Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0.

Size: px
Start display at page:

Download "Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0."

Transcription

1 Ecosystems APES CH 3 But First: Cells Complex organic compounds called macromolecules make up the basic molecular units found in cells. Complex carbohydrates Cellulose and starch Proteins- made up of amino acids Nucleic acids- made of nucleotides DNA & RNA Lipids- compounds don t dissolve in H 2 O fats, waxes, steroids Next: Genes Genes carry heredity information via the DNA contained in chromosomes. Species- group of organisms that have similar genetic makeup; can mate and reproduce. This genetic information makes you a member of the human species but also allows you to be a unique member of that species. Ecology How organisms interact with biotic and abiotic environment. Biotic is the environment of other organisms. Abiotic is their nonliving environment of soil, water and other forms of matter. It is a study of connections in nature. 5 6 Earth s Life-Support Atmosphere- gases surrounding earth s surface. Troposphere= air we breathe; weather 78% nitrogen, 21% oxygen, 0.033% CO 2 1

2 78% nitrogen, 21% oxygen, 0.033% CO 2 Hydrosphere- earth s water Geosphere- earth s solid surface and deeper layers Lithosphere= upper mantle and crust, resources Biosphere- those parts of the atmosphere, hydrosphere, and geosphere where life is found Classification of the Biosphere Biomes terrestrial regions with distinct climates similar vegetation and also species. Aquatic life zones Almost 75% of the Earth s surface Freshwater life zones Marine life zones Three Factors Sustain Life on Earth One-way flow of high-quality energy from the sun 1 st & 2 nd law of thermodynamics Cycling of matter or nutrients through parts of the biosphere Law of conservation of matter Gravity Enables movement and cycling Natural Capital: Solar Energy Lights the Earth Warms the Earth Natural green house effect Drives the hydrologic cycle Generates winds Enables photosynthesis (less than.03%) Thus, providing food. Range of Tolerance (ROT) 2

3 Each population in an ecosystem has a ROT to variations in its physical and chemical environment. Age, health, & genetic diversity allows some to be more tolerant than others. Optimal range- level of factors in which a population thrives Limiting factors are those abiotic factors that are more important in regulating population growth than other factors. 13 Limiting Factors Limiting factor principle- too much or too little of any abiotic factor can limit or prevent growth of a population, even if all else is in optimal range. Examples On Land: Precipitation Soil nutrients Temperature Aquatic Examples: Dissolved oxygen levels Temperature & sunlight Salinity (Salt) & nutrients Animation: Gause s Competition Experiment Trophic (feeding) Levels Producers autotrophs, chemotrophs Photosynthesis; Plants and algae Chemosynthesis; bacteria in deep ocean Use energy in chemical bonds CH 4 & H 2 S Consumers heterotrophs; animals Primary- eat producers (herbivores) Secondary- eat primary (carnivores) Third-level- eat primary & secondary Omnivores- eat plants and animals Trophic Levels (pt.2) 3

4 Decomposers- digest food outside their bodies, breaking down dead organisms by using enzymes. Perform nutrient cycling by releasing the nutrients once held in those bodies to be used again. Ex. Certain types of bacteria and fungi Detritivores- actually feed on wastes & dead organisms ex. Earthworms, mites, vultures In this way, nature wastes nothing. Nutrient cycling Useless Species? Microbes and microorganisms are everywhere Bacteria Fungi Protozoa Decomposers & detritus feeders complete the cycling of matter by breaking down organic matter into simpler nutrients that can be reused by producers. Only a few microbes cause diseases Consumption of Energy Chemical energy stored in food fuels life processes All organisms get their energy from aerobic or anaerobic respiration, but only plants carry out photosynthesis. Aerobic respiration- carried out in the presence of oxygen Net products are opposite those of photosynthesis Anaerobic respiration- carried out without oxygen a.k.a fermentation Some decomposers can do this 3-4 What Is Biodiversity and Why Is It Important? Biodiversity is all the diversity associated with life, as well as those places & processes that support it. 4

5 those places & processes that support it. The biodiversity found in the earth s genes, species, ecosystems, and ecosystem processes is vital to sustaining life on earth. 22 Biodiversity Genetic diversity- of genes found within a species or population. Allows for adaptation to change Ecosystem diversity- of terrestrial and aquatic ecosystems found in an area or on the earth. Functional diversity- of processes like energy flow and matter recycling 23 Core Case Study: Insects Around for ~400 million years Bad reputation Useful to humans and ecosystems Vital roles in sustaining life Pollinators Natural pest control Renewing soils 24 Ecosystem Diversity Soil varies with its ecosystem. Different soils are supportive of different habitats e.g. desert, grasslands Soil supplies most of the nutrients needed for plant growth and helps purify and store water and control levels of carbon dioxide in the atmosphere by storing it. 25 Soil varies with Age The age of the soil can also cause variety. 5

