Parametric Analysis of Triple Pressure HRSG in Combined Cycle Power Plant (September 2006)

Size: px
Start display at page:

Download "Parametric Analysis of Triple Pressure HRSG in Combined Cycle Power Plant (September 2006)"

Transcription

1 International Energy Journal: Vol. 7, No., September 6 arametric Analysis o riple ressure HRSG in ombined ycle ower lant (September 6) N. Ravi Kumar, Sk. Jaheeruddin, Dr. K. Rama Krishna, and Dr. A. V. Sita Rama Raju Abstract - ombined cycle power plants play an important role in the present energy sector. ombined ycle plants couple a Brayton cycle with a Rankine cycle. For the combined power plants, the optimization o the heat recovery steam generator (HRSG) is o particular interest in order to improve the eiciency o the heat recovery rom gas turbine exhaust to maximize the power production in the steam cycle. In the present study eect o dierent operating variables such as exhaust gas low rate, exhaust gas temperature, pinch point, approach point, steam temperature, steam pressure on the perormance o HRSG has been investigated. riple pressure steam cycle is considered or the bottoming cycle to reduce irreversibilities during heat transer rom gas to water/steam. he cycle is analysed by using energy and exergy analysis. It is observed that in triple pressure cycle selection o I and L pressures, and L pinch are identiied as dominant parameters having impact on heat recovery steam generator perormance. Key words - ombined cycle, exergy analysis, heat recovery steam generator, optimization. INRODUION ombined cycle power plants pose a very good alternative to conventional thermal power plants due to better thermodynamic perormance and reduced environment pollution. In a typical combined cycle plant gas turbine is the topping cycle and the steam turbine is the bottoming cycle. he major components that make up a combined cycle are the gas turbine, the HRSG, the steam turbine. here are many concepts o the combined cycle, these cycles range rom the single pressure cycle, in which the steam or the turbine is generated at only one pressure, to the triple pressure cycles where steam generated or the steam turbine is at three dierent levels. he schematic o Simple combined cycle plant is shown in Fig..he practical design o the HRSG is usually based on the concepts o pinch point and approach point that govern the gas and steam temperature proiles given by Linho and Hindmarsh []. he pinch point represents the dierence between the gas temperature leaving the evaporator and the saturation temperature, while the approach-point temperature is the dierence between the water temperature leaving the economizer and the saturation temperature. inch and approach points take into account both thermodynamic and economical points o view. Subrahmanyam et al. [] discussed various actors aecting the HRSG design or achieving highest combined cycle eiciency with cheaper, economical and competitive designs and with highest requirements to meet the shorter N. Ravi Kumar is working as Assistant roessor in Gudlavalleru Engineering ollege, Gudlavalleru, A, India-556 (orresponding author, hone: , Fax: , ravi_naradasu@yahoo.com). Sk. Jaheeruddin is working as Assistant roessor in Gudlavalleru Engineering ollege, Gudlavalleru, A, India-556. Dr. K. Ramakrishna is working as proessor in Narasaraopet Engineering ollege ( nec_mech@redimail.com). Dr. A. V. Sita rama raju is working as roessor in JN University, Kakinada, A, India ( avsr_raju@redimail.com). deliveries..k. Nag and D.Raha [] made thermodynamic analysis o a coal based combined cycle power plant rom the view points o both irst law and second law. Horlock [4] presented detailed thermodynamic analyses o various schemes o combined power plants. A comprehensive computer simulation o an HRSG was developed by A.Ongiro et al. [5] to predict the perormance o heat recovery steam generator (HRSG).Nag and Mazumder, [6] reported the thermodynamic optimization o a waste heat recovery boiler with an economizer and evaporator and producing saturated Steam. hey have reported the eect o dierent operating parameters on entropy generation or the waste heat recovery boiler. Fig.. Schematic o combined cycle power plant. Dallenback [7] proposed an alternative regenerator coniguration to improve the eiciency o gas turbine cycle. Ravi kumar et al. [8] has done exergy analysis or the alternative coniguration to know exergy losses in dierent components. It is observed that the irreversibility in exhaust gases is low which indicates eective utilization o heat energy, but the speciic work output o the turbine is less. Gas turbine is seen to oer high speciic work output i the turbine inlet temperature (I) could be increased. Increase in I has strict metallurgical limitations in terms o maximum temperature that the turbine stage could withstand. Ravi kumar and Sita rama raju [9] analyzed the eect o inlet

2 International Energy Journal: Vol. 7, No., September 6 cooling on HRSG perormance. It is ound that the inlet cooling reduces the work input o the compressor and increases the mass low rate o air. he eiciency o steam cycle can be improved by increasing the temperature o steam entered into the steam turbine. he maximum temperature o steam that can be used is ixed rom metallurgical considerations.. K. Nag and S. De [] applied thermodynamic analysis to the optimal design and operation o a heat recovery steam generator (HRSG) generating saturated steam or a combined gas and steam power cycle. he aim o the present paper is to study the eect o dierent operating parameters on triple pressure HRSG coniguration in combined cycle power plant by using energy and exergy analysis.. ANALYSIS In a combined cycle power plant the HRSG represents the interace element between the gas turbine and the steam cycle. Here, the gas turbine exhaust gas is cooled down and the recuperated heat is used to generate steam. In order to provide better heat recovery in the HRSG more than one pressure level is used. HRSGs or gas turbine exhaust are usually designed in unired conditions and the perormance evaluated at other unired or ired conditions. he reason or this is that two o the important variables which aect the gas and steam temperature proiles, namely the pinch and approach points, cannot be arbitrarily selected in the ired mode. he pinch point is the dierence between the gas temperature leaving the evaporator and the temperature o saturated steam. Approach point is the dierence between the temperature o saturated steam and the temperature o water entering the evaporator. he schematic diagram o the combined cycle power plant with triple pressure HRSG, or which the analysis has been conducted, is shown in Fig..he air is taken into the compressor at atmospheric pressure and compressed to the desired pressure. he compressed air is sent into the combustion chamber and raised its temperature by burning the uel. he steam turbine utilizes the energy in the exhaust gas o the gas turbine as its input energy. he ollowing assumptions are taken or the present analysis () he system is in steady state () here is no pressure drop in water and steam side () here is no external heat and mass transer (4) he speciic heats o exhaust gas and water are constant (5) he pressure drop on the gas side does not have a signiicant eect on its temperature, Maximum H steam superheat temperature is 5, Minimum pinch point temperature dierence 5, Minimum stack temperature, Maximum working pressure bar, pa.5 kj/kgk, pg.47kj/kgk, R g.87, γ a.4, γ g., c 89%, t 87%, hl., pl., ψ.4. s ( r p ) ( γ a ) ( s ) + pa ( ) pl * γ 4 γ g 4 s ( ) net t t a pg ( 4 s For the gas turbine process net m * V ( γ g ) he combined eiciency o the cycle is + st m * V ΔH m * V ΔG ϕ * ΔH * Δs ΔG ΔH sec + ΔG st ) () () (4) (5) (6) (7) (8) (9) () () () () (4) p r p * p () Fig.. Schematic o triple pressure HRSG.

