energy is to harness the kinetic energy of air particles in wind to spin a turbine and generate electricity. If you were to design a wind turbine, what factors do you need to take into consideration? Specifically with the design of the wind turbine, what factors might influence how efficient your wind turbine is? To help us better understand wind as an energy resource, your task is as follows: 1. You should research and identify the factors which influence wind turbine efficiency. 2. You must to build and test their wind turbine design. 3. You should to use the wind generator equation to calculate the maximum theoretical power output for the turbine. 4. You will experimentally measure the actual power output for their turbine to calculate turbine efficiency. 5. You will post efficiency data on a Canvas discussion board and reflect on their design. 6. You will create a Sankey diagram to model possible energy losses in their system.

Designing the Most Energy Efficient. Wind Turbine Blades. Secondary Subjects Physical Science, Social Studies, Technology, Math, Art

Designing the Most Energy Efficient. Wind Turbine Blades. Secondary Subjects Physical Science, Social Studies, Technology, Math, Art Designing the Most Energy Efficient Wind Turbine Blades Lesson Plan By Shay Motalebi Primary Subject Earth Science Secondary Subjects Physical Science, Social Studies, Technology, Math, Art Grade levels

More information

Windmill Activity. The Volcanic Hazards & City Planning Board Game. Description: Using this Lesson: Background: Levels:

Windmill Activity. The Volcanic Hazards & City Planning Board Game. Description: Using this Lesson: Background: Levels: Windmill Activity The Volcanic Hazards & City Planning Board Game Levels: Grades 6-8 Content Areas: Engineering; Physics Lesson Time: 80 Minutes Next Generation Science Standards: MS - ETS 1 - MS - PS

More information

FIGURE L22.1 A long line at a gas station in Maryland as a result of the 1979 oil crisis

FIGURE L22.1 A long line at a gas station in Maryland as a result of the 1979 oil crisis Conservation of Energy and Wind Turbines How Can We Maximize the Amount of Electrical Energy That Will Be Generated by a Wind Turbine Based on the Design of Its Blades? Lab Handout Lab 22. Conservation

More information

Working with Wind Energy

Working with Wind Energy Working with Wind Energy Provided by TryEngineering - Click here to provide feedback on this lesson. Lesson Focus Lesson focuses on how wind energy can be generated on both a large and small scale. Student

More information

Wind Turbine Design Worksheet Answer Key

Wind Turbine Design Worksheet Answer Key Wind Turbine Design Worksheet Answer Key You will be engineering blades for a wind turbine to provide power to a research station on a remote island. You will then test your turbine using a multimeter

More information

Wind Turbine Activity Worksheet

Wind Turbine Activity Worksheet Wind Turbine Activity Worksheet You will be engineering blades for a wind turbine to provide power to a research station on a remote island. You will then test your turbine using a multimeter to see how

More information

Engineering with Renewable Energy: Solar Water Pumping

Engineering with Renewable Energy: Solar Water Pumping Engineering with Renewable Energy: Solar Water Pumping AUTHOR: Jamie Repasky DESCRIPTION: Students will learn that energy from a renewable resource can be converted to electrical energy to do work by engineering

More information

Science and Engineering. Wind Turbine. Real Investigations in. Science and Engineering

Science and Engineering. Wind Turbine. Real Investigations in. Science and Engineering Science and Engineering Real Investigations in Science and Engineering A1 A2 A3 A4 Overview Chart for Investigations Investigation Key Question Summary Learning Goals Vocabulary Wind Power Pages 1-6 Designing

More information

Retrieved )

Retrieved ) Submitted by: Jan E. DeWaters Clarkson University jdewater@clarkson.edu Design of an Energy Conversion System for Air-Flow Power Background: Fossil fuels currently provide about 85% of the energy used

More information

Energy & Power Unit 5, Lesson 1 Explanation

Energy & Power Unit 5, Lesson 1 Explanation Energy & Power 5.1.1 Unit 5, Lesson 1 Explanation The Unit Big Idea The designed world is the product of a design process, which provides ways to turn resources - materials, tools and machines, people,

More information

Windmills. We Don t Create Energy, We Convert Energy! Description. Next Generation Science Standards: Outcomes. Guiding Question

Windmills. We Don t Create Energy, We Convert Energy! Description. Next Generation Science Standards: Outcomes. Guiding Question We Don t Create Energy, We Convert Energy! Levels: Grades 4-12 Content Areas: Engineering; Physics, Energy Lesson Time: 90 Minutes Next Generation Science Standards: Performance Expectations 3-5-ETS1,

More information

BLOWIN' IN THE WIND (2 Hours)

BLOWIN' IN THE WIND (2 Hours) BLOWIN' IN THE WIND (2 Hours) Addresses ITEEA Difficulty Level: 2 Grade Range: 3-5 OVERVIEW In this activity, students will create their own windmills and test them against the models made by their classmates.