6 The age of the soil can also cause variety. Immature soil is mostly bedrock Young soil has smaller and smaller rock fragments Mature soils contain 3 horizons (layers); each w/ distinct texture and composition. O horizon= leaf litter, wastes; uppermost layer A horizon= topsoil, more roots, home to detritivores and many decomposers B horizon= subsoil, sand, silt, clay C horizon= parent material; rock, gravel Soil Color & Composition A horizon, topsoil, is composed of decomposed organic matter called humus. Thick= helps hold water & nutrients Dark brown/black= rich in nitrogen & organic matter Gray, yellow, or red topsoils need nitrogen enrichment B & C horizons have inorganic matter Sand, silt, clay, and gravel Soil Texture Sand- largest particles, lots of air, low water holding ability Silt- particles larger than clay, but smaller than sand, drains slowly Clay- smallest particles, poor drainage Loam- best soil, mostly humus, (sand, silt, clay), good infiltration (downward movement of water) Leaching when water dissolves minerals & organic matter water carrying it to lower levels. 29 Higher Percent Clay Soil The finer the texture: the more difficult a soil is to work or till, 6

7 the more difficult a soil is to work or till, the greater the water holding capacity, the slower water will enter and move through the soil profile, more difficult plant root penetration, the more readily surface soil will crust, and the more nutrient rich the soil. 30 Soil Texture & Permeability Gritty= has a lot of sand Sticky= has a lot of clay; retains a lot of water Smooth= soil is silt laden Crumbly/spongy= soil is heavily loam, holds water; good growth & permeability Soil porosity is affected by soil texture. Porosity in soil determines soil permeability Trophic Connections Food Chain- sequence of organisms, each of which serves as a source of food for the next Food web Network of interconnected food chains More complex than a food chain The arrow s point should aim at the organism that eats it (the arrow s end). Animation: Rainforest Food Web What Happens to Energy in an Ecosystem? Law of 10%= The amount of chemical energy available to organisms at each succeeding feeding level decreases. The most energy is at the bottom with producers. Each trophic level in a food web contains a certain amount of biomass, the dry weight of all organic matter contained in organisms. Which would have more energy a vegetarian or a carnivore? 7

8 Which would have more energy a vegetarian or a carnivore? Why do food chains or webs rarely have more than four or five trophic levels? Primary Productivity Gross primary productivity (GPP)- rate producers convert solar into energy stored in biomass. kcal/m 2 /yr Net primary productivity (NPP)- net rate; producers must use some energy to function NPP= GPP R; (R is that used for respiration) Planet s NPP limits number of consumers The amount of biomass that a particular ecosystem can support is determined by the amount of energy captured and stored as chemical energy by the producers of that ecosystem and how fast they can do it What Happens to Matter in an Ecosystem? Biogeochemical cycles- elements & compounds move continually through air, water, soil, rock, and living organisms. These cycles are driven directly or indirectly by solar energy & gravity. Reservoirs are places where nutrients may accumulate in one portion of the cycle. Atmosphere, oceans, waters, underground Water is Important Surface water helps maintain temperature of surrounding areas. 8

9 areas. Due to water s high specific heat. Water is polar; good solvent. Dilutes wastes. Hydrogen bonding; capillary action for transpiration. Humans alter it: withdrawing large amounts, causing erosion, polluting surface & ground water, climate change 40 Carbon Cycle Carbon is obtained from the atmosphere by producers, which are eaten by consumers, which respire, die and decompose. Fast Carbon- part of the carbon cycle that involves processes associated w/ organisms. Slow Carbon- involves carbon held in rocks, in soils, or as petroleum hydrocarbons. May be stored in these forms for millions of years Nitrogen Cycle Multicellular plants and animals cannot utilize atmospheric nitrogen (N 2 ) Nitrogen-fixation- lightning and bacteria combine nitrogen gas with hydrogen to make ammonia. Nitrification- done by bacteria when ammonia & ammonium are converted to nitrates & nitrites, which are easily taken up by the roots of plants. Ammonification= reverse Denitrification- pt.2 of reversal, turning nitrates & nitrites into nitrogen gas/ nitrous oxide How Scientists do Research? Based on Actual Locations Field Research 9

10 Field Research Remote sensing devices Geographic information systems (GIS) Based on Models of a location Simplified model ecosystems Tubes, chambers, aquariums, greenhouse Mathematical models Computer simulations 46 10

Ecosystems: What Are They and How Do They Work? Chapter 3

Ecosystems: What Are They and How Do They Work? Chapter 3 Ecosystems: What Are They and How Do They Work? Chapter 3 Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface Contain about 50% of the world s known plant

More information

Chapter 3. Ecology: Ecosystems. User: Mikala14/Wikimedia Commons/CC BY-SA3.0

Chapter 3. Ecology: Ecosystems. User: Mikala14/Wikimedia Commons/CC BY-SA3.0 Chapter 3 Ecology: Ecosystems User: Mikala14/Wikimedia Commons/CC BY-SA3.0 Ecology = study of living things, their distribution, and their interactions with one another and their non-living environment.

