Comparison of Lumped and Distributed Hydrologic Models for the Runoff Simulation of a Large Watershed in Alabama and Mississippi

Size: px
Start display at page:

Download "Comparison of Lumped and Distributed Hydrologic Models for the Runoff Simulation of a Large Watershed in Alabama and Mississippi"

Transcription

1 Comparison of Lumped and Distributed Hydrologic Models for the Runoff Simulation of a Large Watershed in Alabama and Mississippi Jairo N. Diaz-Ramirez Billy E. Johnson William H. McAnally James L. Martin Northern Gulf Institute Conference Mobile, AL May 19, 2010

2 Outline The BASINS/HSPF Model The WMS/GSSHA Model Goal Study Area Model Setup Model Evaluation Model Results Conclusions Products Ongoing Work Acknowledgments

3 The BASINS/HSPF Model BASINS (Better Assessment Science Integrating point & Non-point Sources), FR 1996 U.S. Environmental Protection Agency Data (Weather, water quality) Tools (GIS, Met Generation) Models (HSPF, SWMM, AQUATOX, WASP) HSPF (Hydrological Simulation Program FORTRAN) Supported by EPA Modular program with capacity of simulation hydrologic cycle, erosion, sediment transport, nutrients, pesticides, and in-stream water quality Used successfully since 80 s in USA, Canada, Europe, Australia, and Africa.

4 The WMS/GSSHA Model The Watershed Modeling System, first released 1994 Brigham Young University, U.S. Army Corps of Engineers Waterways Experiment Station, and Aquaveo LLC. Tools (GIS, watershed delineation) Models (HECs, TR-20, TR-55, HSPF, SWMM, GSSHA, CEQUAL-W2) GSSHA (Gridded Surface Subsurface Hydrologic Analysis), Supported by USACE/ERDC It is a physics-based, distributed, hydrologic, sediment and constituent fate and transport model Hydrology Features: 2D overland flow, 1D streamflow, 1D infiltration, and 2D groundwater

5 HSPF and GSSHA Characteristic HSPF GSSHA Area Representation Sub-watersheds Squared grids Relesed Supported USEPA/AQUATERRA USACE/ERDC Pre/Post Processor BASINS/GenScn WMS Scale Small/Large Watershed Plot/Field/Small Watershed Simulation Period Continuous Event/Continuous Simulation Time Step Hourly <1 minute Infiltration Power function Green&Ampt, Richards Overland Flow Chezy-Manning 2D Diffusive Wave Stream Channel Routing storage-based or nonlinear reservoir methods and user defined area-volume-flow table 1D Diffusive Wave Baseflow Basin reservoir 2D Darcy's Law

6 Goal The main goal of this research was to apply and test the application of two hydrologic models (HSPF and GSSHA) to predict overlandflow in the Luxapallila Creek watershed (1,858 km 2 rural watershed), located in Alabama and Mississippi.

7 Study Area Area: 1,851 km 2 Pervious area: 99% Forest area: 72% Agricultural area: 20% Wetlands: 6%

8 Channel cross-section data Model Setup

9 Channel cross-section data Topography: 30 mt resolution NED Model Setup

10 Model Setup 100x100 m = 185,816 cells Channel cross-section data Topography: 30 mt resolution NED 50 sub-watersheds

11 Model Setup 100x100 m = 185,816 cells Channel cross-section data Topography: 30 mt resolution NED Climate and Flow Stations 50 sub-watersheds

12 Model Setup Mainly sandy loam soils with hydrologic soil group B 100x100 m = 185,816 cells Channel cross-section data Topography: 30 mt resolution NED Climate and Flow Stations 50 sub-watersheds

13 Model Setup Mainly sandy loam soils with hydrologic (1980 GIRAS dataset) soil group B 100x100 m = 185,816 cells Channel cross-section data Topography: 30 mt resolution NED Climate and Flow Stations 50 sub-watersheds

14 Model Evaluation Storm events evaluated in 1989 Storm Event Calibration Period ( ) Verification Period ( ) 1 1/12-1/17 1/12-1/17 2 2/21-2/26 2/21-2/24 3 2/28-3/4 2/28-3/3 4 3/5/-3/9 3/5-3/8

15 Model Evaluation USGS Station Data Flow (cms) /1/1989 1/21/1989 2/10/1989 3/2/1989 3/22/1989 Time (days)

16 Runoff and Baseflow Separation Web-based hydrograph separation system (WHAT) USGS Station Streamflow Direct Runoff Base Flow 350 Flow (cms) /1/1989 1/15/1989 1/29/1989 2/12/1989 2/26/1989 3/12/1989 3/26/1989 Time (days)

17 Model Results: Calibration HSPF Parameter (unit) LZSN (mm) Definition Forest Agricultural Barren Wetlands Lower zone nominal soil moisture storage Urban or built-up land (pervious) INFILT (mm h -1 ) Index to infiltration capacity KVARY (1/mm) Variable groundwater recession AGWRC (1/day) Base groundwater recession DEEPFR Fraction of groundwater inflow to deep recharge BASETP Fraction of remaining evapotranspiration from baseflow AGWETP Fraction of remaining evapotranspiration from active groundwater CEPSC (mm) Interception storage capacity UZSN (mm) Upper zone nominal soil moisture storage NSUR Manning's for overland flow INTFW Interflow inflow parameter IRC (1/day) Interflow recession parameter LZETP Lower zone evapotranspiration parameter GSSHA Parameter Definition (unit) Soil Forest Agricultural Barren Wetlands Urban or built-up land (pervious) K hydraulic conductivity (cm/hr) 0.14 N/A N/A N/A N/A N/A Ψ Suction head (cm) 11.0 N/A N/A N/A N/A N/A θ s Porosity (cm) 0.38 N/A N/A N/A N/A N/A n m Surface Roughness

18 Model Results: Calibration Observed HSPF GSSHA Direct Runoff (cms) /1/1989 1/16/1989 1/31/1989 2/15/1989 3/2/1989 3/17/1989 Time (days)

19 Model Results: Calibration Observed HSPF GSSHA Direct Runoff (cms) /1/1989 1/16/1989 1/31/1989 2/15/1989 3/2/1989 3/17/1989 Time (days)