More information

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives.

Activity Guide. MacGyver Windmill Class Pack. Materials for 15 Windmills or Students. Time Required. Grades. Objectives. MacGyver Windmill Class Pack Activity Guide Materials for 15 Windmills or 15 45 Students Grades 5 8, 9 12 (Extension Activity) Concepts Energy and Transformations Forces and Motion Engineering, Art, and

More information

Lesson 5 Energy. OAA Science Lesson 5 52

Lesson 5 Energy. OAA Science Lesson 5 52 Lesson 5 Energy OAA Science Lesson 5 52 Name Date Period Student Lesson 5: Energy Reference Sheet: Energy - is the ability to do work or cause change - can be changed from one form to another - cannot

More information

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes

Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes Wind Energy 101 Focus: This lesson will provide a basic overview of wind energy and wind turbines. Grade Level: 9 th Grade to 12 th Grade Time: 50 minutes 1. Have students brainstorm a list of ways we

More information

Next Generation Science Standards - OneCar

Next Generation Science Standards - OneCar Product Description OneCar NGSS Elementary Middle School High School K-PS2-1 4-PS3-4 MS-PS2-2 MS- PS3-1 MS-PS3-2 MS-PS3-5 HS- PS2-1 HS-PS2-2 HS-PS3-3 K-2-ETS1-1 K-2-ETS1-2 K-2-ETS1-3 3-5-ETS1-1 3-5-ETS1-2

More information

In this activity, students will create their own windmills and test them against the models made by their classmates.

In this activity, students will create their own windmills and test them against the models made by their classmates. Blowin in the Wind (2 HourS) In this activity, students will create their own windmills and test them against the models made by their classmates. Overview Topic: Wind energy Real World Science Topics:

More information

Measuring School Electronics Energy at Work 1

Measuring School Electronics Energy at Work 1 1 GRADE LEVEL 6-12 TIME NEEDED FOR COMPLETION 2 class periods or 1.5-2 hours STANDARDS LA GLEs and NGSS alignments are found in the Appendix starting on page A-1 MATERIALS 6 energy monitoring devices.

More information

Next Generation Science Standards NGSS Science and Engineering Practices: NGSS Cross-cutting Concepts: NGSS Disciplinary Core Ideas:

Next Generation Science Standards NGSS Science and Engineering Practices: NGSS Cross-cutting Concepts: NGSS Disciplinary Core Ideas: FCJJ 37 - Science Kit Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations

More information

Windmill Project: The Windthrill. EF152 Section A

Windmill Project: The Windthrill. EF152 Section A Windmill Project: The Windthrill EF15 Section A1 4-3-09 Team 8: Zach Jacob John Greer Trey Coates Boyd Culver Gage Craig 1 -Overview Our project goal was to create a functioning windmill that could light

More information

Windmill Challenge STEM Module VCS April 24, 2012

Windmill Challenge STEM Module VCS April 24, 2012 Windmill Challenge Teacher Notes Volusia County STEM-Extension Lesson Using the 5E Model Windmill Challenge Objective: Students will use background knowledge of energy to create a windmill and compete

More information

High School Lesson Plan: Photovoltaic Power Potential

High School Lesson Plan: Photovoltaic Power Potential High School Lesson Plan: Photovoltaic Power Potential 1. Introduction A. Author: Michael Cartwright B. Rationale: Physics students should be exposed to all kinds of physics applications. Renewable energy

More information

Page 1. The Flux Capacitor 12/2/09. Joshua Jefferies. Isaak Samsel. Austin Bootin. Brian Plaag. Team A1-5, EF 152 Sec. A1

