Peer Reviewed Report

Size: px
Start display at page:

Download "Peer Reviewed Report"

Transcription

1 Peer Reviewed Report COMPARATIVE LIFE CYCLE ASSESSMENT OF REUSABLE PLASTIC CONTAINERS AND DISPLAY-AND NON-DISPLAY- READY CORRUGATED CONTAINERS USED FOR FRESH PRODUCE APPLICATIONS PREPARED FOR: IFCO Corporation BY: Franklin Associates, A Division of Eastern Research Group (ERG) March

2 Table of Contents EXECUTIVE SUMMARY... 3 ES.1. INTRODUCTION & BACKGROUND... 3 ES.2. METHODOLOGY... 4 ES.2.1. Functional Unit... 5 ES.2.2. Product Systems Studied... 6 ES.2.3. Data Sources...12 ES.2.4. Reuse & Recycling Modeling Approach...13 ES.2.5. Key Assumptions...15 ES.2.6. Sensitivity Analysis...16 ES.3. KEY FINDINGS...17 Peer Review Panel Conclusion. 21 List of Tables Table ES 1. Systems Analyzed Container Specifications... 8 Table ES 2. Parameter Values for the Sensitivity Analysis...17 Table ES 3. Weight Factors for Mixed Produce...17 Table ES 4. Baseline LCIA Results for Produce Containers...19 List of Figures Figure ES 1. Examples of RPCs Used for Produce... 3 Figure ES 2. RPC Product System Boundaries...10 Figure ES 3. DRC & NDC (Fiber Container) Product System Boundaries...11 Figure ES 4. Comparison of Per-Trip Ratios for Empty Container Weight to Produce Capacity Weight per Container Type & Produce Application...14 Figure ES 5. Comparison of Average Life Cycle Ratios for Empty Container Weight to Produce Capacity Weight per Container Type & Produce Application

3 EXECUTIVE SUMMARY ES.1. INTRODUCTION & BACKGROUND Continuous environmental improvement has become a principle of most business and government organizations, with particular attention to sustainability of packaging and distribution within product supply chains. Life Cycle Assessment (LCA) has been recognized as a scientific method for making comprehensive, quantified evaluations of the environmental benefits and tradeoffs for the entire life cycle of a product system, beginning with raw material extraction and continuing through disposition at the end of its useful life. The report that follows is a comparative LCA of three options for containers used in shipping produce throughout North America. The data sets for each type of container are based on data from IFCO s North American business; the three types of containers evaluated are: 1. Reusable plastic containers (RPCs), 2. Display-ready corrugated fiber containers (DRCs), and 3. Non-display-ready corrugated fiber containers (NDCs) IFCO manufactures and manages a worldwide rental pool of over 225 million RPCs which are used to transport fruit and vegetables. IFCO manufactures, converts, and delivers the produce containers to growers as well as managing the rental pool for collection, hygienic cleaning, reuse, and recycling of the RPCs. These containers are a rigid polypropylene container designed for multiple-uses: 1) they are display-ready and usable for chilled and humidified storage and display conditions; 2) they have an open side and base structure that can be quickly assembled for use and folded for storage/cleaning; and 3) the insides have rounded inner edges. IFCO RPCs are made in a variety of standard sizes covering a range of fruit and vegetable produce applications. IFCO s RPC types are mutually compatible (i.e., in terms of stacking properties) for segregated and mixed dispatch units and suited to the use of jawed loaders as well as materials handling technology and automatic storage systems. Figure ES 1 shows several of the RPC sizes evaluated for the produce applications in this analysis. Figure ES 1. Examples of RPCs Used for Produce 3

4 Display-Ready Containers (DRCs) are interstacking corrugated containers which have a minimum 60 percent of the top surface area open for display purposes. Non-Display Ready Containers (NDCs) are containers having less than 60 percent of the top surface area open and can include containers which are completely closed. NDCs have stacking receptacles and tear-out panels and/or stacking tabs are optional. The conventional corrugated DRCs and NDCs are made of corrugated fiber containerboard. Like RPCs, different sizes of corrugated containers are used for different produce applications. The corrugated containers analyzed in this study are those most representative of containers used for each produce crop and, in many cases, have base dimensions similar to RPCs. Commissioned by IFCO, Franklin Associates, A Division of ERG (hereinafter referred to as Franklin Associates) conducted this LCA study of IFCO s RPCs compared to conventional fiber corrugated containers, both display- and non-display ready, used for common produce applications (fruits and vegetables that represent significant volume in the fresh produce supply chain) in North American operations. This primary objective of this analysis was to provide IFCO with a transparent, detailed Life Cycle Assessment (LCA) that can: 1. Determine the environmental burdens associated with IFCO s RPCs in North American operations, 2. Provide data to aid in the internal decision-making process 3. Generate results that may be used by IFCO to communicate, to supply chain and/or other public stakeholders, information regarding the environmental impact of IFCO RPCs relative to conventional fiber corrugated produce containers The primary intended use of this study report is twofold: 1) as an internal decisionmaking tool that provides results of an independently conducted LCA to IFCO; and 2) as the basis for further study and/or communication of the potential improvement of resource use and environmental emissions and impacts associated with the RPCs relative to conventional fiber corrugated produce containers. The individual chapters of the LCA report provide detail on the life cycle inventory (LCI) of modeling the fiber corrugated and reusable RPCs; LCA results for the baseline comparison; the parameterization of the baseline and other scenarios examined in the sensitivity analysis and results for the sensitivity analysis. The appendices detail the quantitative LCI and LCA results for the baseline scenario and LCA results for the sensitivity analyses, and heating values and impact factors used in the selected life cycle impact assessment (LCIA) characterization methodologies. 4