More information

Ecosystems and Nutrient Cycles Chapters 3

Ecosystems and Nutrient Cycles Chapters 3 Ecosystems and Nutrient Cycles Chapters 3 Prokaryotic and Eukaryotic cells Figure 3-2 Prokaryotic cells: Have organelles. Bacteria and Archaea are composed of prokaryotic cells. Eukaryotic cells: cells,

More information

2.1 Ecology & Ecosystem Structure

2.1 Ecology & Ecosystem Structure 2.1 Ecology & Ecosystem Structure Learning Goals: 1. Explain how biotic and abiotic factors influence 2. Explain how the flow of energy through ecosystems obeys the 2nd law of thermodynamics. 3. Calculate

More information

Chapter 3: ECOSYSTEMS: WHAT ARE THEY AND HOW DO THEY WORK? Key Terms (Terms are listed in the same font style as they appear in the text.

Chapter 3: ECOSYSTEMS: WHAT ARE THEY AND HOW DO THEY WORK? Key Terms (Terms are listed in the same font style as they appear in the text. Chapter 3: ECOSYSTEMS: WHAT ARE THEY AND HOW DO THEY WORK? Key Terms (Terms are listed in the same font style as they appear in the text.) abiotic (p. 56) acid deposition (p. 75) acid rain (p. 75) aerobic

More information

We share the Earth. Ecology & Environmental Issues

We share the Earth. Ecology & Environmental Issues We share the Earth Ecology & Environmental Issues 1 with a whole lot of other creatures We don t share very well. 2 Ecology Putting it all together study of interactions between creatures & their environment,

More information

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life

6 TH. Core Case Study: Tropical Rain Forests Are Disappearing. The Earth s Life Support System Has Four Major Components. The Diversity of Life MILLER/SPOOLMAN ESSENTIALS OF ECOLOGY 6 TH Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface CHAPTER 3 Ecosystems: What Are They and How Do They Work? Contain

More information

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration?

Warm Up. What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Warm Up What process do plants use to make sugar? What is chemosynthesis? What is transpiration? Check your answers: What process do plants use to make sugar? photosynthesis What is chemosynthesis? Organisms

More information

4/13/2015. The Biosphere

4/13/2015. The Biosphere The Biosphere Ecology- the scientific study of interactions among organisms and between organisms and their environment. The word ecology was first used in 1866 by Ernst Haeckel. Biosphere- contains the

More information

Section 3 1 What Is Ecology? (pages 63 65)

Section 3 1 What Is Ecology? (pages 63 65) Chapter 3 The Biosphere Section 3 1 What Is Ecology? (pages 63 65) This section identifies the different levels of organization that ecologists study. It also describes methods used to study ecology. Interactions

More information

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date

Summary. 3 1 What Is Ecology? 3 2 Energy Flow. Name Class Date Chapter 3 Summary The Biosphere 3 1 What Is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment. Earth s organisms live in the biosphere.

More information

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Ecosystems: What Are They and How Do They Work?

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Ecosystems: What Are They and How Do They Work? LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN 3 Ecosystems: What Are They and How Do They Work? Cengage Cengage Learning Learning 2015 2015 Core Case Study: Tropical Rain Forests Are

More information

Nutrient Cycling & Soils

Nutrient Cycling & Soils Nutrient Cycling & Soils tutorial by Paul Rich Outline 1. Nutrient Cycles What are nutrient cycles? major cycles 2. Water Cycle 3. Carbon Cycle 4. Nitrogen Cycle 5. Phosphorus Cycle 6. Sulfur Cycle 7.

More information

Ch. 5 - Nutrient Cycles and Soils

Ch. 5 - Nutrient Cycles and Soils Ch. 5 - Nutrient Cycles and Soils What are Nutrient (biogeochemical) Cycles? a process by which nutrients are recycled between living organisms and nonliving environment. The three general types of nutrient

More information

Chapter 4. Ecosystems

Chapter 4. Ecosystems Chapter 4 Ecosystems Chapter 4 Section 1: What Is an Ecosystem Key Vocabulary Terms 7 Adapted from Holt Biology 2008 Community A group of various species that live in the same habitat and interact with

More information

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology?