3 International Energy Journal: Vol. 7, No., September 6 Fig.. emperature heat diagram or triple pressure HRSG. low pressure steam temperature, the dierence in temperature between the high pressure steam ater expansion and the low pressure steam at the mixing point in the turbine must be taken into account. I the dierence is too high, it causes unnecessary thermal stresses with in the turbine. But a high low pressure steam temperature presents the advantage o a kind o a low reheating, reducing the risk o erosion due to wetness in the turbine. Figure 5 represents the change in mass low rate o steam with gas turbine exhaust (HRSG inlet) temperature. ith increase in temperature the H mass o steam increases and L mass o steam is decreased. 7 A computer program is developed to calculate the mass o steam generated in dierent sections, dryness raction o steam, stack temperature, work output, irreversibilities in turbine and HRSG are calculated. he results obtained rom the analysis are represented in orm o graphs and discussed in the next section.. RESULS AND DISUSSION Mass o steam (kg/s) m hps m lps Figure 4 discussed the eect o maximum steam temperature on mass low rate o steam. ith increase in steam temperature the H mass is decreased because more heat is required and the I, L mass o steam is increased. Mass low (ons/hr) HMASS I MASS LM ASS M aximum steam temperature ( ) Fig. 4. Eect o steam temperature on mass low o steam. Figure 5 discussed the eect o steam temperature on eiciency o the bottoming cycle and stack temperature. ith increase in steam temperature the stack temperature and eiciency also increased. For steam turbine increasing the live steam temperature means less erosion in the inal stages but too high a live steam temperature can also cause a disproportionate increase in plant costs since a great amount o expensive material is required or the piping, the superheater and the steam turbine. In most cases the exhaust gas temperature sets the limit or the live steam temperature level because a suicient dierence in temperature is necessary between the exhaust gas and the live steam temperature in order to limit the size o the superheater. In triple cycle while selecting the intermediate pressure and HRSG inlet temperature (K) Fig. 5. Eect o Gas turbine exhaust on mass o steam. Figs. 6 and 7 shows the eect o steam pressure on optimum I and L pressures and mass o steam. ith increase in steam pressure the optimum I and L pressures are increased. In a combined cycle plant, a high live steam pressure brings an increased eiciency o the water/steam cycle due to the greater enthalpy gradient in the turbine. he rate o waste heat energy utilization in the exhaust gases however drops o sharply. From economical point o view it is advisable raising the steam pressure above the thermodynamic equilibrium, because it causes a reduction in exhaust steam low which requires a smaller condensor and less cooling water requirement. ressure (Ma) I RESSURE L RESSURE Max. Steam pressure (Ma) Fig. 6. Eect o maximum steam pressure on optimum I and L steam pressures.

4 4 International Energy Journal: Vol. 7, No., September 6 Mass low rates(ons/hr) 9 8 HMASS 7 IMASS 6 L MASS Max. Steam pressure (Ma) Fig. 7. Eect o maximum steam pressure on mass o steam. able. Eect o inch oints on Stack emperature, Eiciency and Stack Irreversibility H pinch I pinch L pinch Stack Eiciency I stack Figure 8 discussed the eect o steam temperature on dryness raction o exhaust steam. ith increase in steam temperature the dryness raction o steam also increases, which is helpul in avoiding the erosion in inal stages o turbine. Figure 9 shows the change in irreversibilities o steam turbine and exhaust o HRSG. he irreversibility o steam turbine decreases with increase in temperature, but the stack irreversibility increases with increase in steam temperature. o reduce the stack temperature the L pressure must be low. Dryness raction Steam temperature( ) Irreversibility(k) I st I exh Steam emperature( ) Fig. 9. Eect o steam temperature on Stack and steam turbine irreversibility. able shows the eect o steam pressure on eiciency o the cycle, stack temperature and stack irreversibility. At higher pressures the change in stack temperature and stack irreversibility is small. For better exergetic utilization the high pressure must be as high as possible. able shows the change in work output and mass o lue gases with plant capacity. From the table it is clear that or any capacity o the plant one third o total power is produced by the steam turbine and the remaining two third power is produced by the gas turbine. able. Eect o Maximum Steam ressure on Stack emperature, Eiciency and Stack Irreversibility ressure (bar) Eiciency Stack I stack able. hange in Steam urbine Output with lant apacity or Fixed Steam Inlet onditions at Optimum onditions lant apacity (M) Mass o lue gas (kg/s) ork Output (k) Stack (K) Eiciency Fig. 8. Eect o steam temperature on dryness raction.