Page 1. The Flux Capacitor 12/2/09. Joshua Jefferies. Isaak Samsel. Austin Bootin. Brian Plaag. Team A1-5, EF 152 Sec. A1 Page 1 The Flux Capacitor 12/2/09 Joshua Jefferies Isaak Samsel Austin Bootin Brian Plaag Team A1-5, EF 152 Sec. A1 Page 2 Project Overview The purpose of this project is to transform the mechanical energy

More information

ENERGY FUN. Extending Fun With Energy In Your Classroom CURRICULUM GUIDE. GRADES 3 through 5 with. Meets. Next Generation Science Standards

ENERGY FUN. Extending Fun With Energy In Your Classroom CURRICULUM GUIDE. GRADES 3 through 5 with. Meets. Next Generation Science Standards JEFF BOYER PRODUCTIONS presents CURRICULUM GUIDE FUN ENERGY GRADES 3 through 5 with Extending Fun With Energy In Your Classroom This study guide is meant to build on the enthusiasm and curiosity of your

More information

Laboratory 3 Factorial Experiment: Paper Helicopter Design

Laboratory 3 Factorial Experiment: Paper Helicopter Design MTE 201: Experimental Measurement and Statistical Analysis Laboratory 3 Factorial Experiment: Paper Helicopter Design Introduction Factorial experiment design is an important technique for engineers to

More information

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc

it is transmitted easily over distance, through electricity cables it can be used in many ways, for example electric lamps, heaters, motors etc 1 of 12 1/24/2013 9:01 AM Science Generating electricity Electricity is a convenient source of energy and can be generated in a number of different ways. You will need to weigh up the advantages and disadvantages

More information

Problem statement, Standards, Data and Technology

Problem statement, Standards, Data and Technology 1 Lesson Plan Title: Next Generation Renewable Energy Infrastructure in Hydroelectricity Teacher Name: Mr. Bi Yu You School: F.J. Reitz High School Subject: Biology - Environmental Science Grade Level:

More information

The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity

The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity Available online at www.sciencedirect.com Procedia Engineering 3 (0) 994 999 I-SEEC0 The Derivation of Efficiency Equation of the Prototype of Pico Wind Turbine Produces the Electricity S. Jugsujinda a*,

More information

Lesson 1: Energy and Power

Lesson 1: Energy and Power Student Name: Unit 5: Design Lesson 1: Energy and Power File 5.1.3: Wind Power Design Brief Background: You and your friends wish to build a club house in a secluded spot with no electricity. The group

More information

Next Generation Science Standards NGSS Science and Engineering Practices: NGSS Cross-cutting Concepts: NGSS Disciplinary Core Ideas:

Next Generation Science Standards NGSS Science and Engineering Practices: NGSS Cross-cutting Concepts: NGSS Disciplinary Core Ideas: Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Envisioning a Bright Future for All Students. 6th Grade Science Class at Bureau Valley South Teacher Advisor: Sheri Litherland

Envisioning a Bright Future for All Students. 6th Grade Science Class at Bureau Valley South Teacher Advisor: Sheri Litherland Envisioning a Bright Future for All Students 6th Grade Science Class at Bureau Valley South Teacher Advisor: Sheri Litherland Student Engagement Activities Careers in Energy Week Energy Conservation Project

More information

Sheet 5 - Renewable Energy: green (clean)

Sheet 5 - Renewable Energy: green (clean) Sheet 5 - Renewable Energy: green (clean) electricity Introduction Europe committed to reduce the energy sector s environemental impact, with particular emphasis on saving (cfr Sheet 7). Reducing the coal-powered

More information

Chemical Reactions. Lab. FCJJ 11 - Fuel Cell Car Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Chemical Reactions. Lab. FCJJ 11 - Fuel Cell Car Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Lesson 3 Energy Resources

Lesson 3 Energy Resources Lesson 3 Energy Resources Student Labs and Activities Page Launch Lab 44 Content Vocabulary 45 Lesson Outline 46 MiniLab 48 Content Practice A 49 Content Practice B 50 Language Arts Support 51 Math Skills

More information

Exploring Wind Energy

Exploring Wind Energy Exploring Wind Energy Teacher Guide Hands-on, critical thinking activities that help secondary students to develop a comprehensive understanding of the scientific, economic, environmental, technological,

More information

KEYWORDS: alternative energy waves ocean currents electricity

KEYWORDS: alternative energy waves ocean currents electricity UNC Coastal Studies Institute 1 TITLE: Ocean Energy and Education KEYWORDS: alternative energy waves ocean currents electricity Waves are a potential energy source for the future. ABSTRACT: As the population

More information

5E Lesson Plan. Lesson Title: Solar Energy-Use it for Cooking!