5 ES.2. METHODOLOGY The LCA study was conducted in accordance with the international standards ISO and The LCA method as defined in ISO standards has four distinct phases: 1. Goal and Scope Definition: defines the boundaries of the product system to be examined. 2. Life Cycle Inventory (LCI): examines the sequence of steps in the life cycle boundaries of the product system, beginning with raw material extraction and continuing on through material production, product fabrication, use, and reuse or recycling where applicable, and final disposition. For each life cycle step, the inventory identifies and quantifies the material inputs, energy consumption, and environmental emissions (atmospheric emissions, waterborne wastes, and solid wastes). In other words, the LCI is the quantitative environmental profile of a product system. 3. Life Cycle Impact Assessment (LCIA): characterizes the results of the LCI into categories of environmental problems or damages based on the substance s relative strength of impact. Characterization models are applied to convert masses of substances from the LCI results into common equivalents of one category indicator. 4. Interpretation: uses the information from the LCI and LCIA to compare product systems, rank processes, and/or pinpoint areas (e.g., material components or processes) where changes would be most beneficial in terms of reduced environmental impacts. The information from this type of assessment is increasingly used as a decision-support tool. The results presented in this report are specific to the supply chain of IFCO and should not be interpreted as representing current or future RPCs used by other companies. The following sections discuss the specifics of this methodology as applied in this study. ES.2.1. Functional Unit In any life cycle study, products are compared on the basis of providing the same defined function or unit of service which is called the functional unit. The function of produce containers is to transport fresh produce from growers to retail locations. In the case of the RPCs and DRCs, the containers can also be used to display the produce at retail stores. The analysis of NDCs does not include evaluating production and use of another type of container used to display produce at retail. Since this study includes both one-way and reusable containers, the additional issue of lifetime reuses must be taken into account when determining the number of containers and associated life cycle impacts to deliver an equivalent quantity of produce in one-way 1 ISO 14040: 2006, Environmental management Life cycle assessment Principles and framework; ISO 14044: 2006, Environmental management Life cycle assessment Requirements and guidelines 5

6 and reusable containers. This study accounts for the standard LCI basis of product functionality for reusable product systems using the average number of trips a container is expected to make before it is removed from service for wear and damage, regardless of the number of years it takes to make that number of trips. The number of trips a conventional fiber corrugated container makes before it is removed from service is one (1); whereas, the average number of trips made by the reusable plastic container (RPC) is nearly 40. In addition, because there are variations in sizes and capacities of the RPC and fiber produce container systems, a functional unit of an equal number of containers is not a fair basis of comparison. For each produce application examined in this analysis, the functional unit must take into account the differences in the sizes and capacities of the RPC, DRC, and NDC. For the baseline analysis, it is assumed that produce damage rates are similar for the three types of containers. The functional unit of this LCA is based on an equivalent quantity of produce delivered to stores: 1,000 tonnes of produce delivered to retail stores in North America (US or Canada). ES.2.2. Product Systems Studied The LCA models three container options for delivering produce to retail stores: 1) reusable plastic containers (RPCs), 2) display-ready corrugated fiber containers (DRCs), and 3) non-display-ready corrugated fiber containers (NDCs), for several large-volume produce applications. These three container options are compared for several produce applications: Apples Bell Peppers Carrots Grapes Iceberg Lettuce Onions (Dry) Oranges Peaches/Nectarines Tomatoes Strawberries The container options are selected based on the sizes most commonly used to ship these types of fresh produce throughout North America. The produce applications analyzed in this study are selected based on those with significant system volume and as a good representation of fresh produce supply chain distribution in North America. The location of growers for each produce investigated in this analysis is reflected in the modeling of transportation within the container systems. For example, the bulk of apples consumed in North America are sourced from Washington state in the US; whereas, oranges are largely from Florida, California, and Texas. The boundaries account for transportation requirements between all life cycle stages. Transportation steps are modeled using both primary data and national statistics. For transportation steps unique to IFCO RPCs (e.g., cleaning steps), distribution distances and packing configurations are primary data obtained from IFCO; whereas, for transportation steps common to both RPC and conventional fiber-corrugated produce 6