5 International Energy Journal: Vol. 7, No., September 6 4. ONLUSIONS hermodynamic analysis o triple pressure HRSG is done using energy and exergy analysis. Eect o various operating parameters on perormance o HRSG is studied. It is observed that by increasing steam temperature the irreversibility o steam turbine decreases and dryness raction o steam is increased. For maximum pressure o 7 bar the optimum I and L steam pressures are ound as 47.6 bar and 9.8 bar. For given capacity o the combined cycle power plant / power is produced rom gas turbine and / power is produced rom the steam turbine. NOMENLAURE p speciic heat, kj/kg K V caloriic value, kj/kg pl ractional pressure loss G chemical exergy input H net caloriic value hl heat loss hp high pressure, bar lp low pressure, bar p pressure, bar ower output, M R gas constant r p pressure ratio emperature, K work output, M Suix 5 [] Subrahmanyam.N.V.R.SS, Rajaram.S, Kamalnathan.N HRSGs or combined cycle power plants, Heat Recovery Systems & H 5():55-6. [].K.Nag and D.Raha.995. hermodynamic analysis o a coal-based combined cycle power plant, Heat Recovery Systems &H, 5(): 5-9. [4] Horlock, J.H. 99. ombined ower lants Oxord, ergamon ress. [5] A. Ong iro, V. I. Ugursal, A. M. A aweel, and J. D. alker.997. Modeling o heat recovery steam generator perormance, Applied hermal Engineering, 7(5): [6].K.Nag, S. Mazumder,99. hermodynamic optimization o a waste heat boiler in: roceedings o the th National Heat and Mass ranser onerence, Madras, India. [7] Dellenback,.A.. Improved gas turbine eiciency through alternative regenerator coniguration. rans ASME, Journal o Engineering or Gas turbines and power [8] Ravi kumar.n. Rama krishna.k. Sita rama raju.a.v. 5. Exergy Analysis o Gas urbine ower lant with Alternative oniguration o Regenerator. roceedings, nd International Exerg, Energy Environment Symposium(IEEES). Kos-Greece. [9] Ravi kumar.n., Sita rama raju.a.v. 5. he Study o the Eects o Gas urbine Inlet ooling on lant and HRSG erormance, roceedings o National onerence on Advances in Mechanical Engineering (AIM-5).Hyderabad []. K. Nag and S. De Design and operation o a heat recovery steam generator with minimum Irreversibility, Applied hermal Engineering, 7(4)85-9. a air ap approach point c compressor g gas gas turbine pp pinch point s steam st steam turbine Greek Symbols ç eiciency γ speciic heat ratio ø ratio o chemical exergy to net caloriic value Δ dierential REFERENES [] Linho B., Hindmarsh E. 98. he pinch design method or heat exchanger networks. hemical Engineering Science (8):

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT

EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT EFFECT OF AMBIENT TEMPERATURE, GAS TURBINE INLET TEMPERATURE AND COMPRESSOR PRESSURE RATIO ON PERFORMANCE OF COMBINED CYCLE POWER PLANT Harendra Singh 1, Prashant Kumar Tayal 2 NeeruGoyal 3, Pankaj Mohan

More information

Thermodynamic analysis of a regenerative gas turbine cogeneration plant

Thermodynamic analysis of a regenerative gas turbine cogeneration plant Journal of KUMAR Scientific et al: & Industrial THERMODYNAMIC Research ANALYSIS OF A REGENERATIVE GAS TURBINE COGENERATION PLANT Vol. 69, March 2010, pp. 225-231 225 Thermodynamic analysis of a regenerative

More information

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS Muammer Alus, Milan V. Petrovic University of Belgrade-Faculty of Mechanical Engineering, Laboratory of Thermal

More information

OPTIMIZATION OF THE TRIPLE-PRESSURE COMBINED CYCLE POWER PLANT. Muammer ALUS and Milan V. PETROVI] *

OPTIMIZATION OF THE TRIPLE-PRESSURE COMBINED CYCLE POWER PLANT. Muammer ALUS and Milan V. PETROVI] * THERMAL SCIENCE: Year 2012, Vol. 16, No. 3, pp. 901-914 901 OPTIMIZATION OF THE TRIPLE-PRESSURE COMBINED CYCLE POWER PLANT by Muammer ALUS and Milan V. PETROVI] * Faculty of Mechanical Engineering, University

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Application of Thermoeconomic Analysis on Cgam And Recuperated Gas Turbine Cycle Authors

Application of Thermoeconomic Analysis on Cgam And Recuperated Gas Turbine Cycle Authors Application of hermoeconomic Analysis on gam And Recuperated Gas urbine ycle Authors Mohammed Sarfaraz 1, Mithilesh Kumar Sahu 2, Sanjay 3 1 M.ech, Scholar, Mechanical Engg. Deptt. NI Jamshedpur 2 Ph.D.

More information

EXERGY AND ENERGY ANALYSIS OF 250 MW COAL BASED THERMAL POWER PLANT AT DIFFERENT LOADS

EXERGY AND ENERGY ANALYSIS OF 250 MW COAL BASED THERMAL POWER PLANT AT DIFFERENT LOADS EXERGY AND ENERGY ANALYSIS OF 250 MW COAL BASED THERMAL POWER PLANT AT DIFFERENT LOADS Vibhanshu Vishesh 1, Neel Kanth Grover 2 1 Assistant Proessor, Department o Mechanical Engeerg, BSAITM, Harayana (India)

More information

SENSITIVITY ANALYSIS OF GAS TURBINE FUEL CONSUMPTION WITH RESPECT TO TURBINE STAGE EFFICIENCY. K. MAZAHERI Aerospace Engineering Department,

SENSITIVITY ANALYSIS OF GAS TURBINE FUEL CONSUMPTION WITH RESPECT TO TURBINE STAGE EFFICIENCY. K. MAZAHERI Aerospace Engineering Department, Proceedings o the AME 22 International Mechanical Engineering Congress & Exosition IMECE22 ovember 9-5, 22, Houston, exas, UA IMECE22-89956 EIIVIY AALYI OF GA URBIE FUEL COUMPIO WIH REPEC O URBIE AGE EFFICIECY

More information

Exergy in Processes. Flows and Destruction of Exergy

Exergy in Processes. Flows and Destruction of Exergy Exergy in Processes Flows and Destruction of Exergy Exergy of Different Forms of Energy Chemical Energy Heat Energy Pressurised Gas Electricity Kinetic Energy Oxidation of Methane ΔH = -890.1 kj/mol ΔS