20 Model Results: Calibration Observed HSPF GSSHA Direct Runoff (cms) /1/1989 1/16/1989 1/31/1989 2/15/1989 3/2/1989 3/17/1989 Time (days) GSSHA Event Peak error (%) Volume error (%) Runoff RMSE (cms) Peak time error (days) HSPF Event Peak error (%) Volume error (%) Runoff RMSE (cms) Peak time error (days)

21 Model Results: Calibration Observed HSPF GSSHA (1980 GIRAS dataset) Direct Runoff (cms) /1/1989 1/16/1989 1/31/1989 2/15/1989 3/2/1989 3/17/1989 Time (days) GSSHA Event Peak error (%) Volume error (%) Runoff RMSE (cms) Peak time error (days) HSPF Event Peak error (%) Volume error (%) Runoff RMSE (cms) Peak time error (days)

22 Model Results: Verification

23 Model Results: Verification

24 Model Results: Verification

25 Model Results: Verification GSSHA Event Peak error (%) Volume error (%) Runoff RMSE (cms) Peak time error (days) HSPF Event Peak error (%) Volume error (%) Runoff RMSE (cms) Peak time error (days)

26 Conclusions EPA HSPF is a comprehensive water quantity/quality watershed model. Hydrology is simulated using a physically based water budget scheme with empirical equations among the different components (interception, infiltration, evapotranspiration, surface runoff, etc). USACE GSSHA is a physics-based multidimensional watershed model. While runoff excess calculations in the HSPF model use the soil infiltration rate, the GSSHA model applies the soil hydraulic conductivity, along with a number of other soil parameters to compute a more physically based infiltration rate. GSSHA, like HSPF, also under simulated runoff during most of the evaluated storm events. This study found that the GSSHA model had a better performance than HSPF runoff results when calibrated parameters were evaluated in a sub-watershed outlet. GSSHA was more computationally intensive and less efficient than HSPF: numerical solution-based scheme vs analytical solution 185,816 cells vs. 50 sub-watersheds 20 hours vs. 5 seconds (Dual Core AMD Opteron(m) 3 GB of RAM)

27 Products (02/ /2010) Watershed Modeling Improvements to Enhance Coastal Ecosystems Goal: Improve watershed-wide decision support for resource management agencies

28 Products (02/ /2010) Watershed Modeling Improvements to Enhance Coastal Ecosystems Goal: Improve watershed-wide decision support for resource management agencies Mobile River watershed

29 Products (02/ /2010) Watershed Modeling Improvements to Enhance Coastal Ecosystems Goal: Improve watershed-wide decision support for resource management agencies Mobile River watershed Improved models Use the state-of-the-art technology related to watershed simulation 3-D Models GIS Radar HPC

30 Products (02/ /2010) Watershed Modeling Improvements to Enhance Coastal Ecosystems Goal: Improve watershed-wide decision support for resource management agencies Mobile River watershed Improved models Use the state-of-the-art technology related to watershed simulation 3-D Models GIS Habitat response evaluation System-wide perspective Radar HPC Habita t

31 Products (02/ /2010) Supported Personnel MSU Faculty: (8) Biology: Gary Ervin, Christopher Brooks Civil Eng: Jairo Diaz, William McAnally, James Martin GRI: Vladimir Alarcon Landscape Architecture: Wayne Wilkerson Forestry: Mary L. Tagert MSU Research Associates: (4) Civil Eng: Sandra Ortega GRI: Rita Jackson, Luis Wasson, and John Cartwright MSU Post-Doc: (1) Civil Eng. Jairo Diaz MSU Students: (11) John Ramirez (PhD, Civil Eng) Jeremy Sharp, Jared McKee, and Richard McComas (MS, Civil Eng) Carlos Ortiz (MBA) Matthew Roberts (PhD, Biology) Lee Turnage (MS, Biology) David Holly, Robert Sawyer, Nathan Sonderman, Tanaya Johnson (BS, Biology) Student Awards: (3) John Ramirez, PhD, Civil Eng: 2010 Environmental and Water Resources Engineering National Student Technical Paper Contest. 1st Place. John Ramirez, PhD, Civil Eng: 2009 Northern Gulf Institute Annual Conference. Student Paper Contest. 2nd Place. Jared McKee, MS, Civil Eng: 2008 Mississippi Water Resources Conference Best Student Paper Award. USACE Engineer Research and Development Center : (2) Billy E. Johnson Mike Follum

32 Products (02/ /2010) Collaborators(s)/Partners U. S. Army Corps of Engineers, Mobile District Begun March 2007 Provide in-kind support Nature: sharing of data and models, interlocking tasks U. S. Army Corps of Engineers, Engineer R&D Center Begun June 2007 Part reimbursed support, part inkind support (signed agreements) Nature: Shared models, training on Corps models U. S. Department of Agriculture, National Sediment Lab Begun Dec 2007 Planned reimbursable and inkind support (signed agreement) Nature: Shared models, data, training on models and field operations PUBLICATIONS: Peer-Reviewed Journals (6) Wilkerson G.W., W.H. McAnally, J.L. Martin, J.A. Ballweber, K. Collins Peavy, J. Diaz-Ramirez, and A. Moore. Latis: A Spatial Decision Support System to Assess Low Impact Site Development Strategies. Submitted to Advances in Civil Engineering, Hindawi Publishing Corporation. [In Press] Ortega-Achury, S. L., J. J., Ramírez-Avila, W. H. McAnally, and J. L. Martin Using turbidity and total suspended solids to determine suspended sediment concentration in the Town Creek Watershed. Paper to be submitted to the Journal of Hydrologic Engineering. Diaz-Ramirez, J.N., W.H. McAnally, and J.L. Martin. Sensitivity of Simulating Hydrologic Processes to Gauge and Radar Rainfall Data in Subtropical Coastal Catchments. Submitted to Journal of Hydrology [In review since January, 2010] Diaz-Ramirez, J.N., B.E. Johnson, W.H. McAnally, and J.L. Martin. Comparative Assessment of Multidimensional and Lumped Hydrologic Models: A Case Study in Alabama and Mississippi, USA. Submitted to Journal of Hydroinformatics [In review since January, 2010] Diaz-Ramirez, J.N., B.E. Johnson, W.H. McAnally, J.L. Martin, V.J. Alarcon, and J.J. Ramirez-Avila. Global Parameter Sensitivity and Uncertainty of the USEPA HSPF Model: A Hydrology Model Evaluation in Alabama and Mississippi. Submitted to Environmental Modelling & Software [In review since March, 2009] Diaz-Ramirez, J.N., V. Alarcon, Z. Duan, M.L. Tagert, W. H. McAnally, J. L. Martin, and C.G. O Hara Impacts of Land Use Characterization in Modeling Hydrology and Sediments for the Luxapallila Creek Watershed, Alabama/Mississippi. Transactions of the ASABE 51(1):