5E Lesson Plan. Lesson Title: Solar Energy-Use it for Cooking! Lesson Title: Solar Energy-Use it for Cooking! 5E Lesson Plan Subject area / course / grade level: Sixth Grade Science Lesson Length: This activity will take one week with 45 minutes for each lesson. The

More information

Effect of Concentrator, Blade Diameter and Blade Number on the Savonius Wind Turbine Performance

Effect of Concentrator, Blade Diameter and Blade Number on the Savonius Wind Turbine Performance Effect of Concentrator, Blade Diameter and Blade Number on the Savonius Wind Turbine Performance Ida Bagus Alit 1,*, Rudy Sutanto 2, I Made Mara 3 and Mirmanto Mirmanto 4 1 Mechanical Engineering Department,

More information

Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems)

Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems) Running on Renewables (Lesson Plan) (Utilizing HOMER: Modeling Software for Hybrid Electric Power Systems) Suggested Grade Level 9-12 Overview Students utilize software developed by the National Renewable

More information

800 Wind Powered Generator

800 Wind Powered Generator 800 Wind Powered Generator Purpose: The Wind Powered Generator is an excellent device for studying wind as a source of energy. The generator will allow students an opportunity to measure the amount of

More information

Windmill Generator Project

Windmill Generator Project Windmill Generator Project November 30, 2009 Nick Jones Michael Potts John Riser Emily Curtis Wrinn Jennifer Young Team 3 EF 152 - B1 Abstract The purpose of this project is to work as team to build a

More information

Energy From the Wind. Teacher Guide Int. Grade Level: Subject Areas:

Energy From the Wind. Teacher Guide Int. Grade Level: Subject Areas: Energy From the Wind Teacher Guide Hands-on, critical thinking and language arts activities that help intermediate students to develop a comprehensive understanding of wind formation, wind energy, and

More information

Wonders of Wind Teacher Guide

Wonders of Wind Teacher Guide Wonders of Wind Teacher Guide Students learn about wind through reading and hands-on activities that focus on observation and inquiry. Activities explore measuring wind, how wind does work, and the generation

More information

Semiconductors. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Semiconductors. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

ELECTRICITY: THE POWER OF NATURAL RESOURCES 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 3-7

ELECTRICITY: THE POWER OF NATURAL RESOURCES 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 3-7 TEACHER GUIDE ELECTRICITY: THE POWER OF NATURAL RESOURCES 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 3-7 Electricity: The Power of Natural Resources Description Energize your classroom

More information

Materials. Materials. NOTE Delta Education Customer Service can be reached at

Materials. Materials. NOTE Delta Education Customer Service can be reached at w Weather and Water Measuring Matter Materials Materials Contents Kit Inventory List... 42 Materials Supplied by the Teacher... 45 Preparing the Kit for Your Classroom... 47 Care, Reuse, and Recycling...

More information

A Guide to Connections between the GLOBE Program and the Next Generation Science Standards*

A Guide to Connections between the GLOBE Program and the Next Generation Science Standards* University of Northern Iowa UNI ScholarWorks Faculty Publications Iowa Academy of Science 2014 A to Connections between the Program and the Next Generation Science Standards* Iowa Academy of Science Marcene

More information

Hydroelectric and Solar Power

Hydroelectric and Solar Power Hydroelectric and Solar Power By: Caitlin Kelliher James Manne-Nicholas Elise McGue Amanuel Zewdie 6 th Period IBSL/AP Physics Solar Power Introduction When photons, light particles, collide with atoms,

More information

Semiconductors. Lab. FCJJ 30 - Electric Mobility Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Semiconductors. Lab. FCJJ 30 - Electric Mobility Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Stoichiometry. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Stoichiometry. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

MS-LS2 Ecosystems: Interactions, Energy, and Dynamics

MS-LS2 Ecosystems: Interactions, Energy, and Dynamics MS-LS2 Ecosystems: Interactions, Energy, and Dynamics NGSS: MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in