More information

Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants

Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants Optimization of parameters for heat recovery steam generator (HRSG) in combined cycle power plants Muammer Alus, Milan V. Petrovic - Faculty of Mechanical Engineering Laboratory of Thermal Turbomachinery

More information

Exergy Based Analysis of an Open Cycle Gas Turbine Power Plant

Exergy Based Analysis of an Open Cycle Gas Turbine Power Plant Canadian Journal of Basic and Applied Sciences PARL publication, 2015 CJBAS Vol 03(10), 273-282, October 2015 ISSN 2292-3381 xergy Based Analysis of an Open Cycle Gas urbine Power Plant Mukesh Gupta, Raj

More information

The Effect of the Condenser Inlet Cooling Water Temperature on the Combined Cycle Power Plant Performance

The Effect of the Condenser Inlet Cooling Water Temperature on the Combined Cycle Power Plant Performance WWJMRD 2017; 3(10): 206-211 www.wwjmrd.com International Journal Peer Reviewed Journal Refereed Journal Indexed Journal UG Approved Journal Impact Factor MJIF: 4.25 e-issn: 2454-6615 Muammer Alus Mohamed

More information

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K.

a. The power required to drive the compressor; b. The inlet and output pipe cross-sectional area. [Ans: kw, m 2 ] [3.34, R. K. CHAPTER 2 - FIRST LAW OF THERMODYNAMICS 1. At the inlet to a certain nozzle the enthalpy of fluid passing is 2800 kj/kg, and the velocity is 50 m/s. At the discharge end the enthalpy is 2600 kj/kg. The

More information

Core Drying Simulation and Validation

Core Drying Simulation and Validation Paper 11-028.pd, Page 1 o 5 Core Drying Simulation and Validation A. Starobin and C.W. Hirt Flow Science, Inc., Santa Fe, NM H. Lang BMW Group, Landshut, Germany M. Todte CFD Consultants GmbH, Rottenburg,

More information

Optimal Design Technologies for Integration of Combined Cycle Gas Turbine Power Plant with CO 2 Capture

Optimal Design Technologies for Integration of Combined Cycle Gas Turbine Power Plant with CO 2 Capture 1441 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 39, 2014 Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3;

More information

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT

OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT UNIT 47: Engineering Plant Technology Unit code: F/601/1433 QCF level: 5 Credit value: 15 OUTCOME 2 TUTORIAL 2 STEADY FLOW PLANT 2 Be able to apply the steady flow energy equation (SFEE) to plant and equipment

More information

Feedwater Heaters (FWH)

Feedwater Heaters (FWH) Feedwater Heaters (FWH) A practical Regeneration process in steam power plants is accomplished by extracting or bleeding, steam from the turbine at various points. This steam, which could have produced

More information

STUDY ON EFFECTIVE PARAMETER OF THE TRIPLE-PRESSURE REHEAT COMBINED CYCLE PERFORMANCE

STUDY ON EFFECTIVE PARAMETER OF THE TRIPLE-PRESSURE REHEAT COMBINED CYCLE PERFORMANCE THERMAL SCIENCE: Year 2013, Vol. 17, No. 2, pp. 497-508 497 STUDY ON EFFECTIVE PARAMETER OF THE TRIPLE-PRESSURE REHEAT COMBINED CYCLE PERFORMANCE by Thamir K. IBRAHIM a,c* and Mustafizur M. RAHMAN b a

More information

Thermodynamic and Thermo Economic Optimization of Combined Cycle Power Plant

Thermodynamic and Thermo Economic Optimization of Combined Cycle Power Plant Thermodynamic and Thermo Economic Optimization of Combined Cycle Power Plant Masoud Taghavi, Mohsen Abdollahi, and Gholamreza Salehi Abstract Combined Cycle Power Plant is the most effective among all

More information

Energy And Exergy Analysis Of Fully Condensing Steam Turbine At Various Steam Load Condition

Energy And Exergy Analysis Of Fully Condensing Steam Turbine At Various Steam Load Condition International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 957-963, April-June 2013 ICGSEE-2013[14 th 16 th March 2013] International Conference on Global Scenario

More information

International Journal of Advancements in Research & Technology, Volume 2, Issue 5, M ay ISSN

International Journal of Advancements in Research & Technology, Volume 2, Issue 5, M ay ISSN International Journal of Advancements in Research & echnology, Volume 2, Issue 5, M ay-203 285 Performance Analysis of CCG Power Plant using MALAB/Simulink Based Simulation J. N. RAI, NAIMUL HASAN 2, B.

More information

Keyur C. Patel a *, Vikas J. Lakhera b, Dilip Sarda c

Keyur C. Patel a *, Vikas J. Lakhera b, Dilip Sarda c Available online at www.sciencedirect.com Procedia Engineering 51 ( 013 ) 650 654 Chemical, Civil and Mechanical Engineering Tracks o 3 rd Nirma University International Conerence (NUiCONE 01) Thermal

More information

EXERGETIC ANALYSIS OF SOLAR AIDED COAL FIRED (210MW) THERMAL POWER PLANT

EXERGETIC ANALYSIS OF SOLAR AIDED COAL FIRED (210MW) THERMAL POWER PLANT International Journal of Advances in Thermal Sciences and Engineering Volume 2 Number 2 July-December 2011, pp. 85-90 EXERGETIC ANALYSIS OF SOLAR AIDED COAL FIRED (210MW) THERMAL POWER PLANT V. Siva Reddy

More information

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency

Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency Pinch Analysis for Power Plant: A Novel Approach for Increase in Efficiency S. R. Sunasara 1, J. J. Makadia 2 * 1,2 Mechanical Engineering Department, RK University Kasturbadham, Rajkot-Bhavngar highway,

More information

2. TECHNICAL DESCRIPTION OF THE PROJECT

2. TECHNICAL DESCRIPTION OF THE PROJECT 2. TECHNICAL DESCRIPTION OF THE PROJECT 2.1. What is a Combined Cycle Gas Turbine (CCGT) Plant? A CCGT power plant uses a cycle configuration of gas turbines, heat recovery steam generators (HRSGs) and