33 Products (02/ /2010) PUBLICATIONS: Peer-Reviewed Conference Proceedings (7) PUBLICATIONS: Conference Proceedings (6) PUBLICATIONS: Reports (12) PUBLICATIONS: Thesis and Dissertations (2) PRESENTATIONS: Conferences/Meetings (28)

34 Ongoing Work

35 Acknowledgments

36 Questions? Constructive comments? THANKS!! Jairo Diaz Phone:

Hydrologic Model of the Vermilion River Watershed for Streamflow Simulations

Hydrologic Model of the Vermilion River Watershed for Streamflow Simulations This project was funded through the Illinois Department of Natural Resources and the Illinois State Geological Survey. Illinois State Water Survey Contract Report 2004-0. Hydrologic Model of the Vermilion

More information

MODELING SEDIMENT AND PHOSPHORUS YIELDS USING THE HSPF MODEL IN THE DEEP HOLLOW WATERSHED, MISSISSIPPI

MODELING SEDIMENT AND PHOSPHORUS YIELDS USING THE HSPF MODEL IN THE DEEP HOLLOW WATERSHED, MISSISSIPPI MODELING SEDIMENT AND PHOSPHORUS YIELDS USING THE HSPF MODEL IN THE DEEP HOLLOW WATERSHED, MISSISSIPPI Jairo Diaz-Ramirez, James Martin, William McAnally, and Richard A. Rebich Outline Background Objectives

More information

RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT

RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT 10 th International Conference on Hydroinformatics HIC 2012, Hamburg, GERMANY RAINFALL-RUNOFF STUDY FOR SINGAPORE RIVER CATCHMENT CHI DUNG DOAN (1)(3), JIANDONG LIU (1), SHIE-YUI LIONG (1), ADRI VERWEY

More information

Lecture 9A: Drainage Basins

Lecture 9A: Drainage Basins GEOG415 Lecture 9A: Drainage Basins 9-1 Drainage basin (watershed, catchment) -Drains surfacewater to a common outlet Drainage divide - how is it defined? Scale effects? - Represents a hydrologic cycle

More information

Hydrologic and Watershed Model Integration Tool (HydroWAMIT) and Its Application to North & South Branch Raritan River Basin

Hydrologic and Watershed Model Integration Tool (HydroWAMIT) and Its Application to North & South Branch Raritan River Basin Hydrologic and Watershed Model Integration Tool (HydroWAMIT) and Its Application to North & South Branch Raritan River Basin Gopi K. Jaligama Omni Environmental LLC 321 Wall St. Princeton NJ 08540 Email:

More information

Hydrologic Modeling Overview

Hydrologic Modeling Overview Hydrologic Modeling Overview Chuck Downer, PhD, PE Hydrologic Systems Branch Coastal and Hydraulics Laboratory Engineer Research and Development Center Vicksburg, Mississippi Hydrologic processes Hydrologic

More information

URBAN FLOODING: HEC-HMS

URBAN FLOODING: HEC-HMS 1.0 Introduction URBAN FLOODING: HEC-HMS -Sunil Kumar, Director, NWA All major ancient civilisations were developed in the river valleys because river served as source of water, food, transportation and

More information

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study

Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Event and Continuous Hydrological Modeling with HEC- HMS: A Review Study Sonu Duhan *, Mohit Kumar # * M.E (Water Resources Engineering) Civil Engineering Student, PEC University Of Technology, Chandigarh,

More information

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire

The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire The Texas A&M University and U.S. Bureau of Reclamation Hydrologic Modeling Inventory (HMI) Questionnaire May 4, 2010 Name of Model, Date, Version Number Dynamic Watershed Simulation Model (DWSM) 2002

More information

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis Assessment of the Restoration Activities on Water Balance and Water Quality at Last Chance Creek Watershed Using Watershed Environmental Hydrology (WEHY) Model M.L. Kavvas, Z. Q. Chen, M. Anderson, L.

More information

Assessment of Watershed Soundness by Water Balance Using SWAT Model for Han River Basin, South Korea

Assessment of Watershed Soundness by Water Balance Using SWAT Model for Han River Basin, South Korea 2015 International SWAT Conference & Workshops October 12-16, 2015 Purdue University, USA SESSION A3: HYDROLOGY Room: Stewart 278 2015 International SWAT Conference Assessment of Watershed Soundness by

More information

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis

M.L. Kavvas, Z. Q. Chen, M. Anderson, L. Liang, N. Ohara Hydrologic Research Laboratory, Civil and Environmental Engineering, UC Davis Assessment of the Restoration Activities on Water Balance and Water Quality at Last Chance Creek Watershed Using Watershed Environmental Hydrology (WEHY) Model M.L. Kavvas, Z. Q. Chen, M. Anderson, L.

More information

Event and Continuous Hydrologic Modeling with HEC-HMS

Event and Continuous Hydrologic Modeling with HEC-HMS Event and Continuous Hydrologic Modeling with HEC-HMS Xuefeng Chu, A.M.ASCE 1 ; and Alan Steinman 2 Abstract: Event hydrologic modeling reveals how a basin responds to an individual rainfall event e.g.,

More information

Modeling Nutrient and Sediment Losses from Cropland D. J. Mulla Dept. Soil, Water, & Climate University of Minnesota

Modeling Nutrient and Sediment Losses from Cropland D. J. Mulla Dept. Soil, Water, & Climate University of Minnesota Modeling Nutrient and Sediment Losses from Cropland D. J. Mulla Dept. Soil, Water, & Climate University of Minnesota Watershed Management Framework Identify the problems and their extent Monitor water

More information

BAEN 673 / February 18, 2016 Hydrologic Processes

BAEN 673 / February 18, 2016 Hydrologic Processes BAEN 673 / February 18, 2016 Hydrologic Processes Assignment: HW#7 Next class lecture in AEPM 104 Today s topics SWAT exercise #2 The SWAT model review paper Hydrologic processes The Hydrologic Processes

More information

Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility. Hydraulic Modeling Software Selection

Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility. Hydraulic Modeling Software Selection DRAFT Technical Memorandum Phase 1 Part 2 CSO Control Plan Wellington Avenue CSO Facility Hydraulic Modeling Software Selection Prepared for: City of Newport Public Works Department 70 Halsey Street Newport,

More information

Note that the Server provides ArcGIS9 applications with Spatial Analyst and 3D Analyst extensions and ArcHydro tools.