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology? Lesson Overview 3.1 What Is Ecology? Studying Our Living Planet The biosphere consists of all life on Earth and all parts of the Earth in which life exists, including land, water, and the atmosphere. The

More information

Unit 2: Ecology. Chapters 2: Principles of Ecology

Unit 2: Ecology. Chapters 2: Principles of Ecology Unit 2: Ecology Chapters 2: Principles of Ecology Ecology Probe: Answer the questions and turn it in! This is a standard aquarium with a population of fish. There is no filter in this aquarium and no one

More information

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. Chapter 18 What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment. What is Biodiversity? Biodiversity is the sum

More information

Ecosystems: What are they and how do they work? C H A P T E R 3

Ecosystems: What are they and how do they work? C H A P T E R 3 Ecosystems: What are they and how do they work? C H A P T E R 3 Ecology and Life Ecology- study of relationships between organisms and their environment Ecology examines how organisms interact with their

More information

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Name Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter Overview: An ecosystem is: All of the organisms living on Earth need to carry out life processes such as

More information

Reinforcement Unit 5 Resource Book

Reinforcement Unit 5 Resource Book 13.1 ECOLOGISTS STUDY RELATIONSHIPS KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. Ecology is the study of interactions among living things, and between living

More information

The Biosphere Chapter 3. What Is Ecology? Section 3-1

The Biosphere Chapter 3. What Is Ecology? Section 3-1 The Biosphere Chapter 3 What Is Ecology? Section 3-1 Interactions and Interdependence Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings.

More information

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17 Chapter 3 Ecosystem Ecology Reversing Deforestation in Haiti Answers the following: Why is deforestation in Haiti so common? What the negative impacts of deforestation? Name three actions intended counteract

More information

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment.

13.1 Ecologists Study Relationships. KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships KEY CONCEPT Ecology is the study of the relationships among organisms and their environment. 13.1 Ecologists Study Relationships Ecologists study environments at different

More information

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work?

MILLER/SPOOLMAN 17 TH LIVING IN THE ENVIRONMENT. CHAPTER 3 Ecosystems: What Are They and How Do They Work? MILLER/SPOOLMAN LIVING IN THE ENVIRONMENT 17 TH CHAPTER 3 Ecosystems: What Are They and How Do They Work? Core Case Study: Tropical Rain Forests Are Disappearing Cover about 2% of the earth s land surface

More information

8/7/ Levels of organization- biologist study nature on different levels, from a local to global scale a. Organism- a individual living thing

8/7/ Levels of organization- biologist study nature on different levels, from a local to global scale a. Organism- a individual living thing 8/7/18 UNIT 5: ECOLOGY Chapter 13: The Principles of Ecology I. Ecologists Study Relationships (13.1) A. Ecologists study environments at different levels of organization 1. Ecology- study of the interactions

More information

Autotrophs vs. Heterotrophs

Autotrophs vs. Heterotrophs How Ecosystems Work Autotrophs vs. Heterotrophs Autotrophs make their own food so they are called PRODUCERS Heterotrophs get their food from another source so they are called CONSUMERS Two Main forms of

More information

Niche and Habitat a species plays in a community. What it does all

Niche and Habitat a species plays in a community. What it does all Ecosystem Dynamics What is ecology? Study of the interactions between parts of the environment Connections in nature Abiotic: soil comp. Biotic: and Abiotic and Biotic factors factors in the environment

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Ch. 55 Warm-Up 1. Draw an energy pyramid and label the following trophic levels: Primary producer Primary consumer Secondary consumer Tertiary consumer 2. What is an example of an organism at each level

More information

What Keeps Us and Other Organisms Alive?

What Keeps Us and Other Organisms Alive? Energy and Life What Keeps Us and Other Organisms Alive? Four major components of the earth s life-support system: atmosphere (air) hydrosphere (water) geosphere (rock, soil, sediment) biosphere (living

More information

Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels.

Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels. ECOLOGICAL TERMS Acid Rain rain with a ph below 5.6; primarily due to the release of nitric and sulfuric oxides into the air from the burning of fossil fuels. Autotroph an organism that produces its own

More information

Chapter 3 Reading/Homework Quiz

Chapter 3 Reading/Homework Quiz Name Chapter 3 Reading/Homework Quiz Date APES 1. Scientists estimate that tropical rain forests contain up to half of the earth s land plants and animal species. What percentage of the world s land surface

More information

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat

Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish Describe Sequence Interactions of Organisms and Their Environment Ecology Habitat Name Period Ecosystems Section 1 What Is an Ecosystem? Objectives Distinguish an ecosystem from a community. Describe the diversity of a representative ecosystem. Sequence the process of succession. Interactions