More information

Measuring Electricity Class Activity

Measuring Electricity Class Activity Measuring Electricity Class Activity Materials Needed: 1. 6 Kill A Watt devices (note: these can be obtained from a variety of sources, i.e., local hardware stores, internet [average cost is $19.99; available

More information

Heat and Thermal Energy

Heat and Thermal Energy Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Delaware Science Assessment Prototype: Grade 8 Integrative Item Cluster

Delaware Science Assessment Prototype: Grade 8 Integrative Item Cluster Student Version Delaware Science Assessment Prototype: Grade 8 Integrative Item Cluster Prepared for the Delaware Department of Education by WestEd Hot Pack Investigation #1 A student investigated how

More information

Wind energy is available in the country situated on bank of the sea. Both type of plant large scale and small scale can be constructed.

Wind energy is available in the country situated on bank of the sea. Both type of plant large scale and small scale can be constructed. WIND POWER PLANT INRODUCTION- Energy is an important part of any country s economy. Today major energy need in a country is achieved by using conventional sources of energy. It includes coal, natural gas,

More information

Disciplinary Core Ideas

Disciplinary Core Ideas Fourth Grade The performance expectations in fourth grade help students formulate answers to questions such as: What are waves and what are some things they can do? How can water, ice, wind and vegetation

More information

Miami Science Barge Field Trip Request Form

Miami Science Barge Field Trip Request Form Miami Science Barge Field Trip Request Form Teacher name: Email address: Date of request: Phone number: Preferred method of contact: Email Phone Name of School: Grade Level: Class size: students Number

More information

PRINCIPLES OF ENGINEERING Course Syllabus

PRINCIPLES OF ENGINEERING Course Syllabus 6111 E. Skelly Drive P. O. Box 477200 Tulsa, OK 74147-7200 PRINCIPLES OF ENGINEERING Course Syllabus Course Number: ST00024 OHLAP Credit: Yes OCAS Code: 8710 Course Length: 80 Hours Career Cluster: Science,

More information

State Performance Indicator (SPI) SPI 0407.Inq.1 Select an investigation that could be used to answer a specific question.

State Performance Indicator (SPI) SPI 0407.Inq.1 Select an investigation that could be used to answer a specific question. Embedded Inquiry Conceptual Strand - Understandings about scientific inquiry and the ability to conduct inquiry are essential for living in the 21 st century. Guiding Question - What tools, skills, knowledge,

More information

!!!!!! Renewables energy and efficiency. Researching Physics. Higher. Photo: Wikipedia, GDFL

!!!!!! Renewables energy and efficiency. Researching Physics. Higher. Photo: Wikipedia, GDFL Renewables energy and efficiency Photo: Wikipedia, GDFL Researching Physics Higher Higher Physics Researching Physics Contents Renewables energy and efficiency Advice to students Page 3 Overview of the

More information

PROPOSED DESIGN OF WIND TURBINE SYSTEMS ON A PICKUP TRUCK

PROPOSED DESIGN OF WIND TURBINE SYSTEMS ON A PICKUP TRUCK PROPOSED DESIGN OF WIND TURBINE SYSTEMS ON A PICKUP TRUCK Sofian Mohd 1, Nurhayati Rosly 1, Mohd Fadhli Zulkafli 1, Nik Samsul Bahari Mohamad Zainu 2, Aslam Abdullah 1, Syariful Syafiq Shamsudin 1 and

More information

02/14/2016 V3.3 AZ Science Lab 1

02/14/2016 V3.3 AZ Science Lab 1 02/14/2016 V3.3 AZ Science Lab 1 Arizona Science Lab: WORKING WITH WATERWHEELS Harnessing the Energy of Water Institute Of Electrical And Electronic Engineers, Phoenix Section Teacher In Service Program

More information

WORKING DESIGN OFVERTICLE AXIS WIND TURBINE WITH ROAD POWER GENERATION

WORKING DESIGN OFVERTICLE AXIS WIND TURBINE WITH ROAD POWER GENERATION WORKING DESIGN OFVERTICLE AXIS WIND TURBINE WITH ROAD POWER GENERATION 1 S.A.Patil, 2 M.L.wagh, 3 S.G.Gavali 1 Lecturer in Mechanical Engineering Department GGSP, Nashik(India) 2,3 Third year Diploma in