Note that the Server provides ArcGIS9 applications with Spatial Analyst and 3D Analyst extensions and ArcHydro tools. Remote Software This document briefly presents the hydrological and hydraulic modeling software available on the University of Nice Server with Remote Desktop Connection. Note that the Server provides

More information

Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area

Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area Rainfall, Runoff and Peak Flows: Calibration of Hydrologic Design Methods for the Kansas City Area Bruce McEnroe, Bryan Young, Ricardo Gamarra and Ryan Pohl Department of Civil, Environmental, and Architectural

More information

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar

Hydrology and Water Management. Dr. Mujahid Khan, UET Peshawar Hydrology and Water Management Dr. Mujahid Khan, UET Peshawar Course Outline Hydrologic Cycle and its Processes Water Balance Approach Estimation and Analysis of Precipitation Data Infiltration and Runoff

More information

Minnesota River Basin Interagency Study

Minnesota River Basin Interagency Study 650 Minnesota River Basin Interagency Study Agencies collaborate for basin water quality and ecosystem restoration in Minnesota, Iowa, North Dakota, and South Dakota A multi-state effort is underway to

More information

Western Washington Hydrology Model (WWHM) Software Introduction. Doug Beyerlein, P.E., P.H., D.WRE Clear Creek Solutions, Inc. Mill Creek, Washington

Western Washington Hydrology Model (WWHM) Software Introduction. Doug Beyerlein, P.E., P.H., D.WRE Clear Creek Solutions, Inc. Mill Creek, Washington Western Washington Hydrology Model (WWHM) Software Introduction Doug Beyerlein, P.E., P.H., D.WRE Clear Creek Solutions, Inc. Mill Creek, Washington Clear Creek Solutions Hydrology Expertise Clear Creek

More information

Technical Memorandum 2 Summary of Model Configuration Prepared for Jordan Watershed Modeling

Technical Memorandum 2 Summary of Model Configuration Prepared for Jordan Watershed Modeling Technical Memorandum 2 Prepared for Jordan Watershed Modeling Prepared for Triangle J Council of Governments NC Division of Water Quality NSAB Model Subcommittee Prepared by 3200 Chapel Hill-Nelson Hwy,

More information

Vegetation Management and Water Yield: Silver Bullet or a Pipe Dream?

Vegetation Management and Water Yield: Silver Bullet or a Pipe Dream? Vegetation Management and Water Yield: Silver Bullet or a Pipe Dream? Lee H. MacDonald rofessor Emeritus and Senior Research Scientist Watershed Science/NREL Colorado State University, Fort Collins, CO

More information

Linking hydrology to erosion modelling in a river basin decision support and management system

Linking hydrology to erosion modelling in a river basin decision support and management system Integrated Water Resources Management (Proceedings of a symposium held at Davis. California. April 2000). I APIS Publ. no. 272. 2001. 243 Linking hydrology to erosion modelling in a river basin decision

More information

History of Model Development at Temple, Texas. J. R. Williams and J. G. Arnold

History of Model Development at Temple, Texas. J. R. Williams and J. G. Arnold History of Model Development at Temple, Texas J. R. Williams and J. G. Arnold INTRODUCTION Then Model development at Temple A long history (1937-present) Many scientists participating in: Data collection

More information

WATER RESOURCES MANAGEMENT Vol. II - Watershed Modeling For Water Resource Management - D. K. Borah WATERSHED MODELING FOR WATER RESOURCE MANAGEMENT

WATER RESOURCES MANAGEMENT Vol. II - Watershed Modeling For Water Resource Management - D. K. Borah WATERSHED MODELING FOR WATER RESOURCE MANAGEMENT WATERSHED MODELING FOR WATER RESOURCE MANAGEMENT D. K. Borah Borah Hydro-Environmental Modeling, Champaign, Illinois, USA Keywords: Agriculture, agrochemical, BMP, hydrology, long-term continuous model,

More information

Guadalupe Watershed Model Year 1 Report

Guadalupe Watershed Model Year 1 Report RMP / WS Regional Monitoring Program for Water Quality in San Francisco Estuary Guadalupe Watershed Model Year 1 Report Prepared by Michelle Lent, John Oram, Lester McKee San Francisco Estuary Institute,

More information

Comparison of hydrologic calibration of HSPF using automatic and manual methods

Comparison of hydrologic calibration of HSPF using automatic and manual methods Click Here for Full Article WATER RESOURCES RESEARCH, VOL. 43, W01402, doi:10.1029/2006wr004883, 2007 Comparison of hydrologic calibration of HSPF using automatic and manual methods Sang Min Kim, 1 Brian

More information

Hydrologic Modeling with the Distributed-Hydrology- Soils- Vegetation Model (DHSVM)

Hydrologic Modeling with the Distributed-Hydrology- Soils- Vegetation Model (DHSVM) Hydrologic Modeling with the Distributed-Hydrology- Soils- Vegetation Model (DHSVM) DHSVM was developed by researchers at the University of Washington and the Pacific Northwest National Lab 200 Simulated

More information

Assessing the Performance of HSPF When Using the High Water Table Subroutine to Simulate Hydrology in a Low-Gradient Watershed

Assessing the Performance of HSPF When Using the High Water Table Subroutine to Simulate Hydrology in a Low-Gradient Watershed Assessing the Performance of HSPF When Using the High Water Table Subroutine to Simulate Hydrology in a Low-Gradient Watershed M. Scott Forrester 1, Brian L. Benham *2, Karen S. Kline 2, Kevin J. McGuire