7 containers e.g., delivery from growers to retailers, packing configurations are obtained from IFCO and distances are estimated from data on produce production by state compiled by the US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS). 2 Primary data were collected from IFCO to determine RPC packing configurations throughout the RPC life cycle. As mentioned, the corrugated fiber produce containers are very similar in base dimensions to the RPCs. Therefore, the packing configuration of NDCs and DRCs were estimated assuming the same pallet load height as for RPCs and maximum truck loading. Though relative produce capacities are considered in this analysis, produce cultivation and harvesting, operations for packing produce into the container, and storage and refrigeration requirements for the produce contained in the investigated containers are excluded. These operations are assumed to be equivalent among the types of produce container systems. The burdens associated with the consumption of the produce from retailers (delivery of produce from retail to consumers) are also excluded as they are not affected by the type of produce shipping containers utilized. This analysis does not attempt to evaluate differences in product damage associated with the use of the different types of produce containers. The RPC is made of polypropylene (PP) with a design unique to IFCO closed-loop fresh produce distribution network. The conventional fiber containers are corrugated containerboard made of a mixture of virgin and recovered fiber. Both plastic and fiberbased produce containers may contain some recycled content. For each of the ten fresh produce applications analyzed, the RPC, DRC, and NDC sizes are selected to represent average industry-wide standards used in shipping that commodity. The container parameters i.e., size, dimension, weight, and produce capacity used for the analyzed produce applications are shown in Table ES 1. 2 USDA NASS ( ). Crop Statistics, National Agricultural Statistics Service of the United States Department of Agriculture. Available at: 7

8 Produce Application Apples Bell Peppers Carrots Grapes Lettuce, Iceberg Oranges Peaches/ Nectarines Onions, dry Tomatoes Strawberries Table ES 1. Systems Analyzed Container Specifications Container Type Empty Ctr Produce Capacity to Container Dimensions Weight Capacity Weight Ratio Length Width Height (lb/ctr) (lb/ctr/trip) (produce lbs/ container lbs) (inches) (inches) (inches) RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC RPC NDC DRC Source: Franklin Associates, A Division of ERG 8

9 The following life cycle stages are included for each produce container system: 1. Raw material extraction includes raw material resource extraction ((e.g., petroleum and natural gas used as feedstock for resin for RPCs, harvesting of trees and collection of postconsumer corrugate boxes) for fiber for DRCs and NDCs) and delivery to manufacturing steps; 2. Materials manufacture of the inputs (resin, corrugate board) required to produce the produce containers, which consists of the transport required for delivery of the extracted raw materials and other material components to the manufacturing facility, manufacturing/processing steps for production of the materials, and unitizing these components for delivery to the container conversion facility; 3. Converting of the produce containers includes transport of the manufactured materials to the converting facility, where applicable; converting processes to form the empty container; and unitizing of flat, empty, containers for shipment to growers; 4. Production of ancillary components such as wooden pallets, which incorporates all steps from resource extraction through production of the ancillary components, including transportation of required materials up to the manufacture and unitization of the ancillary components; 5. Distribution transport of filled produce containers from produce suppliers/growers to a retail distribution center (DC), then on to retailers; this step also includes return transport of used, empty containers from the retailers to the DC/container pooling center (e.g., backhauling of the RPCs); 6. Cleaning and sanitizing (plastic systems only) of the RPCs available for reuse, which includes transport of the used RPCs from the DC/pooler to the cleaning facility, cleaning and sanitizing processes, and unitization of the cleaned containers in collapsed form for shipment. RPCs that are still in good condition are shipped back to produce suppliers/growers for reuse, while containers that are damaged or excessively worn are sent to an RPC manufacturing facility for recycling into a new usable product; 7. Recycling of the produce container material, which includes transport of the RPC, DRC, or NDC container materials to locations where the material is then reprocessed to prepare it for use in manufacture of another product; and 8. Postconsumer disposal of the produce container or container scrap which has been used (in the case of the fiber container) or lost from the IFCO rental pool during use due to theft or improper handling (in the case of RPCs); this step includes transport of the container/container materials from the retailer to: a. The site of landfill. and includes material-specific processes occurring at the landfill, or b. The site of waste-to-energy (WTE) incineration, and includes materialspecific processes occurring at the WTE facility A summary flow diagram of the boundaries for the RPC and conventional fiber corrugated container systems are shown in Figure ES-2 and Figure ES 3, respectively. 9

10 Elementary Inputs from Nature Water Raw Materials Intermediate Inputs from Technosphere Treatment of Water Capital Equipment Human Capital Within Study Boundary Outside Study Boundary 4. Ancillary Materials Manufacture 8a. Landfill 1.Resource Extraction 2. & 7.Materials Manufacture 3. RPC Container Conversion Grower 5. Distribution Retailer Containers to Recycling Containers to Reuse 6. Cleaning & Sanitization 8b. Wasteto-Energy Industrial Waste Recycling & Disposal Elementary Outputs to Nature Water Airborne Emissions Waterborne Emissions Intermediate Outputs to Technosphere Treatment of Waste Water Capital Equipment to be Recycled Solid Waste to be Managed Figure ES 2. RPC Product System Boundaries 10