More information

The classroom is abuzz. Students

The classroom is abuzz. Students Ideas and techniques to enhance your science teaching Chemical Reaction Vehicles A STEM project takes off in fifth-grade classrooms. By Wendy Smith and Jesse Meyer The classroom is abuzz. Students surround

More information

World s Tallest Tower Case Study #1

World s Tallest Tower Case Study #1 World s Tallest Tower Case Study #1 Northern Highlands Regional High School Applied Technology Department Real World Engineering List Design/Build Engineering Team Members Name of Engineering Firm Instructor

More information

Energy Conservation vs. Energy Efficiency

Energy Conservation vs. Energy Efficiency AK Target grades: 3-5 AK ELAM Standards: Text Types and Purposes W.TT.3-5.2 (for extension activity) AK Technology Standards: E 1,2,6,7,8 NGSS See page 5. Set up time: 15 minutes Class time: One class

More information

Product Design & Development Stage 3 Science Unit Duration: 10 Weeks

Product Design & Development Stage 3 Science Unit Duration: 10 Weeks Product Design & Development Stage 3 Science Unit Duration: 10 Weeks Aboriginal and Torres Strait Islander histories and cultures Ethical understanding Personal and social capability Asia and Australia's

More information

How small is a nanometer?

How small is a nanometer? How small is a nanometer? Purpose: The purpose of this activity is to learn about the size of a nanometer. Questions to think about: Could you see an object that measures 10 nanometers across with your

More information

Renewable Energy. Lab. FCJJ 40 - Horizon Energy Box. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Renewable Energy. Lab. FCJJ 40 - Horizon Energy Box. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Technical University of Moldova EMM Departament. plus. Author: Rachier Vasile. Scientific coordinator: prof. dr. ing. Sobor Ion

Technical University of Moldova EMM Departament. plus. Author: Rachier Vasile. Scientific coordinator: prof. dr. ing. Sobor Ion EMM Departament Author: Scientific coordinator: Rachier Vasile prof. dr. ing. Sobor Ion sre.utm@gmail.com, rachier.vasile@yahoo.com, http://www.energy.utm.md Chişinău 2012 The aim of the project: Integration

More information

6 Generator Testing Data Analysis

6 Generator Testing Data Analysis RMS Voltage 6 Generator Testing Data Analysis 1. Using the generator equations below. 2. Insert your measured component values. 3. Create a spread sheet and plot the data. 4. How close is the calculated

More information

IB Physics Extended Essay

IB Physics Extended Essay IB Physics Extended Essay Author: Remo Reuben Candidate number: 000893-013 Word count of essay: 3955 Word count of abstract: 270 The effects of working fluid dynamic viscosity on the efficiency of a hydroelectric

More information

ROOF MOUNT KIT OWNERS MANUAL

ROOF MOUNT KIT OWNERS MANUAL ROOF MOUNT KIT OWNERS MANUAL Made in the USA by: Primus Wind Power, Inc. 938 Quail St. Lakewood, CO 80215 Phone: (303) 242-5820 www.primuswindpower.com AIR is a trademark of Primus Wind Power, Inc. ROOF

More information

Are You up to the Test? A look at employment tests, following directions, and teamwork

Are You up to the Test? A look at employment tests, following directions, and teamwork Are You up to the Test? A look at employment tests, following directions, and teamwork Lesson by Julie Kornegay, senior education program manager, Federal Reserve Bank of Atlanta Birmingham Branch Lesson

More information

Overview of Science Units & Major Resources: GRADE 5

Overview of Science Units & Major Resources: GRADE 5 Overview of Science Units & Major : GRADE 5 Unit 1: Physical Science Simple Machines Mysterious Machine Interact Unit Teacher Guide and Student Journals Intermediate Simple Machines DVD (one per building)

More information

Engineering Design Challenge: Thermal Protection System

Engineering Design Challenge: Thermal Protection System LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Engineering Design Challenge: Thermal Protection System Presented by: Kristy Hill September 28, 2011 Thermal Protection System Have you had a chance to look at