More information

Received 29 May 2002; accepted 9 July 2003

Received 29 May 2002; accepted 9 July 2003 Journal of Hydrology 284 (2003) 57 76 www.elsevier.com/locate/jhydrol Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a

More information

Suspended Sediment Discharges in Streams

Suspended Sediment Discharges in Streams US Army Corps of Engineers Hydrologic Engineering Center Suspended Sediment Discharges in Streams April 1969 Approved for Public Release. Distribution Unlimited. TP-19 REPORT DOCUMENTATION PAGE Form Approved

More information

Alternative Approaches to Water Resource System Simulation

Alternative Approaches to Water Resource System Simulation US Army Corps of Engineers Hydrologic Engineering Center Alternative Approaches to Water Resource System Simulation May 1972 Approved for Public Release. Distribution Unlimited. TP-32 REPORT DOCUMENTATION

More information

Hydrologic cycle, runoff process

Hydrologic cycle, runoff process Hydrologic cycle, runoff process Motivation of hydrological modelling What happens at the catchment and in the stream when it rains? How does the increased/decreased runoff affect (not only) the landowners

More information

Salinity TMDL Development and Modeling in the Otter Creek Watershed. Erik Makus DEQ Hydrologist June 6, 2013

Salinity TMDL Development and Modeling in the Otter Creek Watershed. Erik Makus DEQ Hydrologist June 6, 2013 Salinity TMDL Development and Modeling in the Otter Creek Watershed 1 Erik Makus DEQ Hydrologist June 6, 2013 Outline for Today: Otter Creek and the Tongue River Previous salinity modeling efforts Existing

More information

WMS Tools For Computing Hydrologic Modeling Parameters

WMS Tools For Computing Hydrologic Modeling Parameters WMS Tools For Computing Hydrologic Modeling Parameters Lesson 9 9-1 Objectives Use the drainage coverage as a basis for geometric parameters as well as overlaying coverages to compute important hydrologic

More information

Simulation of Event Based Runoff Using HEC-HMS Model for an Experimental Watershed

Simulation of Event Based Runoff Using HEC-HMS Model for an Experimental Watershed International Journal of Hydraulic Engineering 213, 2(2): 28-33 DOI: 1.5923/j.ijhe.21322.2 Simulation of Event Based Runoff Using HEC-HMS Model for an Experimental Watershed Reshma T *, Venkata Reddy K,

More information

Runoff and soil loss. (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University

Runoff and soil loss. (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University Runoff and soil loss (Quantification and modeling of watershed discharge and sediment yield) Kassa Tadele (Dr.Ing) Arba Minch University Part I. Runoff Contents 1. Fundamental Concepts 2. Generation of

More information

Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations

Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations Minnehaha Creek Watershed SWMM5 Model Data Analysis and Future Recommendations by Zhonglong Zhang and Chanel Mueller INTRODUCTION: The Minnehaha Creek watershed is located west of Minneapolis, Minnesota.

More information

Working with the Water Balance

Working with the Water Balance Working with the Water Balance Forest Hydrology and Land Use Change Paul K. Barten, Ph.D. Professor of Forestry and Hydrology Department of Environmental Conservation www.forest-to-faucet.org The Living

More information

Tools to Improve Water Quality

Tools to Improve Water Quality Tools to Improve Water Quality SARA Water Quality Modeling Tool Development Client: San Antonio River Authority (SARA) Firm: Lockwood, Andrews & Newnam, Inc. Category A: Studies, Research and Consulting

More information

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model

Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model 9 th International Conference on Urban Drainage Modelling Belgrade 2012 Flood hazard assessment in the Raval District of Barcelona using a 1D/2D coupled model Beniamino Russo, David Suñer, Marc Velasco,

More information

Automated Method to Develop a Clark Synthetic Unit Hydrograph within ArcGIS

Automated Method to Develop a Clark Synthetic Unit Hydrograph within ArcGIS Automated Method to Develop a Clark Synthetic Unit Hydrograph within ArcGIS by Michael Follum PURPOSE: This Coastal and Hydraulics Engineering technical note (CHETN) describes an automated method to develop

More information

Uncertainty in Hydrologic Modelling for PMF Estimation

Uncertainty in Hydrologic Modelling for PMF Estimation Uncertainty in Hydrologic Modelling for PMF Estimation Introduction Estimation of the Probable Maximum Flood (PMF) has become a core component of the hydrotechnical design of dam structures 1. There is

More information

GIS Applications in Water Resources Engineering

GIS Applications in Water Resources Engineering King Fahd University of Petroleum & Minerals City & Regional Planning Department Introduction to Geographic Information Systems Term Paper Presentation GIS Applications in Water Resources Engineering Prepared

More information

Setting the Course for Improved Water Quality: Modeling for TMDL Studies

Setting the Course for Improved Water Quality: Modeling for TMDL Studies Setting the Course for Improved Water Quality: Modeling for TMDL Studies A TMDL training program for local government leaders and other water managers Session 11a wq-iw3-61a Presentation goals Define the

More information

1 Precipitation: Water that comes from clouds. Most precipitation falls as rain, but it can also fall as frozen water such as snow.

1 Precipitation: Water that comes from clouds. Most precipitation falls as rain, but it can also fall as frozen water such as snow. AEN-127 University of Kentucky College of Agriculture, Food and Environment Cooperative Extension Hydrologic Models Tyler Mahoney, Civil Engineering, and Carmen Agouridis and Richard Warner, Biosystems

More information

SNAMP water research. Topics covered

SNAMP water research. Topics covered SNAMP water research SNAMP water team UC Merced Topics covered Objectives, goals & overview What & why the water component of SNAMP Pre-treatment Observations Water Quality Water Quantity Modeling & Scenarios:

More information

Section 600 Runoff Table of Contents

Section 600 Runoff Table of Contents Section 600 Runoff Table of Contents 601 INTRODUCTION...600-1 602 RATIONAL METHOD...600-1 602.1 Rational Method Formula...600-2 602.2 Time of Concentration...600-2 602.3 Intensity...600-4 602.4 Runoff