11 Figure ES 3. DRC & NDC (Fiber Container) Product System Boundaries 11

12 ES.2.3. Data Sources Primary data collected for this analysis include the empty container weight and materials required for distribution of the RPCs as well as the transport distances for the distribution specifications specific to IFCO operations in North America. Likewise, the cleaning and servicing of used RPCs was modeled with primary data provided by IFCO. Production of the polypropylene RPCs was modeled using primary data collected from IFCO s suppliers. For data that was not collected for this project, data from credible published sources or licensable databases are used wherever possible in order to maximize transparency. Foreground data for production of DRCs and NDCs are adapted from a gate-to-gate inventory of converted corrugated containers published by the National Council for Air and Stream Improvement (NCASI) in The LCI data for producing the virgin material and hog fuel inputs to the US containerboard mills are represented by updated forestry LCI data from CORRIM Phase I and Phase II Reports. 4,5 The analysis used polypropylene resin data from the ACC Plastics Data (updated in 2011) published in the US LCI Database. ES.2.4. Recycling Methodology When material is used in one system and subsequently recovered, reprocessed, and used in another application, there are different methods that can be used to allocate environmental burdens among different useful lives of the material. The ISO standards for LCA note that avoiding allocation (e.g., by expansion of system boundaries) is the preferred approach; therefore, system expansion is the baseline approach used in this analysis. Under the system expansion approach, recycling of a product can result in material displacement credits if the system is a net producer of recycled material. In the case of the corrugated fiber produce boxes, the recycling rate (95%) is greater than the recycled content of the box (15%), and the excess recovered fiber is credited with displacing a mix of virgin unbleached fiber and recycled fiber equivalent to the mix of virgin and recycled fiber in the recovered boxes (85% virgin, 15% recycled). An alternative recycling methodology used for sensitivity analysis is the cut-off method. With the cut-off approach, a boundary is drawn between the initial use of the material and subsequent recovery and recycling of the material, and recycled material leaves the system boundaries with no collection and reprocessing burdens and no material displacement credits NCASI (2014). Life Cycle Assessment of U.S. Average Corrugated Product, Final Report. Prepared for the Corrugated Packaging Alliance (CPA), a joint venture of the American Forest & Paper Association (AF&PA), the Fibre Box Association (FBA), the Association of Independent Corrugated Converters (AICC), and TAPPI. April 24, Bowyer J, Briggs D, Lippke B, Perez-Garcia J, Wilson J (2004). Life Cycle Environmental Performance of Renewable Materials in Context of Residential Building Construction: Phase I Research Report. Consortium for Research on Renewable Industrial Materials, CORRIM Inc. Seattle, WA. Report modules accessed at: Lippke B, Wilson J, Johnson L, Puettmann M (2009). Phase II Research Report. Life Cycle Environmental Performance of Renewable Materials in the Context of Building Construction. Consortium for Research on Renewable Industrial Materials, CORRIM Inc. Seattle, WA. Report modules accessed at: 12

13 ES.2.5. Reuse Modeling Approach This study uses a modeling approach to account for the standard LCI basis of product functionality in reusable product systems. In this case, the basis of comparison is the average number of trips a corrugated container is expected to make before it is removed from service for wear and/or damage referred to here as the trip number (N). For the fiber produce container system, the trip number (N) for each container is fairly straightforward because each fiber container is used, on average, only once. Therefore, each shipment of produce in a fiber container requires production and end-of-life management of a container. After use of the DRC or NDC, the container is collected for end-of-life management which is, on average, a ratio of recycling and disposal. The IFCO plastic produce containers are reusable, on average, 39.3 times before they are removed from service due to wear and/or damage (i.e., baseline (N) = 39.3). Thus, the material consumed per RPC use is only a fraction of the total container weight that was originally produced and this fraction depends on the life of the container. The more durable the container and the more efficient the container reuse logistics, the higher the number of trips (N) the container can make before it is removed from service for routine wear and/or damage. The baseline (N) for RPCs is varied in the sensitivity analysis. There are also loss and breakage rates (average 0.98%) that must be accounted for in per-use life cycle material requirements. Production of additional containers is required to make up for the portion of containers lost within the system due to disappearance (reflected in the analysis as the loss rate ; average 0.8%). Also, a certain amount of RPC scrap will be generated from containers that are removed from service due to breakage and/or wear. Overall, the percentage of RPC material consumed per trip is calculated as (1-breakage rate)/lifetime trips + loss rate = ( )/ = Production of the new RPC material may incorporate recycled resin, either internally generated or purchased externally to meet the designated level of recycled content. The steady-statecomposition of the container supply (i.e., amount produced from virgin resin versus recycled resin) depends on the amount of internally generated scrap and the level of recycled content designated for each geographic scope. The internally generated recycled content of the steadystate RPC composition is constrained by the amount of container scrap that is generated from worn and broken containers that are returned to the manufacturer for recycling.. RPCs tend to have a higher empty-container-weight-to-produce-capacity-weight (CW-PW) ratio. In other words, due to their design and material, the RPCs have a higher weight than a single corresponding fiber corrugated container. The additional weight of the empty RPC increases the fuel requirements allocated to produce containers for each life cycle step. Also, for the RPC systems, there are more transport steps required than for the fiber containers (i.e., for cleaning and reuse). Overall, transportation requirements are generally higher for the RPCs as they are heavier and are routed through centralized manufacture and servicing locations after each use cycle. Because life cycle requirements for produce distribution are partially allocated to the containers used to deliver the produce, it is intuitive to assume that the CW-PW would be correlated with the environmental performance of the container system (i.e., the lower the ratio, 13