More information

GOING FOR A SPIN: Making a Model Steam Turbine

GOING FOR A SPIN: Making a Model Steam Turbine GOING FOR A SPIN: Making a Model Steam Turbine PLANNING OVERVIEW SUBJECT AREAS: Physical Science, Math, Language Arts TIMING: Preparation: 30-60 minutes Activity: 1-2 45-minute class periods Note: Going

More information

MAKING LEMON ICE (1 HR)

MAKING LEMON ICE (1 HR) MAKING LEMON ICE (1 HR) Addresses NGSS Level of Difficulty: 2 Grade Range: 4-6 OVERVIEW In this activity, students will learn about thermal energy. Students will observe how energy can be conserved and

More information

II. LITERATURE SURVEY

II. LITERATURE SURVEY A Novel Method to Generate Electricity Using Fast Moving Vehicles Train I.Mahendran 1, B.Krishnaprasanth 2, R.Gandhimathi 3, S.Elakiya 4 1,2,3,4 BE/Third year, Department of EEE, Knowledge Institute of

More information

Sweet Tooth Chocolate Shop! Unit 3/Grade 6 PBL

Sweet Tooth Chocolate Shop! Unit 3/Grade 6 PBL Sweet Tooth Chocolate Shop! Unit 3/Grade 6 PBL Questions to be answered: How can I translate written information into algebraic expressions? How can I generate equivalent expressions by applying the properties

More information

Objectives: Vocabulary: Materials: Hoffman Apparatus (or other electrolysis set-up) Students will:

Objectives: Vocabulary: Materials: Hoffman Apparatus (or other electrolysis set-up) Students will: Intro to Fuel Cells Author: Michael P. Fitzgerald Date Created: August 9, 2007 Subject: Regents Chemistry Level: High School Standards: NYS Chemistry Core Curriculum 3.2d-h, i-l Schedule: 40 minute period

More information

Grade Six: Energy Lesson 6.7: Peanut Energy

Grade Six: Energy Lesson 6.7: Peanut Energy Grade Six: Energy Lesson 6.7: Peanut Energy Lesson Concept Link Time Heat energy is release when a fuel is consumed or transformed from stored energy in the peanut to heat. In the previous lesson moving

More information

Renewable Resources. CAES Energy Efficiency Research Institute Boise State University

Renewable Resources. CAES Energy Efficiency Research Institute Boise State University Renewable Resources Hydroelectric Power CAES Energy Efficiency Research Institute Boise State University What are some energy sources that we know exist? Nuclear Coal Natural Gas Biomass Geothermal Hydro

More information

Forest types: Plantation vs natural, and softwood vs hardwood. Geography. Activity information. Background

Forest types: Plantation vs natural, and softwood vs hardwood. Geography. Activity information. Background : Plantation vs natural, and softwood vs hardwood Geography G Practical Lesson Activity information Level: Junior secondary school Years 7 10 Duration: Preparation: Materials: Summary: Approximately 3

More information

Learning Goals. Grade Level/Time. NGSS Science Standards. Activity not done in the workshop, but discussed on Tsunami field trip.

Learning Goals. Grade Level/Time. NGSS Science Standards. Activity not done in the workshop, but discussed on Tsunami field trip. Activity not done in the workshop, but discussed on Tsunami field trip. Activity Dendrochronology In this activity, students will use pre-marked paper strips to simulate tree-ring core samples to help

More information

Introduction to Forms of Energy

Introduction to Forms of Energy FORMS OF ENERGY LESSON PLAN 2.1 Introduction to Forms of Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the

More information

Energy Tracker. Unit 3 Overview. We build science curriculum that inspires students to design a more sustainable world.

Energy Tracker. Unit 3 Overview. We build science curriculum that inspires students to design a more sustainable world. Energy Tracker Unit 3 Overview We build science curriculum that inspires students to design a more sustainable world. In this Unit, students develop skills and experience using engineering design methods

More information

FORMS OF ENERGY All forms of energy fall under two categories

FORMS OF ENERGY All forms of energy fall under two categories Extra copy for Lesson 2 So teacher can review this info at the beginning of Lesson 2 FORMS OF ENERGY All forms of energy fall under two categories KINETIC Kinetic energy is energy in motion POTENTIAL Potential