More information

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts Maine Stormwater Conference (Portland, ME, 2015) Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts Park Jongpyo, Lee Kyoungdo: HECOREA. INC Shin Hyunsuk: Busan National University

More information

Hydrology 101. Impacts of the Urban Environment. Nokomis Knolls Pond Summer June 2008

Hydrology 101. Impacts of the Urban Environment. Nokomis Knolls Pond Summer June 2008 Hydrology 101 Nokomis Knolls Pond Summer 2002 Impacts of the Urban Environment Hydrologic Cycle; What is it? Geography, Topography, Geology, Land Cover and Climate determine the Amount and Behavior of

More information

Fort Leonard Wood, Missouri. September 2013

Fort Leonard Wood, Missouri. September 2013 Fort Leonard Wood, Missouri September 2013 1 Presenters Shannon Kelly, Physical Scientist Clean Water Act Program Manager Directorate of Public Works Environmental Division Environmental Compliance Branch

More information

Training Course Brochure Building Capacity in Rural & Urban Water Management

Training Course Brochure Building Capacity in Rural & Urban Water Management Training Course Brochure 2015 Building Capacity in Rural & Urban Water Management Introduction The WastePro Academy seeks to encourage the use of desktop software applications in the water and environmental

More information

L-THIA Online and LID in a watershed investigation

L-THIA Online and LID in a watershed investigation L-THIA Online and LID in a watershed investigation Larry Theller Agricultural and Biological Engineering, Purdue University Great Lakes Sedimentation Workshop Ann Arbor Mi. L-THIA On-line watershed delineation

More information

Tools Quantifying the Benefits and Life Cycle Costs of Green Infrastructure Sakshi Saini

Tools Quantifying the Benefits and Life Cycle Costs of Green Infrastructure Sakshi Saini Tools Quantifying the Benefits and Life Cycle Costs of Green Infrastructure Sakshi Saini Latornell Conference November 17, 2016 Outline Background Tools: 1. Low Impact Development Treatment Train Tool

More information

An Overview of JULES. Christina Bakopoulou

An Overview of JULES. Christina Bakopoulou An Overview of JULES Christina Bakopoulou JULES, MOSES AND TRIFFID JULES (Joint UK Land Environment Simulator) is a new land surface model Joint initiative: NERC through the CEH, CLASSIC, QUEST and the

More information

CEE6400 Physical Hydrology

CEE6400 Physical Hydrology CEE6400 Physical Hydrology Midterm Review Learning Objectives (what you should be able to do) Hydrologic data, the hydrologic cycle and water balance (HW 1) Work with hydrologic data, quantify uncertainty

More information

INTEGRATION OF MONTE CARLO SIMULATION TECHNIQUE WITH URBS MODEL FOR DESIGN FLOOD ESTIMATION

INTEGRATION OF MONTE CARLO SIMULATION TECHNIQUE WITH URBS MODEL FOR DESIGN FLOOD ESTIMATION INTEGRATION OF MONTE CARLO SIMULATION TECHNIQUE WITH URBS MODEL FOR DESIGN FLOOD ESTIMATION Ataur Rahman 1, Don Carroll 2, Erwin Weinmann 3 1 Physical Infrastructure Centre, School of Civil Engineering,

More information

Chapter 3 Physical Factors Affecting Runoff

Chapter 3 Physical Factors Affecting Runoff Chapter 3 Physical Factors Affecting Runoff Copyright 2003 David G Tarboton, Utah State University CHAPTER 3: PHYSICAL FACTORS AFFECTING RUNOFF The general climatic regime controls the total volume of

More information

I(n)Kn. A Qp = (PRF) --- (8) tp Where A is the watershed area in square miles and PRF is the unit hydrograph peak rate factor.

I(n)Kn. A Qp = (PRF) --- (8) tp Where A is the watershed area in square miles and PRF is the unit hydrograph peak rate factor. AN ALTERNATE APPROACH FOR ESTIMATING SCS UNIT HYDROGRAPH PEAK RATE FACTORS (PRFS) IN SOUTHWEST FLORIDA Himat Solanki Southwest Florida Water Management District 115 Corporation Way, Venice, Florida 34292

More information

History and Evolution of Watershed Modeling Derived from the Stanford Watershed Model

History and Evolution of Watershed Modeling Derived from the Stanford Watershed Model CHAPTER 2 History and Evolution of Watershed Modeling Derived from the Stanford Watershed Model 2.1 INTRODUCTION In the early 1960's the Stanford Watershed Model (SWM) was instrumental in introducing the

More information

D. Common Water Quality Models

D. Common Water Quality Models D. Common Water Quality Models In this appendix we introduce a few of the common models used in water quality analysis. This is by no means a complete list, but does provide a starting point from which

More information

Modelling the hydrologic effects of land-use and climate changes

Modelling the hydrologic effects of land-use and climate changes 7_Tong 15/3/06 10:29 pm Page 344 344 Int. J. Risk Assessment and Management, Vol. 6, Nos. 4/5/6, 2006 Modelling the hydrologic effects of land-use and climate changes Susanna T.Y. Tong* Geography Department,

More information

2

2 1 2 3 4 5 6 The program is designed for surface water hydrology simulation. It includes components for representing precipitation, evaporation, and snowmelt; the atmospheric conditions over a watershed.

More information

Coupled Hydrological and Thermal Modeling of Permafrost and Active Layer Dynamics: Implications to Permafrost Carbon Pool in Northern Eurasia

Coupled Hydrological and Thermal Modeling of Permafrost and Active Layer Dynamics: Implications to Permafrost Carbon Pool in Northern Eurasia Coupled Hydrological and Thermal Modeling of Permafrost and Active Layer Dynamics: Implications to Permafrost Carbon Pool in Northern Eurasia Sergey Marchenko & Vladimir Romanovsky University of Alaska

More information

WES. Review of Watershed Water Quality Models. US Army Corps of Engineers Waterways Experiment Station. Water Quality Research Program

WES. Review of Watershed Water Quality Models. US Army Corps of Engineers Waterways Experiment Station. Water Quality Research Program Technical Report W-99-1 January 1999 US Army Corps of Engineers Waterways Experiment Station Water Quality Research Program Review of Watershed Water Quality Models by Patrick N. Deliman, Roger H. Glick,