14 the more produce delivered per container material use and thus, improved environmental performance). However, because the RPCs are used multiple times, the weight of one RPC actually delivers multiple times the weight of its per-trip produce capacity over the lifetime of the RPC use; thus, this correlation is not so straightforward. Figures ES-4 and Figure ES-5 compares the absolute CW-PW ratios for each container type and their average life-cycle CW-PW ratio (i.e., the average weight of container material consumed in the container s lifetime relative to its per-container produce capacity), respectively. Note, that for DRCs and NDCs, which are used one time before they are recycled, these ratios are the same for absolute or life cycle averages; whereas, for the RPCs, the life-cycle CW-PW ratio is significantly lower due to RPC reuse. Average life-cycle CW-PW ratios are figured based on the baseline trip number, loss rate, breakage rate, recovery rate, and recycled content for the RPCs. These figures further illustrate the impact that reusability has on the CW-PW ratio of the different container types (i.e., the amount of container material weight used to deliver produce weight). Significant variations in the CW-PW ratios are primarily due to historical precedent in the use of the various types of produce containers in the industry. These variations may also be present due to ergonomic changes made in the various types of containers to adjust for changes in volume and/or velocity of crop merchandising and/or changes in the average weight of the produce items over time. However, as displayed in Figure ES-5, the general trend is that RPC life cycle CW-PW ratios are significantly lower than those of the corrugated containers because of their reusability. The LCA for the container systems are correlated with these average life cycle CW-PW ratios and the environmental performance of the entire container system for each container type. Figure ES 4. Comparison of Per-Trip Ratios for Empty Container Weight to Produce Capacity Weight per Container Type & Produce Application 14

15 Figure ES 5. Comparison of Average Life Cycle Ratios for Empty Container Weight to Produce Capacity Weight per Container Type & Produce Application ES.2.6. Key Assumptions Although the foreground processes in this analysis were populated with primary data and the background processes come from reliable databases and industry data, most analyses still have limitations. Further, it is necessary to make a number of assumptions when modeling, which could influence the final results of a study. Key limitations and assumptions of this analysis are: RPC composition and per-use material consumption reflect pooling and use of internally generated container scrap at steady-state. All RPC loss occurring at the produce retailers (i.e., use phase) are assumed to be disposed (i.e., landfilled and incinerated with energy recovery) rather than being recycled. A variety of chemicals and repulpable coatings can be added to corrugated fiber to improve its strength performance in the moist conditions associated with fresh produce transport and storage. Quality data on production and use of chemical wet strength additives or coatings used to improve moisture resistance of corrugated produce containers for each produce application were not available. These materials are not expected to have a significant effect on the impacts for the production of corrugated produce containers. No special treatments (e.g., coating processes) required in production of corrugated produce containers to improve moisture resistance have been reflected in this analysis. Likewise, end-of-life (EOL) effects of these additives on fiber box recycling and decomposition of landfilled boxes have not been considered, as quantified data were not available on how these additives might affect these stages of the fiber box life cycle. 15

16 For the North American geographic scope, the bulk of raw material production included in the LCI is assumed to occur in the US and associated electricity requirements are consistently modeled with the average US fuel profile. However, in the sensitivity analysis, regional electricity grid fuel mixes are applied for electricity requirements of processes specific to the supply chain of RPC use (production, recycling, and cleaning) to test the effect of this parameter on the overall results; Inks and labels are determined to be below the one percent weight and environmental significance cut-off criteria of the LCI per data collected for this analysis and are excluded; Transportation requirements inventoried for specific transportation modes are based on industry averages for that mode; transportation modes (e.g., combination truck, single truck, rail, barge, and ocean freighter) were selected based on primary data supplied by the study commissioners; Transportation requirements do not include environmental burdens for transporting the weight of the produce contained within the RPCs, DRCs, and NDCs as the life cycle burdens of the contained products are outside the scope of this study; Estimates of the end results of landfilling and waste-to-energy (WTE) combustion are limited to global warming potential (GWP) effects, electricity credits, and requirements for transporting waste to a landfill and operating landfill equipment. Recycling energy requirements are also taken into account. ES.2.7. Sensitivity Analysis The parameters varied in the sensitivity analysis in this study are: 1. Reuse rates (i.e., number of useful lives or trip number) for IFCO corporate-wide average RPC 2. Loss rate for the RPCs at the produce retailers (use phase) through theft and/or mishandling 3. Breakage rate for the RPCs during use, cleaning, and re-use cycles 4. Recovery yield at the RPC manufacturing facility s container molding process (container recycling) 5. Recycled content of the polypropylene RPC 6. Average distance from RPC use to a cleaning center to reflect centralized retailers 7. Recycling rates for end-of-life (EOL) fiber corrugated container material used in a retail context 8. Geography dependent technologies for production, recycling, cleaning, & recycling RPCs i.e., regional variations in electricity based on the eight North American Electric Reliability Corporation (NERC) regional grids 9. Recycling methodology used in the LCI i.e., system expansion vs. cut-off 10. Best- and worst-case scenarios for the recycled content of fiber-based produce containers The values for the trip number, loss rate, breakage rate, and recovery yield used in the baseline scenario reflect the rates achieved and observed in IFCO s North American operations; whereas, those used in the sensitivity analysis reflect the most practical range of values given discussions with IFCO and their supply chain. An overview of the values used to examine the effect these 16