More information

Class XII Chapter 14 Ecosystem Biology

Class XII Chapter 14 Ecosystem Biology Question 1: Fill in the blanks. (a) Plants are called as because they fix carbon dioxide. (b) In an ecosystem dominated by trees, the pyramid (of numbers) is type. (c) In aquatic ecosystems, the limiting

More information

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up

Chapter Introduction. Matter. Ecosystems. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Abiotic Factors Cycles of Matter Chapter Wrap-Up Energy in Ecosystems How do living things and the nonliving parts of the environment interact? What do you

More information

Ecosystems & Energy Chapter 5

Ecosystems & Energy Chapter 5 Ecosystems & Energy Chapter 5 Energy Exchange in Ecosystems Cells Cells - minute compartments in a living organism which carry out processes of life Surrounded by lipid membrane controlling flow of materials

More information

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 34 Nature of Ecosystems. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 34 Nature of Ecosystems 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 34.1 The Biotic Components of Ecosystems Ecosystems Abiotic components include

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Chapter 55: Ecosystems You Must Know: How energy flows through the ecosystem (food chains and food webs) The difference between gross primary productivity and net primary productivity. The carbon and nitrogen

More information

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements.

Nutrient Cycles. Nutrient cycles involve flow of high quality energy from the sun through the environment & of elements. Nutrient Cycles Nutrient cycles (= biogeochemical cycles): natural processes that involve the flow of nutrients from the environment (air, water, soil, rock) to living organisms ( ) & back again. Nutrient

More information

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is

Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is Another cause of diversity may be the creation of different habitats within a region by periodic disturbance A community that forms if the land is undisturbed and that perpetuates itself for as long as

More information

Summary. 3-1 What Is Ecology? 3-2 Energy Flow Chapter 3 The Biosphere. Class. Name

Summary. 3-1 What Is Ecology? 3-2 Energy Flow Chapter 3 The Biosphere. Class. Name Name Class --------------------------- Date ----------- Chapter 3 The Biosphere Summary 3-1 What Is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their

More information

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems. AP BIOLOGY ECOLOGY ACTIVITY #5 Ecosystems NAME DATE HOUR An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so where do essential

More information

UNIT 1 SUSTAINING ECOSYSTEMS

UNIT 1 SUSTAINING ECOSYSTEMS UNIT 1 SUSTAINING ECOSYSTEMS Chapter 2 Biogeochemical Cycles Science 10 Change & Recovery in Ecosystems (you do not need to copy) What happens to the materials that make up a truck when it begins to rust?

More information

What is an ecosystem?

What is an ecosystem? 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community and its physical environment treated together

More information

Lesson 2.4 Biogeochemical Cycles

Lesson 2.4 Biogeochemical Cycles Lesson 2.4 Biogeochemical Cycles A carbon atom in your body today may have been part of a blade of grass last year, or a dinosaur bone millions of years ago. Fossilized bones in a Colorado dig. Lesson

More information

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter Lesson Overview Cycles of Ma,er Lesson Overview 3.4 Cycles of Matter THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these

More information

II. Needs of Organisms. Biosphere A. All parts of the earth that contains and support life 1. Geosphere 2. Atmosphere 3.

II. Needs of Organisms. Biosphere A. All parts of the earth that contains and support life 1. Geosphere 2. Atmosphere 3. I. Earth s Spheres A. Hydrosphere: Water part of the planet B. Atmosphere: Gas part of the earth C. Biosphere: Life part of the earth D. Geosphere: Rock/Soil part of the earth E. Mr. Wright s famous saying,

More information

Chapter 13 Principles of Ecology DAY ONE

Chapter 13 Principles of Ecology DAY ONE Chapter 13 Principles of Ecology DAY ONE What is Ecology? It is the scientific study of interactions among organisms and between organisms and their environment, or surroundings. The Nonliving Environment

More information

ECOLOGY Energy Flow Packet 2 of 4

ECOLOGY Energy Flow Packet 2 of 4 ECOLOGY Energy Flow Packet 2 of 4 3 2 Energy Flow Producers Where does the energy for life processes come from? Producers Producers Without a constant input of energy, living systems cannot function. Sunlight

More information

5/6/2015. Matter is recycled within and between ecosystems.