More information

Watersheds and the Hydrologic Cycle

Watersheds and the Hydrologic Cycle Watersheds and the Hydrologic Cycle The Global Hydrologic Cycle Water Cycle in Florida Florida Water Facts Surface Area = 170,452 km 2 Average Rainfall = 140 cm (55 ) Total Annual Rain = 238 billion m

More information

Managing trees to reduce stormwater: i Tree Hydro can help

Managing trees to reduce stormwater: i Tree Hydro can help Managing trees to reduce stormwater: i Tree Hydro can help Photo by Gary Simpson Catherine Deininger, Biocenosis LLC cdeininger@biocenosis.org www.biocenosis.org Roadmap 1. Trees as Green Infrastructure

More information

SWMM5 LID Control for Green Infrastructure Modeling

SWMM5 LID Control for Green Infrastructure Modeling SWMM5 LID Control for Green Infrastructure Modeling Ohio Water Environment Association Collection Systems Workshop Matt McCutcheon, E.I. Water Resources Engineer CDM Smith May 9, 2013 11:15 AM 11:45 AM

More information

Comparison of Recharge Estimation Methods Used in Minnesota

Comparison of Recharge Estimation Methods Used in Minnesota Comparison of Recharge Estimation Methods Used in Minnesota by Geoffrey Delin, Richard Healy, David Lorenz, and John Nimmo Minnesota Ground Water Association Spring Conference Methods for Solving Complex

More information

The Fourth Assessment of the Intergovernmental

The Fourth Assessment of the Intergovernmental Hydrologic Characterization of the Koshi Basin and the Impact of Climate Change Luna Bharati, Pabitra Gurung and Priyantha Jayakody Luna Bharati Pabitra Gurung Priyantha Jayakody Abstract: Assessment of

More information

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology

Definitions 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology GG22A: GEOSPHERE & HYDROSPHERE Hydrology Definitions Streamflow volume of water in a river passing a defined point over a specific time period = VxA discharge m 3 s -1 Runoff excess precipitation - precipitation

More information

Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend

Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend Application of a Basin Scale Hydrological Model for Characterizing flow and Drought Trend 20 July 2012 International SWAT conference, Delhi INDIA TIPAPORN HOMDEE 1 Ph.D candidate Prof. KOBKIAT PONGPUT

More information

Ata Amini, Thamer Mohammad Ali, Abdul Halim B. Ghazali, Azlan A. Aziz & Shatirah Mohd. Akib

Ata Amini, Thamer Mohammad Ali, Abdul Halim B. Ghazali, Azlan A. Aziz & Shatirah Mohd. Akib Impacts of Land-Use Change on Streamflows in the Damansara Watershed, Malaysia Ata Amini, Thamer Mohammad Ali, Abdul Halim B. Ghazali, Azlan A. Aziz & Shatirah Mohd. Akib Arabian Journal for Science and

More information

A PILOT STUDY FOR ASSESSING FRESHWATER FLOW IMPACTS TO LOUISIANA ESTUARIES

A PILOT STUDY FOR ASSESSING FRESHWATER FLOW IMPACTS TO LOUISIANA ESTUARIES A PILOT STUDY FOR ASSESSING FRESHWATER FLOW IMPACTS TO LOUISIANA ESTUARIES Ryan Clark, Melissa Baustian, Eric White, Yushi Wang, Andrea Jerabek, and Harris Bienn Louisiana Water Conference March 27, 2018

More information

Low Impact Development (LID) Hydrology Considerations

Low Impact Development (LID) Hydrology Considerations Low Impact Development (LID) Hydrology Considerations What is Bioretention? Filtering stormwater runoff through a terrestrial aerobic (upland) plant / soil / microbe complex to remove pollutants through

More information

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE

RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 RAINFALL - RUNOFF MODELING IN AN EXPERIMENTAL WATERSHED IN GREECE KOTSIFAKIS

More information

Use of SWAT for Urban Water Management Projects in Texas

Use of SWAT for Urban Water Management Projects in Texas Use of SWAT for Urban Water Management Projects in Texas Jaehak Jeong and Allan Jones Texas AgriLife Research Presentation Outline Modeling of Urban Watersheds and Stormwater Best Management Practices

More information

Effect of Land Surface on Runoff Generation

Effect of Land Surface on Runoff Generation Effect of Land Surface on Runoff Generation Context: Hydrologic Cycle Runoff vs Infiltration Infiltration: Process by which water on the ground surface enters the soil Runoff: Water (from rain, snowmelt,

More information

Overview of Models for Estimating Pollutant Loads & Reductions

Overview of Models for Estimating Pollutant Loads & Reductions Overview of Models for Estimating Pollutant Loads & Reductions (Handbook Chapter 8.3 8.5) Texas Watershed Planning Short Course Wednesday, June 3, 2008 Larry Hauck hauck@tiaer.tarleton.edu Presentation

More information

Otter Creek Watershed TMDL Project. Stakeholder Meeting June 6, 2013

Otter Creek Watershed TMDL Project. Stakeholder Meeting June 6, 2013 Otter Creek Watershed TMDL Project Stakeholder Meeting June 6, 2013 1 Meeting Purpose Meet with watershed & technical advisory group members and watershed landowners to provide basic Otter Creek TMDL project

More information

ANALYSIS ON CURVE NUMBER, LAND USE AND LAND COVER CHANGES IN THE JOBARU RIVER BASIN, JAPAN

ANALYSIS ON CURVE NUMBER, LAND USE AND LAND COVER CHANGES IN THE JOBARU RIVER BASIN, JAPAN ANALYSIS ON CURVE NUMBER, LAND USE AND LAND COVER CHANGES IN THE JOBARU RIVER BASIN, JAPAN Jeffry Swingly Frans Sumarauw 1, 2 and Koichiro Ohgushi 1 1 Department of Civil Engineering and Architecture,

More information

1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle

1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle 1.6 Influence of Human Activities and Land use Changes on Hydrologic Cycle Watersheds are subjected to many types of changes, major or minor, for various reasons. Some of these are natural changes and

More information

July, International SWAT Conference & Workshops

July, International SWAT Conference & Workshops Analysis of the impact of water conservation measures on the hydrological response of a medium-sized watershed July, 212 212 International SWAT Conference & Workshops ANALYSIS OF THE IMPACT OF WATER CONSERVATION