More information

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah

Chapter Two. The Rankine cycle. Prepared by Dr. Shatha Ammourah Chapter Two The Rankine cycle Prepared by Dr. Shatha Ammourah 1 The Ideal Rankine Cycle Schematic Diagram of ideal simple Rankine 2 Superheater Economizer line 3 Heat Addition Types In The Steam Generator

More information

Course 0101 Combined Cycle Power Plant Fundamentals

Course 0101 Combined Cycle Power Plant Fundamentals Course 0101 Combined Cycle Power Plant Fundamentals Fossil Training 0101 CC Power Plant Fundamentals All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Combined cycle with detailed calculation of Cp in the HRSG

Combined cycle with detailed calculation of Cp in the HRSG Combined cycle with detailed calculation of Cp in the HRSG A large, light-oil fired gas turbine with an electrical power output of 171 MW is integrated with a steam cycle, forming a combined cycle. Some

More information

Active Magnetic Regenerative Heat Circulator for Energy Saving in Thermal Process

Active Magnetic Regenerative Heat Circulator for Energy Saving in Thermal Process A publication o CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seerlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi S.r.l.,

More information

Exergy Analysis of a Power Plant in Abu Dhabi (UAE)

Exergy Analysis of a Power Plant in Abu Dhabi (UAE) Exergy Analysis of a Power Plant in Abu Dhabi (UAE) Omar Mohamed Alhosani 1, Abdulla Ali Alhosani 2, Zin Eddine Dadach 3 1, 2, 3 Chemical Engineering Department, Abu Dhabi Men s College, Higher Colleges

More information

Unit B-3: List of Subjects

Unit B-3: List of Subjects ES312 Energy Transer Fundamentals Unit B: First Law o Thermodynamics ROAD MAP... B-1: The Concept o Energy B-2: ork Interactions B-3: First Law o Thermodynamics B-4: Heat Transer Fundamentals Unit B-3:

More information

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT

AN EXERGY COST ANALYSIS OF A COGENERATION PLANT AN EXERGY COST ANALYSIS OF A COGENERATION PLANT L. P. Gonçalves, and F. R. P. Arrieta Pontifícia Universidade Católica de Minas Gerais Programa de Pós-Graduação em Engenharia Mecânica Av. Dom José Gaspar,

More information

Efficiency improvement of steam power plants in Kuwait

Efficiency improvement of steam power plants in Kuwait Energy and Sustainability V 173 Efficiency improvement of steam power plants in Kuwait H. Hussain, M. Sebzali & B. Ameer Energy and Building Research Center, Kuwait Institute for Scientific Research, Kuwait

More information

Sustainable Energy 10/7/2010

Sustainable Energy 10/7/2010 Toolbox 8: Thermodynamics and Efficiency alculations Sustainable Energy 10/7/2010 Sustainable Energy - Fall 2010 - Thermodynamics First law: conservation of heat plus work eat () and work (W) are forms

More information

Eng Thermodynamics I: Sample Final Exam Questions 1

Eng Thermodynamics I: Sample Final Exam Questions 1 Eng3901 - Thermodynamics I: Sample Final Exam Questions 1 The final exam in Eng3901 - Thermodynamics I consists of four questions: (1) 1st Law analysis of a steam power cycle, or a vapour compression refrigeration

More information

Engineering Thermodynamics

Engineering Thermodynamics Unit 61: Engineering Thermodynamics Unit code: D/601/1410 QCF level: 5 Credit value: 15 Aim This unit will extend learners knowledge of heat and work transfer. It will develop learners understanding of

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 06, 016 ISSN (online): 31-0613 Thermodynamic Analysis of Thermal Power Plant Cycle Veeranagouda Patil 1 M. R. Nagaraj 1

More information

A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture

A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University A Further Step Towards a Graz Cycle Power Plant for CO 2 Capture Presentation at the

More information

Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system

Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system Desalination 214 (2007) 306 326 Fuel allocation in a combined steam-injected gas turbine and thermal seawater desalination system Yongqing Wang a, Noam Lior b a College of Mechanical Engineering, Jimei

More information

Efficiency of a Coal Fired Boiler in a Typical Thermal Power Plant

Efficiency of a Coal Fired Boiler in a Typical Thermal Power Plant American Journal o Mechanical and Industrial Engineering 017; (1: 3-36 http://www.sciencepublishinggroup.com/j/ajmie doi: 10.1164/j.ajmie.017001.15 Case Report Eiciency o a Coal Fired Boiler in a Typical

More information

Determining Dryness Fraction

Determining Dryness Fraction Determining Dryness Fraction SUPERHEATED EVAPORATION 100 C WATER LINE 0 C g Temperature/Entalpy Dryness Fraction Tis andout assumes te student is amiliar wit Steam Tables and te terms ound terein. I required,

More information

ENERGY AND EXERGY ANALYSIS OF A 250MW COAL FIRED THERMAL POWER PLANT AT DIFFERENT LOADS

ENERGY AND EXERGY ANALYSIS OF A 250MW COAL FIRED THERMAL POWER PLANT AT DIFFERENT LOADS ENERGY AND EXERGY ANALYSIS OF A 250MW COAL FIRED THERMAL POWER PLANT AT DIFFERENT LOADS Soupayan Mitra 1, Joydip Ghosh 2 1 Associate Professor, Mechanical Engineering Department, Jalpaiguri Government

More information

Performance Optimization of Steam Power Plant through Energy and Exergy Analysis

Performance Optimization of Steam Power Plant through Energy and Exergy Analysis I NPRESSCO NTERNATIONAL PRESS CORPORATION International Journal of Current Engineering and Technology, Vol.2, No.3 (Sept. 2012) ISSN 2277-4106 Research Article Performance Optimization of Steam Power Plant

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

Analysis of the dynamic characteristics of a combined-cycle power plant

Analysis of the dynamic characteristics of a combined-cycle power plant Energy 27 (2002) 1085 1098 www.elsevier.com/locate/energy Analysis of the dynamic characteristics of a combined-cycle power plant J.Y. Shin a,, Y.J. Jeon b, D.J. Maeng b, J.S. Kim b, S.T. Ro c a Department