17 parameters have on the overall comparison of environmental burdens of the use of plastic versus fiber produce containers is shown in Table ES 2. Table ES 2. Parameter Values for the Sensitivity Analysis Baseline Max or Interim Min RPC Trip Number RPC Loss Rate 0.80% 0.85% 0.75% RPC Breakage Rate 0.98% 2.0% 0.10% RPC Recycling Recovery Yield 98% 99% 97% RPC Recycled Content 50% 100% 0% RPC Cleaning Distance 398 miles 597 miles 199 miles Fiber Containers' Recycling Rate 95% 78% 50% Fiber Containers' Recycled Content 15% 52.7% 0% Electricity Grid Mix (Region) US Avg SPP NPCC Recycling Allocation Methodology System Expansion n/a Cut-Off ES.3. KEY FINDINGS For this analysis, results are presented for delivery of 1,000 tonnes of each investigated produce commodity as well as for the delivery of the average tonne of mixed produce. The weight factors for a tonne of mixed produce are estimated using 2013 data on weights of fresh produce to market from the USDA NASS. These weight factors are shown in Table ES 3. Table ES 3. Weight Factors for Mixed Produce Weight to Fresh Markets in 2013 (lbs) 2013 Mixed Produce Weight Factor Apples 6,860,900,000 20% Bell Peppers 1,443,300, % Carrots 2,425,500, % Grapes 2,233,880, % Lettuce 4,515,000,000 13% Oranges 4,478,000,000 13% Peaches 793,940, % Onions 6,965,400,000 20% Tomatoes 2,728,000, % Strawberries 2,508,500, % TOTAL 34,952,420, % 17

18 The LCI results are characterized for eight different LCIA indicators: global warming potential, energy demand, ozone depletion potential, water consumption, acidification, eutrophication, photochemical smog generation potential, and solid waste generation. Energy and solid waste results are further disaggregated and presented in terms of types of energy (type by fuel source and expended vs. feedstock) and types of solid waste (fuel-related, process and post-consumer and landfilled, incinerated, and waste-to-energy shares). For most of the impact categories examined in this study, the LCIA results are obtained using the TRACI 2.1 characterization methodologies. 6, TRACI 2.1 is an internationally accepted methodology and selected by Franklin Associates as the most appropriate methodology to apply in this study, i.e., with a North American geographic scope. Global warming potential is characterized using factors from the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report published in Cumulative energy demand is assessed with Franklin Associates own method and includes both fossil and non-fossil energy. Results for water consumption and solid waste generation are simply life cycle inventory (LCI) totals. Land-use impacts are not included in the LCIA. Table ES 4 compares the quantitative LCIA results for 1,000 tonnes of mixed produce delivered in RPCs, DRCs, and NDCs in North America. This table also provides the potential environmental savings that could be realized per 1,000 tonnes of produce by switching from fiber produce containers to RPCs for distribution of produce in North America. For this analysis, Franklin Associates considers that overall differences in LCI/LCIA results of less than 25 percent for emissions, water consumption, and impact results and differences of less than 10 percent for energy and solid waste should not be assumed to be significant. Given uncertainties in LCI data and LCIA methods, these differences are reasonable thresholds for considering results between product systems sufficiently disparate to be meaningful. 6 7 EPA s Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), see: G. Myhre et al., Anthropogenic and Natural Radiative Forcing, in CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS. CONTRIBUTION OF WORKING GROUP I TO THE FIFTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE IPCC Table 8.7 at 714 (Cambridge Univ. Press 2013). 18