More information

APPENDIX H Guidance for Preparing/Reviewing CEQA Initial Studies and Environmental Impact Reports

APPENDIX H Guidance for Preparing/Reviewing CEQA Initial Studies and Environmental Impact Reports APPENDIX H H.1 Guidance for Preparing and Reviewing CEQA Initial Studies Step 1: Consider the Project Characteristics as Provided by the Project Applicant Review the project application and draft plan

More information

Mission. Selected Accomplishments from Walnut Gulch. Facilities. To develop knowledge and technology to conserve water and soil in semi-arid lands

Mission. Selected Accomplishments from Walnut Gulch. Facilities. To develop knowledge and technology to conserve water and soil in semi-arid lands USDA-ARS Southwest Watershed Research Center Mission Sound Science for Watershed Decisions To develop knowledge and technology to conserve water and soil in semi-arid lands ARS Watershed Locations Selected

More information

Outline. Remote Sensing, GIS & DEM for Hydrological Modeling (AV-SWAT) Role of Remote Sensing in Watershed & Water Quality Models

Outline. Remote Sensing, GIS & DEM for Hydrological Modeling (AV-SWAT) Role of Remote Sensing in Watershed & Water Quality Models Remote Sensing, GIS & DEM for Hydrological Modeling (AV-SWAT) Prof. D. Nagesh Kumar Dept. of Civil Engg. Indian Institute of Science Bangalore 6 12 1 Outline Geographic Information System (GIS) Digital

More information

Initial Application of a Landscape Evolution Model to a Louisiana Wetland

Initial Application of a Landscape Evolution Model to a Louisiana Wetland Initial Application of a Landscape Evolution Model to a Louisiana Wetland by Carl F. Cerco PURPOSE: Corps planning projects encompass a wide variety of restoration goals. These include wetland restoration,

More information

Re-plumbing Roadside Ditch Networks

Re-plumbing Roadside Ditch Networks Re-plumbing Roadside Ditch Networks Ditches Improving management to reduce flooding, water pollution, and in-stream erosion and habitat degradation Rebecca Schneider Dept. Natural Resources Cornell University,

More information

Influence of spatial and temporal resolutions in hydrologic models

Influence of spatial and temporal resolutions in hydrologic models Influence of spatial and temporal resolutions in hydrologic models Ingjerd Haddeland (University of Oslo) Dennis P. Lettenmaier (University of Washington) Thomas Skaugen (University of Oslo) Outline Background,

More information

Non-point Source Pollution Assessment of the San Antonio - Nueces Coastal Basin

Non-point Source Pollution Assessment of the San Antonio - Nueces Coastal Basin Non-point Source Pollution Assessment of the San Antonio - Nueces Coastal Basin By David R. Maidment and William K. Saunders Center for Research in Water Resources University of Texas Austin, TX 78712

More information

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow

CHAPTER FIVE Runoff. Engineering Hydrology (ECIV 4323) Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib. Overland flow interflow Engineering Hydrology (ECIV 4323) CHAPTER FIVE Runoff Instructors: Dr. Yunes Mogheir Dr. Ramadan Al Khatib Overland flow interflow Base flow Saturated overland flow ١ ٢ 5.1 Introduction To Runoff Runoff

More information

Physically-based distributed modelling of river runoff under changing climate conditions

Physically-based distributed modelling of river runoff under changing climate conditions doi:10.5194/piahs-368-156-2015 156 Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Physically-based distributed

More information

USING ARCSWAT TO EVALUATE EFFECTS OF LAND USE CHANGE ON WATER QUALITY. Adam Gold Geog 591

USING ARCSWAT TO EVALUATE EFFECTS OF LAND USE CHANGE ON WATER QUALITY. Adam Gold Geog 591 USING ARCSWAT TO EVALUATE EFFECTS OF LAND USE CHANGE ON WATER QUALITY Adam Gold Geog 591 Introduction The Soil and Water Assessment Tool (SWAT) is a hydrologic transport model with an objective to predict

More information

Overview of the Surface Hydrology of Hawai i Watersheds. Ali Fares Associate Professor of Hydrology NREM-CTAHR

Overview of the Surface Hydrology of Hawai i Watersheds. Ali Fares Associate Professor of Hydrology NREM-CTAHR Overview of the Surface Hydrology of Hawai i Watersheds Ali Fares Associate Professor of Hydrology NREM-CTAHR 5/23/2008 Watershed Hydrology Lab 1 What is Hydrology? Hydrology is the water science that

More information

The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain

The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain River Basin Management IV 149 The hydrologic and hydraulic study of the behaviour of the Nyl River floodplain C. F. B. Havenga 1, A. Jeleni 1, W. V. Pitman 2 & A. K. Bailey 2 1 Department of Water Affairs

More information

Welcome to a Webinar on the National Oceanic and Atmospheric Administration. Silver Jackets Webinar Series Partnering Opportunities No.

Welcome to a Webinar on the National Oceanic and Atmospheric Administration. Silver Jackets Webinar Series Partnering Opportunities No. Welcome to a Webinar on the National Oceanic and Atmospheric Administration Silver Jackets Webinar Series Partnering Opportunities No. 4 May 31, 2017 Peter Colohan Director of Service Innovation and Partnership

More information

Application of HEC-HMS for Flood Forecasting in Kabkian Basin and Delibajak Subbasin in Iran

Application of HEC-HMS for Flood Forecasting in Kabkian Basin and Delibajak Subbasin in Iran IOSR Journal of Engineering (IOSRJE) e-iss: 2250-3021, p-iss: 2278-8719 Vol. 3, Issue 9 (September. 2013), V3 PP 10-16 Application of HEC-HMS for Flood Forecasting in Kabkian Basin and Delibajak Subbasin

More information

Points. To encourage and recognise the minimisation of peak stormwater flows and the protection of receiving waters from pollutants.

Points. To encourage and recognise the minimisation of peak stormwater flows and the protection of receiving waters from pollutants. Points Available 3 Aim of Credit To encourage and recognise the minimisation of peak stormwater flows and the protection of receiving waters from pollutants. Credit Criteria Up to three points are available.

More information