5/6/2015. Matter is recycled within and between ecosystems. Biogeochemical Cycles/ Nutrient Cycles Biogeochemical Cycle Evaporation Water Cycle Transpiration Condensation Precipitation Runoff Vocabulary Seepage Root Uptake Carbon Cycle Phosphorus Cycle Nitrogen

More information

Ecology Basics. AP Environmental Science Mr. Schuller

Ecology Basics. AP Environmental Science Mr. Schuller Ecology Basics AP Environmental Science Mr. Schuller 1. Ecology is the study of systems and their interactions among organisms and their interactions with their environment. Biotic (Organisms) What are

More information

Energy. Ecosystem. 2. Energy Transfers. 1. Energy Production. Food Chains. 2. Energy Transfers 9/13/2015. Capacity or ability to do work

Energy. Ecosystem. 2. Energy Transfers. 1. Energy Production. Food Chains. 2. Energy Transfers 9/13/2015. Capacity or ability to do work Ecosystem Energy 1 2 An ecosystem is a self-supporting unit. There are 4 processes that continually take place. 1. Energy Production 4. Recycling Capacity or ability to do work Flows through ecosystems

More information

Ch. 4 Ecosystems. Biology I Loulousis

Ch. 4 Ecosystems. Biology I Loulousis Ch. 4 Ecosystems Biology I Loulousis Objectives 1.) Define ecology, ecosystem, and succession 2.) Identify and distinguish between the levels of organization in ecology 3.)Distinguish between primary and

More information

CYCLES OF MATTER NATURAL WORLD

CYCLES OF MATTER NATURAL WORLD CYCLES OF MATTER NATURAL WORLD Objectives Describe how matter cycles between the living and nonliving parts of an ecosystem. Explain why nutrients are important in living systems. Describe how the availability

More information

1.) What is Ecology? Living world is like a household with an economy every organism plays a role

1.) What is Ecology? Living world is like a household with an economy every organism plays a role Living Environment 1.) What is Ecology? Ecology is the scientific study of interactions among organisms and between organisms and their environment, or surroundings Word was coined in 1866 by a German

More information

CHAPTER 2 CONCEPTS OF ECOLOGY AND NATURAL RESOURCES

CHAPTER 2 CONCEPTS OF ECOLOGY AND NATURAL RESOURCES CHAPTER 2 CONCEPTS OF ECOLOGY AND NATURAL RESOURCES Environmental Engineering Zerihun A. (AAiT-CED) Environment component Interaction Ecosystem Ecology can be defined as the study of relationships between

More information

Qa iss. Q; How do Earth's living and nonliving parts interact and affect the survival of organisms?

Qa iss. Q; How do Earth's living and nonliving parts interact and affect the survival of organisms? Name. mm Qa iss Date 3 The Biosphere Matter of Energy> Interdependence in Nature Q; How do Earth's living and nonliving parts interact and affect the survival of organisms? WHAT I KNOW WHAT i LEARNED 3.1

More information

Ecosystems: What Are They and How Do They Work? What is the Earth? The Geosphere 9/28/2014. Maloney

Ecosystems: What Are They and How Do They Work? What is the Earth? The Geosphere 9/28/2014. Maloney Ecosystems: What Are They and How Do They Work? Maloney What is the Earth? Aside from the simplistic nature of the planet (a ball of rock gravitationally held in place, 93 million miles away from a star)

More information

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter

Chapter 2. Table of Contents. Section 1 Organisms and Their Releationships. Section 2 Flow of Energy in an Ecosystem. Section 3 Cycling of Matter Ecosystems Table of Contents Section 1 Organisms and Their Releationships Section 2 Flow of Energy in an Ecosystem Section 3 Cycling of Matter Section 1 Organisms and Their Releationships Interactions

More information

Study Guide A. Answer Key. Principles of Ecology

Study Guide A. Answer Key. Principles of Ecology Principles of Ecology Answer Key SECTION 1. ECOLOGISTS STUDY RELATIONSHIPS 1. organism 2. population 3. community 4. ecosystem 5. biome 6. Observation 7. indirect 8. laboratory 9. field 10. model 11. Ecology

More information

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE

10/18/2010 THINK ABOUT IT CHAPTER 3 THE BIOSHPERE RECYCLING IN THE BIOSPHERE RECYCLING IN THE BIOSPHERE THINK ABOUT IT CHAPTER 3 THE BIOSHPERE 3.4 Mrs. Michaelsen A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them

More information

Guided Notes Unit 3B: Matter and Energy

Guided Notes Unit 3B: Matter and Energy Name: Date: Block: Chapter 13: Principles of Ecology I. Concept 13.3: Energy in Ecosystems II. a. Review Vocabulary b. Autotrophs Guided Notes Unit 3B: Matter and Energy i. Producers: convert the light

More information

Biogeochemical Cycles. {Living World

Biogeochemical Cycles. {Living World Biogeochemical Cycles {Living World What Sustains Life on Earth? Solar energy, the cycling of matter, and gravity sustain the earth s life. Earth's Spheres Atmosphere layer of air that surrounds the Earth

More information

Ecosystems. Physical Laws Law of Conservation of Energy - Energy can not be created or destroyed, only transformed. Chapter 55: Ecosystems. Fig. 55.