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad,

St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, St.MARTIN S ENGINEERING COLLEGE Dhulapally,Secunderabad, 500014. MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Course Name : THERMAL ENGINEERING II Course Code : A50326- Class : III B. Tech I Semester

More information

Investigation of Separator Parameters in Kalina Cycle Systems

Investigation of Separator Parameters in Kalina Cycle Systems Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Investigation

More information

Performance of a Gas Turbine Power Plant

Performance of a Gas Turbine Power Plant International Journal of Mechanical Engineering and Applications 2017; 5(1): 60-69 http://www.sciencepublishinggroup.com/j/ijmea doi: 10.11648/j.ijmea.20170501.18 ISSN: 2330-023X (Print); ISSN: 2330-0248

More information

Thermo-Economic Analysis of a Desalination Device from the Second law of Thermodynamics Point of View and Parameter Investigation

Thermo-Economic Analysis of a Desalination Device from the Second law of Thermodynamics Point of View and Parameter Investigation International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1 Thermo-Economic Analysis of a Desalination Device from the Second law of Thermodynamics Point of View and Parameter

More information

Exploitation of Low-Grade Heat in Site Utility Systems

Exploitation of Low-Grade Heat in Site Utility Systems CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET102101762 367

More information

Applied Thermo Fluids-II: (Autumn 2017) Section-A: Thermal Power Plants

Applied Thermo Fluids-II: (Autumn 2017) Section-A: Thermal Power Plants Applied Thermo Fluids-II: (Autumn 2017) Section-A: Thermal Power Plants Module-1 (Introduction & Thermodynamics of thermal power plants) Dr. M. Ramgopal, Mechanical Engineering, IIT Kharagpur Reference:

More information

SINGLE STAGE TRIPLE PRESSURE LEVEL ABSORPTION CYCLE BASED ON REFRIGERANTSR22, R32, R125, R134a AND R152a WITH DMEU

SINGLE STAGE TRIPLE PRESSURE LEVEL ABSORPTION CYCLE BASED ON REFRIGERANTSR22, R32, R125, R134a AND R152a WITH DMEU SINGLE STAGE TRIPLE PRESSURE LEVEL ABSORPTION CYCLE BASED ON REFRIGERANTSR22, R32, R125, R134a AND R152a WITH DMEU A. Levy 1, M. Jelinek 1, I. Borde 1 & F. Ziegler 2 1 Mechanical Engineering Department,

More information

Power cycles. Principles of combustion cycles and efficient concepts

Power cycles. Principles of combustion cycles and efficient concepts Power cycles Principles of combustion cycles and efficient concepts This contribution is based on the EC BREF- document Reference Document on Best Available Techniques for Large Combustion Plants July

More information

EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE

EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE EFFECT OF INLET AIR COOLING ON GAS TURBINE PERFORMANCE WAIEL KAMAL ELSAIED 1,*, ZAINAL AMBRI BIN ABDUL KARIM 2,* Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia UTP_waiel@yahoo.com,

More information

Thermal Performance of Reheat, Regenerative, Inter Cooled Gas Turbine Cycle

Thermal Performance of Reheat, Regenerative, Inter Cooled Gas Turbine Cycle IJRMET Vo l. 5, Is s u e 2, Ma y - Oc t 2015 ISSN : 2249-5762 (Online) ISSN : 2249-5770 (Print) Thermal Performance of Reheat, Regenerative, Inter Cooled Gas Turbine Cycle 1 Milind S. Patil, 2 Datta B.

More information

Refrigeration Kylteknik

Refrigeration Kylteknik Värme- och strömningsteknik Thermal and flow engineering Refrigeration 424159.0 Kylteknik Ron Zevenhoven Exam 24-3-2017 4 questions, max. points = 4 + 6 + 10 + 10 = 30 All support material is allowed except

More information

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Multi-Variable Optimisation Of Wet Vapour Organic Rankine Cycles With Twin-Screw Expanders

More information

Parametric study on effect of pinch and approach points on heat recovery steam generator performance at a district cooling system

Parametric study on effect of pinch and approach points on heat recovery steam generator performance at a district cooling system Journal of Mechanical Engineering and Sciences ISSN (Print): 2289-4659; e-issn: 2231-8380 Volume 11, Issue 2, pp. 2626-2636, June 2017 Universiti Malaysia Pahang, Malaysia DOI: https://doi.org/10.15282/jmes.11.2.2017.6.0240

More information

Grand Composite Curve Module 04 Lecture 12

Grand Composite Curve Module 04 Lecture 12 Module 04: Targeting Lecture 12: Grand Composite Curve While composite curves provide overall energy targets, these do not indicate the amount of energy that should be supplied at different temperature

More information

Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant

Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant Thermodynamic analysis on post combustion CO 2 capture of natural gas fired power plant Abstract Zeinab Amrollahi, 1 Ivar S. Ertesvåg, Olav Bolland Department of Energy and Process Engineering, Norwegian

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 08 Aug p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 08 Aug p-issn: Thermodynamic analysis and comparison of various organic fluids for ORC in Gas turbine-organic Rankine combined cycle plant with solar reheating and regeneration of ORC fluid Dr. R.S. Mishra 1, Dharmendra

More information

Performance and Emission Characteristics of Natural Gas Combined Cycle Power Generation System with Steam Injection and Oxyfuel Combustion

Performance and Emission Characteristics of Natural Gas Combined Cycle Power Generation System with Steam Injection and Oxyfuel Combustion Performance and Emission Characteristics of Natural Gas Combined Cycle Power Generation System with Steam Injection and Oxyfuel Combustion By Nitin N. Varia A Thesis Submitted in Partial Fulfillment of

More information

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture

High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture High-efficiency low LCOE combined cycles for sour gas oxy-combustion with CO[subscript 2] capture The MIT Faculty has made this article openly available. Please share how this access benefits you. Your