19 Table ES 4. Baseline LCIA Results for Produce Containers (Per 1,000 tonnes of produce delivered in North America) Per 1,000 Tonnes of North American Produce Delivered: RPCs DRCs NDCs DRC --> RPC NDC --> RPC Energy Demand GJ eq 1,682 2,537 2,420 34% 31% Global Warming kg CO2 eq 87, , ,392 31% 28% Ozone Depletion kg CFC-11 eq 5.1E E-04 51% 49% Water Consumption m3 H2O % 64% Acidification kg SO2 eq % 46% Eutrophication kg N eq % 71% Photochemical Smog kg O3 eq 9,539 10,155 9,554 6% 0.2% Solid Waste kg SW 2,527 16,877 16,175 85% 84% Meaningful difference (lower for RPCs) Insignificant difference (Potential Savings: RPC Relative to Fiber Containers) For the baseline scenario, seven of the eight categories indicate significantly greater environmental savings for use of IFCO RPCs relative to use of fiber DRCs and NDCs, while differences in photochemical smog are not sufficiently disparate to make a conclusive comparison. Concluding Remarks The RPC use savings are primarily due to the avoidance of energy consumption and emissions incurred during the production of fiber DRCs and/or NDCs processes that, despite incorporating recovered fiber, must be repeated for the entire weight of the container for each container use. The steady-state reuse process of delivering produce with RPCs only consumes about 33/1000ths of the RPC container material per use cycle compared to 100 percent material manufacturing and recycling required per use with shipments made in single-use fiber containers. In seven out of eight examined environmental indicators (energy demand, global warming potential, ozone depletion potential, water consumption, acidification, eutrophication, solid waste generation), the IFCO RPCs, as defined in this analysis, provides greater environmental savings for delivering produce in North America than does the use of fiber corrugated containers for these commodities. The sensitivity analysis indicates that these conclusions are not changed for: 1) the range of reuse rates (i.e., number of useful lives or trip number) projected for the average IFCO RPC, 2) the range of RPC loss rates at the use phase, 3) the range of breakage rates for RPCs, 4) the range of recovery yields at the RPC manufacturing/recycling step, 5) the range of recycled resin content designated for reusable RPCs, 6) the variations in distances for the retail distribution to IFCO RPC service center transportation leg, or 7) variations in the electricity grid fuel mix. Conclusions regarding GWP shift in 3 sensitivities: 1) lower recycling rates for fiber corrugated 19

20 containers, where the GWP difference becomes inconclusive at lower fiber box recycling rates; 2) the range of recovered fiber contents for the DRCs or NDCs, where fiber boxes modeled at the corrugated industry average recycled content of 52.7% (rather than 15% content typical for produce boxes) have lower GWP than RPCs; and 3) use of cut-off recycling methodology, where GWP differences between RPCs and fiber boxes become inconclusive. In addition, when the best-case scenario for fiber containers is compared to the worst-case scenario for RPCs, the fiber box systems have lower GWP. The reasons for the shifts in GWP conclusions with changes in recycled content, recycling rate, and recycling allocation method can be explained as follows: Under the system expansion recycling allocation method used for the baseline results in this analysis, recycling burdens and virgin paperboard displacement credits are included when the amount of postconsumer material produced from the container system (the recycling rate) is greater than the amount of postconsumer material used by the container system (the box s recycled content). In the case of the corrugated fiber produce boxes, the baseline recycling rate (95%) is greater than the recycled content of the corrugated produce box (15%), so there is an excess 80% recovered fiber that is recycled and displaces some virgin fiber in other uses. However, recycling operations are more dependent on fossil fuels for energy compared to virgin paperboard production, so there is a net increase in GWP for every kg of excess paperboard that is recycled and displaces virgin paperboard. (Recycling does show benefits for other impacts for the fiber boxes, including net reductions in energy and water consumption.). Because there is a net increase in GWP per kg of excess recovered paperboard under the system expansion modeling, the GWP results decrease when there is less excess paperboard recovered (excess calculated as recycling rate minus recycled content). This differential decreases when the recycling rate decreases (e.g., from 95% to 50% in the recycling rate sensitivity analysis) or the recycled content of the box increases (e.g., from 15% to 52.7% in the recycled content sensitivity analysis). This explains why the GWP results improve for the fiber boxes in these sensitivities. GWP results also improve for fiber boxes under the cut-off recycling allocation method, in which boxes recycled at end of life leave the system boundaries with no recycling burdens or material displacement credits. 20

21 21

Printing and Writing Papers Life- Cycle Assessment Frequently Asked Questions

Printing and Writing Papers Life- Cycle Assessment Frequently Asked Questions Printing and Writing Papers Life- Cycle Assessment Frequently Asked Questions 1. What is LCA? Life-cycle assessment (LCA) is a comprehensive environmental accounting tool with wellestablished procedures

More information

Environmental Product Declaration

Environmental Product Declaration Environmental Product Declaration According to ISO 14025 Fabricated Steel Reinforcing Bar (Rebar) Issue Date: August 7, 2017 Valid Until: August 7, 2022 Copyright ASTM International, 300 Barr Harbor Drive,

More information

Conclusions and Summary Report Environmental Life Cycle Assessment of Marine Pilings

Conclusions and Summary Report Environmental Life Cycle Assessment of Marine Pilings Conclusions and Summary Report Environmental Life Cycle Assessment of Marine Pilings ISO 14044 Compliant Prepared by: AquAeTer, Inc. Treated Wood Council (2012) Conclusions and Summary Report 1. Conclusions

More information

Conclusions and Summary Report on an Environmental Life Cycle Assessment of Utility Poles

Conclusions and Summary Report on an Environmental Life Cycle Assessment of Utility Poles Conclusions and Summary Report on an Environmental Life Cycle Assessment of Utility Poles ISO 14044 Compliant Prepared by: AquAeTer, Inc. Treated Wood Council (2012) Conclusions and Summary Report 1. Conclusions

More information

LIFE CYCLE INVENTORY OF CONTAINER SYSTEMS FOR WINE. Final Report. Prepared for. Tetra Pak, Inc.