Ecosystems. Physical Laws Law of Conservation of Energy - Energy can not be created or destroyed, only transformed. Chapter 55: Ecosystems. Fig. 55. Chapter 55: Ecosystems 1 Ecosystems consist of the living organisms in a community as well as the abiotic factors Microecosystem Two important considerations: Energy Flow Chemical cycling Fig. 55.1 2 Physical

More information

Ecosystems: What Are They and How Do They Work?

Ecosystems: What Are They and How Do They Work? Ecosystems: What Are They and How Do They Work? Chapter 3 Section 3-1 WHAT KEEPS US AND OTHER ORGANISMS ALIVE? Earth s life-support system has four major components The atmosphere is the thin membrane

More information

Studying organisms in their environment

Studying organisms in their environment Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem? How does

More information

Ecology, the Environment, and Us

Ecology, the Environment, and Us BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 23 Ecology, the Environment, and Us Lecture Presentation Anne Gasc Hawaii Pacific University and University

More information

Chapter 3 Ecosystem Ecology. Monday, May 16, 16

Chapter 3 Ecosystem Ecology. Monday, May 16, 16 Chapter 3 Ecosystem Ecology Populations, Communities, and Ecosystems Ø Members of a species interact in groups called populations. Ø Populations of different species living and interacting in an area form

More information

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle

2/11/16. Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Phosphorus Cycle Materials in ecosystems are constantly reused Three cycles: The Carbon Cycle The Nitrogen Cycle The Cycle Carbon is essential in proteins, fats, and carbohydrates, which make up all organisms Carbon cycle

More information

BIOGEOCHEMICAL CYCLES

BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES BIOGEOCHEMICAL CYCLES A biogeochemical cycle or cycling of substances is a pathway by which a chemical element or molecule moves through both biotic and abiotic compartments of Earth.

More information

Interactions in Ecosystems I. Ecosystem. Interactions in Ecosystems I. Ecosystem

Interactions in Ecosystems I. Ecosystem. Interactions in Ecosystems I. Ecosystem I. Ecosystem A. Definition A unit of nature in which nutrients are cycled and energy flows. B. Abiotic factors: non-living components of the ecosystem. 1. Soil ph, salinity, temperature, texture. 2. Water

More information

Chapter 15: Ecosystem Dynamics

Chapter 15: Ecosystem Dynamics Chapter 15: Ecosystem Dynamics Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 15-1 What is ecology? Ecology is the branch of

More information

3 3 Cycles of Matter Slide 1 of 33

3 3 Cycles of Matter Slide 1 of 33 1 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the biosphere very differently. Unlike the one-way flow of energy, matter is recycled within and between ecosystems.

More information

Studying organisms in their environment

Studying organisms in their environment Ecosystems (Ch. 3) Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How does energy move through the

More information

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling Systems in the Environment are not Independent of one Another Central Case Study: The Vanishing Oysters of the Chesapeake Bay Chesapeake

More information

Ecology. Mrs. Flannery

Ecology. Mrs. Flannery Ecology Mrs. Flannery What is ECOLOGY?? Ecology is the scientific study of the interactions between organisms and their environments. Biotic factors = living components of the environment. Abiotic factors

More information

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D.

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D. Ecosystem Ecology for Wildlife Scientists Don White, Jr., Ph.D. Key Concepts: An ecosystem is an association of organisms and their environment Every ecosystem is an open system, in that it has inputs

More information

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth.

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth. Producers living systems need energy to function. Sunlight is the main energy source for life on Earth. sources of energy sunlight inorganic chemical compounds. autotrophs. capture energy from sunlight

More information

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem?

10/17/ Cycles of Matter. Recycling in the Biosphere. How does matter move among the living and nonliving parts of an ecosystem? 2 of 33 3-3 Cycles of Matter How does matter move among the living and nonliving parts of an ecosystem? 3 of 33 Recycling in the Biosphere Recycling in the Biosphere Energy and matter move through the

More information

3 3 Cycles of Matter

3 3 Cycles of Matter 3 3 Cycles of Matter Recycling in the Biosphere Energy - one way flow matter - recycled within and between ecosystems. biogeochemical cycles matter Elements, chemical compounds, and other forms passed

More information

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings Introduction An ecosystem consists of all the organisms living in a community as well as all the abiotic factors with which they interact. The dynamics of an ecosystem involve two processes: energy flow

More information

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen

TABLE OF CONTENTS. 4, Environmental Chemistry 2, Biogeochemical cycle of carbon and nitrogen Subject Paper No and Title Module No and Title Module Tag CHE_P4_M2 TABLE OF CONTENTS 1. Learning outcomes 2. Introduction 2.1. Bio-distribution of elements 2.2. Biogeochemical cycles 3. Carbon cycle 3.1.