More information

Application of Exergy Analysis. Value and Limitations

Application of Exergy Analysis. Value and Limitations Application of Exergy Analysis Value and Limitations Power Plant Exergy Flows and Destruction Stack 2 Other Losses 1 Fuel 92 27 65 20 Steam 43 7 Shaft Power 32 Combustion Heat Transfer Turbine Steam 3

More information

Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle

Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle OPEN ACCESS World Sustainability Forum 204 Conference Proceedings Paper http://www.sciforum.net/conference/wsf-4 Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle Abtin Ataei, Mehdi

More information

Stationary Combustion Systems Chapter 6

Stationary Combustion Systems Chapter 6 Stationary Combustion Systems Chapter 6 Stationary combustion systems presently supply most of the earth s electricity. Conversion will take time, so study of these systems in order to improve them is

More information

ORGANIC RANKINE CYCLE AS EFFICIENT ALTERNATIVE TO STEAM CYCLE FOR SMALL SCALE POWER GENERATION

ORGANIC RANKINE CYCLE AS EFFICIENT ALTERNATIVE TO STEAM CYCLE FOR SMALL SCALE POWER GENERATION th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT0 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics July 0 Pointe Aux Piments, Mauritius

More information

MODELLING AND SIMULATION OF EXTRACTION OF MARJORAM ESSENTIAL OIL USING SUPERCRITICAL CO 2

MODELLING AND SIMULATION OF EXTRACTION OF MARJORAM ESSENTIAL OIL USING SUPERCRITICAL CO 2 MODELLING AND SIMULATION OF EXTRACTION OF MARJORAM ESSENTIAL OIL USING SUPERCRITICAL CO M.D.A. Saldaña*, R. L. Smith Jr. and H. Inomata Tohoku University, Research Center o Supercritical Fluid Technology

More information

HEAT TRANSFER ANALYSIS OF GEOTHERMAL HEAT EXCHANGERS IN GROUND-COUPLED HEAT PUMP SYSTEMS. Abstract. 1. Introduction

HEAT TRANSFER ANALYSIS OF GEOTHERMAL HEAT EXCHANGERS IN GROUND-COUPLED HEAT PUMP SYSTEMS. Abstract. 1. Introduction HEX-01 HEAT TRANSFER ANALYSIS OF GEOTHERMAL HEAT EXCHANGERS IN GROUND-COUPLED HEAT PUMP SYSTEMS Z Fang, N Diao, M Yu, P Cui The Ground Source Heat Pump Research Center Shandong Institute o Architecture

More information

Principles of Engineering Thermodynamics. 8th Edition SI Version

Principles of Engineering Thermodynamics. 8th Edition SI Version Brochure More information from http://www.researchandmarkets.com/reports/3148694/ Principles of Engineering Thermodynamics. 8th Edition SI Version Description: Now in its Eighth Edition, Principles of

More information

Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery

Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-ype Expander for Low-emperature Waste Heat Recovery Musthafah b Mohdahir, Noboru Yamada, and etsuya Hoshino Abstract his paper describes

More information

Chapter 9: Applications of the Laws of Thermodynamics

Chapter 9: Applications of the Laws of Thermodynamics Chapter 9: Applications of the Laws of hermodynamics Goals of Period 9 Section 9.1: Section 9.2: Section 9.3: o review the first law of thermodynamics o discuss heat engines and their efficiency o discuss

More information

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa.

Chapters 5, 6, and 7. Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. Chapters 5, 6, and 7 Use T 0 = 20 C and p 0 = 100 kpa and constant specific heats unless otherwise noted. Note also that 1 bar = 100 kpa. 5-1. Steam enters a steady-flow device at 16 MPa and 560 C with

More information

Problems 2-9 are worth 2 points each. Circle T or F as appropriate for problems 6-9.

Problems 2-9 are worth 2 points each. Circle T or F as appropriate for problems 6-9. NAME KEY Allowed: Writing utensil, calculator and the provided formula sheet. Books, notes and collaboration (friends) are not allowed! Clearly indicate your answer and show your work. I do give partial

More information

Proceedings of 2nd Conference: People and Buildings, held at Graduate Centre, London Metropolitan University, London, UK, 18 th of September 212. Network for Comfort and Energy Use in Buildings: http://www.nceub.org.uk

More information

3. ENERGY PERFORMANCE ASSESSMENT OF COGENERATION SYSTEMS WITH STEAM AND GAS TURBINES

3. ENERGY PERFORMANCE ASSESSMENT OF COGENERATION SYSTEMS WITH STEAM AND GAS TURBINES 3. ENERGY PERFORMANCE ASSESSMENT OF COGENERATION SYSTEMS WITH STEAM AND GAS TURBINES 3.1 Introduction Cogeneration systems can be broadly classified as those using steam turbines, Gas turbines and DG sets.

More information

Technical and economical feasibility of the Rankine compression gas turbine (RCG)

Technical and economical feasibility of the Rankine compression gas turbine (RCG) Applied Thermal Engineering 26 (2006) 413 420 www.elsevier.com/locate/apthermeng Technical and economical feasibility of the Rankine compression gas turbine (RCG) H. Ouwerkerk *, H.C. de Lange Eindhoven

More information

Assessment of Site Parameters and Heat Recovery Characteristics on Combined Cycle Performance in an Equatorial Environment

Assessment of Site Parameters and Heat Recovery Characteristics on Combined Cycle Performance in an Equatorial Environment World Journal of Engineering and Technology, 2016, 4, 313-324 Published Online May 2016 in SciRes. http://www.scirp.org/journal/wjet http://dx.doi.org/10.4236/wjet.2016.42032 Assessment of Site Parameters

More information

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett

MCG THERMODYNAMICS II. 22 April 2008 Page 1 of 7 Prof. W. Hallett Faculté de génie Génie mécanique Faculty of Engineering Mechanical Engineering MCG2131 - THERMODYNAMICS II 22 April 2008 Page 1 of 7 Prof. W. Hallett Closed book. Non-programmable calculators only allowed.