More information

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10

All instruction should be three-dimensional. NGSS Example Bundles. 1 of 10 5 th Grade Topic Model - Bundle 2 Matter and Energy in Ecosystems This is the second bundle of the Fifth Grade Topic Model. Each bundle has connections to the other bundles in the course, as shown in the

More information

Energy Production Lesson 2 - Advantages and Disadvantages of Energy Production

Energy Production Lesson 2 - Advantages and Disadvantages of Energy Production Energy Production Lesson 2 - Advantages and Disadvantages of Energy Production Curriculum Expectations Courses: SNC1P/SNC1D Learning Goals PHV.03 analyse the practical uses of electricity and its impact

More information

Renewable Energy Sources. Lesson Plan: NRES F1-2

Renewable Energy Sources. Lesson Plan: NRES F1-2 Renewable Energy Sources Lesson Plan: NRES F1-2 1 Anticipated Problems 1. What are renewable energy sources? 2. What are advantages and disadvantages of renewable energy sources? 2 Terms biomass biopower

More information

Cornerstone Electronics Technology and Robotics I Week 11 Other Sources of Electrical Energy and Photoresistors Administration: o Prayer o Turn in

Cornerstone Electronics Technology and Robotics I Week 11 Other Sources of Electrical Energy and Photoresistors Administration: o Prayer o Turn in Cornerstone Electronics Technology and Robotics I Week 11 Other Sources of Electrical Energy and Photoresistors Administration: o Prayer o Turn in quiz Review the six basic sources of electricity or electromotive

More information

BUILDING ECOLOGICAL PYRAMIDS WORKSHEET

BUILDING ECOLOGICAL PYRAMIDS WORKSHEET OVERVIEW BUILDING ECOLOGICAL PYRAMIDS WORKSHEET This activity provides students with an opportunity to gather and analyze real data using the citizen science website WildCam Gorongosa (www.wildcamgorongosa.org).

More information

Measuring Up. Tools for High Performance Building Performance. RESNET 2008 San Diego, CA February 20, 2008 Bill Spohn. Bill Spohn, testo, inc.

Measuring Up. Tools for High Performance Building Performance. RESNET 2008 San Diego, CA February 20, 2008 Bill Spohn. Bill Spohn, testo, inc. Measuring Up Tools for High Performance Building Performance RESNET 2008 San Diego, CA February 20, 2008 Bill Spohn Measuring up Building performance evaluation Observation and measurements. Principles

More information

Renewable Energy

Renewable Energy www.hft-global.com/education The HFT Education range is a comprehensive series of Teaching and Training products, designed for theoretical, practical and vocational training in technologies. The range

More information

The influence of the lengths of turbine blades on the power produced by miniature wind turbines that operate in non-uniform flow fields

The influence of the lengths of turbine blades on the power produced by miniature wind turbines that operate in non-uniform flow fields World Transactions on Engineering and Technology Education Vol.10, No.2, 2012 2012 WIETE The influence of the lengths of turbine blades on the power produced by miniature wind turbines that operate in

More information

Administrative Building Cooling Tower. University of Tennessee Chattanooga

Administrative Building Cooling Tower. University of Tennessee Chattanooga Administrative Building Cooling Tower University of Tennessee Chattanooga Ben Dalton Lab Partner: Murat Ozkaya ENCH 435 Dr. Jim Henry December 2, 2008 Abstract Experimental data was taken at the air inlet

More information

ENGR 1181 Lab 7: Wind Turbine

ENGR 1181 Lab 7: Wind Turbine ENGR 1181 Lab 7: Wind Turbine - Preparation Material (Lab 7A) - Lab Procedure (Lab 7A) - Preparation Material (Lab 7B) - Lab Procedure (Lab 7B) - Report Guidelines (Combined) 1 Preparation Material 7A

More information

Lab: Cool Science: Building and Testing a Model Radiator

Lab: Cool Science: Building and Testing a Model Radiator Lab: Cool Science: Building and Testing a Model Radiator FOR THE TEACHER Summary In this lab students construct a model of a car radiator to investigate parameters that lead to efficient cooling. Students

More information

Engineering Ocean Currents

Engineering Ocean Currents New England Aquarium Educational Activity Series Engineering Ocean Currents Learning Level Intermediate: grades 5 8 Subject Areas Science (Earth and Marine Science), Engineering, Design, Art, Literacy

More information