More information

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1 Life Depends on the Sun Energy from the sun enters an ecosystem when plants use sunlight to make sugar molecules. This happens through

More information

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Cycles of Matter. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Cycles of Matter 1 of 33 The purpose of this lesson is to learn the water, carbon, nitrogen, and phosphorus cycles. This PowerPoint will provide most of the required information you need to accomplish

More information

AP Biology. Ecosystems

AP Biology. Ecosystems Ecosystems Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do nutrients move in the ecosystem?

More information

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall Biology 1 of 41 2 of 41 Producers Where does the energy for life processes come from? 3 of 41 Producers Producers Without a constant input of energy, living systems cannot function. Sunlight is the main

More information

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter Lesson Overview 3.4 THINK ABOUT IT A handful of elements combine to form the building blocks of all known organisms. Organisms cannot manufacture these elements and do not use them up, so..where do essential

More information

ECOSYSTEMS. Follow along in chapter 54. *Means less important

ECOSYSTEMS. Follow along in chapter 54. *Means less important ECOSYSTEMS Follow along in chapter 54 *Means less important How do ecosystems function? What is an ecosystem? All living things in an area and their abiotic environment Ecosystem function can be easily

More information

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary

3.4 Cycles of Matter. Recycling in the Biosphere. Lesson Objectives. Lesson Summary 3.4 Cycles of Matter Lesson Objectives Describe how matter cycles among the living and nonliving parts of an ecosystem. Describe how water cycles through the biosphere. Explain why nutrients are important

More information

ENVE203 Environmental Engineering Ecology (Oct 01, 2012)

ENVE203 Environmental Engineering Ecology (Oct 01, 2012) ENVE203 Environmental Engineering Ecology (Oct 01, 2012) Elif Soyer Ecosystems and Energy What is Ecology? Ernst Haeckel (19 th century) two Greek words eco house logy study ecology the study of one s

More information

Biogeochemical Cycles: Ecosystem Recycling

Biogeochemical Cycles: Ecosystem Recycling Biogeochemical Cycles: Ecosystem Recycling Energy and chemical compounds flow through the ecosystem WATER NITROGEN CARBON PHOSPHORUS are RECYCLED!!! They move through a BIOGEOCHEMICAL CYCLE: They move

More information

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez

Ecosystem Ecology: Part 1. September 22, 2014 Mr. Alvarez Ecosystem Ecology: Part 1 September 22, 2014 Mr. Alvarez Ecosystems Ecosystem- a particular location on Earth distinguished by its particular mix of interacting biotic and abiotic components. Forest Ecosystem

More information

Biogeochemistry Bonanza. Kelly VanAllen Pine Grove School Orcutt Union School District

Biogeochemistry Bonanza. Kelly VanAllen Pine Grove School Orcutt Union School District Biogeochemistry Bonanza Kelly VanAllen Pine Grove School Orcutt Union School District kvanallen@orcutt-schools.net 1 Unit Information Grade Level: 4-7 Subject: Science Description: Biochemists have to

More information

ANSWER KEY - Ecology Review Packet

ANSWER KEY - Ecology Review Packet ANSWER KEY - Ecology Review Packet OBJECTIVE 1: Ecosystem Structure 1. What is the definition of an abiotic factor? Give one example. A nonliving part of an ecosystem. Example: water 2. What is the definition

More information

Name Class Date. 1. What is at the core of every organism s interaction with the environment?

Name Class Date. 1. What is at the core of every organism s interaction with the environment? Name Class Date Section 3-2 Energy Flow (Pages 67-73) Producers 1. What is at the core of every organism s interaction with the environment? 2. What source of energy do organisms use if they don t use

More information

Energy Flow in Ecosystems. October 2017

Energy Flow in Ecosystems. October 2017 Energy Flow in Ecosystems October 2017 Vocabulary Introduction Chapter 3, The Biosphere - pg 56-58 Write definitions for each of the following words: 1. biosphere 2. ecology 3. population 4. community

More information

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted COMMUNITIES & ECOSYSTEMS Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted COMMUNITIES & ECOSYSTEMS Ecosystem = groups of organisms living together

More information

Bio 112 Ecology: Final Study Guide

Bio 112 Ecology: Final Study Guide Bio 112 Ecology: Final Study Guide Below is an outline of the topics and concepts covered on the final exam. This packet also includes a practice test, along with answers to questions 1-44. You may submit

More information