More information

High Bridge Combined Cycle Plant

High Bridge Combined Cycle Plant High Bridge Combined Cycle Plant Location: Down town St. Paul, on the Mississippi River Plant Description: High Bridge is a combined cycle generating facility. A combined cycle plant produces electricity

More information

Modelling and Optimisation of the Otahuhu B Combined Cycle Gas Turbine Power Station

Modelling and Optimisation of the Otahuhu B Combined Cycle Gas Turbine Power Station Modelling and Optimisation of the Otahuhu B Combined Cycle Gas Turbine Power Station Hannon Lim 1, Jonathan Currie 2, David I. Wilson 2 and John Rickerby 3 1 Electrical and Electronic Engineering AUT University

More information

PERFORMANCE PREDICTION OF ROTATING BIOLOGICAL CONTACTOR IN WASTEWATER TREATMENT APPLICATIONS

PERFORMANCE PREDICTION OF ROTATING BIOLOGICAL CONTACTOR IN WASTEWATER TREATMENT APPLICATIONS PERFORMANCE PREDICTION OF ROTATING BIOLOGICAL CONTACTOR IN WASTEWATER TREATMENT APPLICATIONS Dr. Amer D. Zmat College o Engineering AL-Qadisiya University Dr. Ali H. GHAWI College o Engineering AL-Qadisiya

More information

2291-6A. Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors. 27 June - 1 July, 2011

2291-6A. Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors. 27 June - 1 July, 2011 2291-6A Joint ICTP-IAEA Course on Science and Technology of Supercritical Water Cooled Reactors 27 June - 1 July, 2011 INTRODUCTION TO THERMODYNAMICS Igor PIORO Faculty of Energy Systems and Nuclear Science

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Paper ID: 119, Page 1 PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio Tola Department of Mechanical, Chemical and Material Engineering, University

More information

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits

Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits POWER-GEN Asia 2011 Kuala-Lumpur, Malaysia September 27-29, 2011 Thermodynamic Considerations for Large Steam Turbine Upgrades and Retrofits Leonid Moroz, Kirill Grebennik 15 New England Executive Park,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Father of thermodynamics, Sadi Carnot said that man is the weakest animal on the earth yet dominates the entire world. only because of power. Best power plant cycle is the one in

More information

Design Optimisation of the Graz Cycle Prototype Plant

Design Optimisation of the Graz Cycle Prototype Plant Institute for Thermal Turbomaschinery and Machine Dynamics Graz University of Technology Erzherzog-Johann-University Design Optimisation of the Graz Cycle Prototype Plant Presentation at the ASME Turbo

More information

Step By Step Numerical Approach to a Self-Sufficient Micro Energy System Design

Step By Step Numerical Approach to a Self-Sufficient Micro Energy System Design RESEARCH ARTICLE OPEN ACCESS Step By Step Numerical Approach to a Sel-Suicient Micro Energy System Design Rok Lacko a, Andrej Pirc b, Mitja Mori c, Boštjan Drobnič c a Inea d.o.o., Stegne 11, 1000 Ljubljana,

More information

Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications

Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications Downloaded from orbit.dtu.dk on: Nov 26, 2017 Thermodynamic evaluation of the Kalina split-cycle concepts for waste heat recovery applications Nguyen, Tuong-Van; Knudsen, Thomas; Larsen, Ulrik; Haglind,

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India Thermodynamic Analysis of Combined ORC-VCR System Using Low Grade Thermal Energy K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar-263145, India 2 Department

More information

Comparison of Different Gas Turbine Inlet Air Cooling Methods

Comparison of Different Gas Turbine Inlet Air Cooling Methods Comparison of Different Gas Turbine Inlet Air Cooling Methods Ana Paula P. dos Santos, Claudia R. Andrade and Edson L. Zaparoli International Science Index, Aerospace and Mechanical Engineering waset.org/publication/2686

More information

SELECTION OF WORKING FLUID AND EXERGY ANALYSIS OF AN ORGANIC RANKINE CYCLE

SELECTION OF WORKING FLUID AND EXERGY ANALYSIS OF AN ORGANIC RANKINE CYCLE International Journal of Advance Research In Science And Engineering http://www.ijarse.com SELECTION OF WORKING FLUID AND EXERGY ANALYSIS OF AN ORGANIC RANKINE CYCLE Aseem Desai 1, Deepa Agrawal 2, Sauradeep

More information

EXERGOECONOMIC ANALYSIS OF A POWER PLANT IN ABU DHABI. Ahmed Nabil Al Ansi, Mubarak Salem Ballaith, Hassan Ali Al Kaabi, Advisor: Zin Eddine Dadach

EXERGOECONOMIC ANALYSIS OF A POWER PLANT IN ABU DHABI. Ahmed Nabil Al Ansi, Mubarak Salem Ballaith, Hassan Ali Al Kaabi, Advisor: Zin Eddine Dadach EXERGOECONOMIC ANALYSIS OF A POWER PLANT IN ABU DHABI Ahmed Nabil Al Ansi, Mubarak Salem Ballaith, Hassan Ali Al Kaabi, Advisor: Zin Eddine Dadach INTRODUCTION Following a previous exergy analysis of a

More information

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY

ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE AT COVANTA S HAVERHILL FACILITY Proceedings of the 18th Annual North American Waste-to-Energy Conference NAWTEC18 May 11-13, 2010, Orlando, Florida, USA Paper Number: NAWTEC18-3563 ENERGY RECOVERY IMPROVEMENT USING ORGANIC RANKINE CYCLE

More information

Validating a Thermodynamic Model of the Otahuhu B Combined Cycle Gas Turbine Power Station

Validating a Thermodynamic Model of the Otahuhu B Combined Cycle Gas Turbine Power Station Validating a Thermodynamic Model of the Otahuhu B Combined Cycle Gas Turbine Power Station Hannon Lim 1, Jonathan Currie 2, David I. Wilson 2 1 Electrical and Electronic Engineering AUT University Auckland,

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM IV (ME-41, 42,43 & 44)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Q.1. In a stage of an impulse turbine provided with a single row wheel, the mean diameter of the blade ring is 80cm and the speed of the rotation is 3000rpm. The steam issues from the nozzle

More information