LIFE CYCLE INVENTORY OF CONTAINER SYSTEMS FOR WINE. Final Report. Prepared for. Tetra Pak, Inc. LIFE CYCLE INVENTORY OF CONTAINER SYSTEMS FOR WINE Final Report Prepared for Tetra Pak, Inc. By Franklin Associates, A Division of ERG Prairie Village, KS October 16, 2006 Table of Contents EXECUTIVE SUMMARY

More information

CRADLE-TO-GATE LIFE CYCLE ANALYSIS OF EXPANDED POLYSTYRENE RESIN

CRADLE-TO-GATE LIFE CYCLE ANALYSIS OF EXPANDED POLYSTYRENE RESIN CRADLE-TO-GATE LIFE CYCLE ANALYSIS OF EXPANDED POLYSTYRENE RESIN Final Report Submitted to: EPS Industry Alliance Submitted by: Franklin Associates, A Division of ERG Date: December 2016 PREFACE The report

More information

Owens Corning Asphalt Shingles According to ISO 14025

Owens Corning Asphalt Shingles According to ISO 14025 Owens Corning Asphalt Shingles This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of

More information

Neutral Posture North Texas Avenue Bryan, TX

Neutral Posture North Texas Avenue Bryan, TX Neutral Posture 3904 North Texas Avenue Bryan, TX 77803 www.neutralposture.com Sustainability@neutralposture.com Neutral Posture is a recognized leader in providing ergonomic solutions, high quality products

More information

Single-Ply Roofing Membranes

Single-Ply Roofing Membranes PRODUCT CATEGORY RULES (PCR) For Preparing an Environmental Product Declaration for Product Category: Single-Ply Roofing Membranes The product group includes thermoplastic or thermoset membrane of compounded

More information

This EPD complies with the Building Envelope Thermal Insulation Product Category Rule (PCR), version 1.0 by Underwriters Laboratory (UL).

This EPD complies with the Building Envelope Thermal Insulation Product Category Rule (PCR), version 1.0 by Underwriters Laboratory (UL). Expanded Polystyrene Insulation MoldED, closed-cell FoaM plastic InsulatIon LONG-TERM stable R-ValuE The EPS Industry Alliance (EPS-IA), which represents manufacturers and distributors of expanded polystyrene

More information

Tool for Environmental Analysis and Management (TEAM ) Demonstration

Tool for Environmental Analysis and Management (TEAM ) Demonstration Tool for Environmental Analysis and Management (TEAM ) Demonstration Annie Landfield First Environment, Inc. Seattle, WA September 22, 2003 Agenda 1) Intro to LCA and TEAM (15 Minutes): Objectives of the

More information

ENVIRONMENTAL FOOTPRINT COMPARISON TOOL A tool for understanding environmental decisions related to the pulp and paper industry

ENVIRONMENTAL FOOTPRINT COMPARISON TOOL A tool for understanding environmental decisions related to the pulp and paper industry ENVIRONMENTAL FOOTPRINT COMPARISON TOOL A tool for understanding environmental decisions related to the pulp and paper industry OVERVIEW OF EFFECTS OF RECYCLED FIBER USE Introduction Recovered fiber begins

More information

Our Sustainability Goals We will be Resource Smart, Ecoinspired, and Community Driven.

Our Sustainability Goals We will be Resource Smart, Ecoinspired, and Community Driven. Design Story Designed by Jeff Weber Caper s molded polypropylene seat and back are contoured for comfort, flexible for give, and colorful enough to brighten up any room. A series of holes in the plastic

More information

FABRICATED HOT-ROLLED STRUCTURAL SECTIONS

FABRICATED HOT-ROLLED STRUCTURAL SECTIONS ENVIRONMENTAL PRODUCT DECLARATION FABRICATED HOT-ROLLED STRUCTURAL SECTIONS Hot rolled structural steel sections complying with the definition of structural steel in AISC 303-10 produced in the United

More information

Measuring the Environmental Impacts of Reusable Packaging with Life-Cycle Analysis. Presented by: Chris Shepard

Measuring the Environmental Impacts of Reusable Packaging with Life-Cycle Analysis. Presented by: Chris Shepard Measuring the Environmental Impacts of Reusable Packaging with Life-Cycle Analysis Presented by: Chris Shepard How Does Reusable Packaging Impact Environmental Sustainability? Reusable packaging can improve

More information

ENVIRONMENTAL BENEFITS OF CHEP USA PALLET POOLING

ENVIRONMENTAL BENEFITS OF CHEP USA PALLET POOLING ENVIRONMENTAL BENEFITS OF CHEP USA PALLET POOLING CHEP OVERVIEW CHEP Equipment Pooling Systems: www.chep.com Global leader in wooden pallet and container pooling services 285M pallets and shipping containers

More information

Comparative Life Cycle Assessment (LCA) of Protective Garments: Reusable vs. Disposable in Radioactive Material Applications 14634

Comparative Life Cycle Assessment (LCA) of Protective Garments: Reusable vs. Disposable in Radioactive Material Applications 14634 Comparative Life Cycle Assessment (LCA) of Protective Garments: Reusable vs. Disposable in Radioactive Material Applications 14634 John Jewell 1, Maggie Wildnauer 1 1 PE INTERNATIONAL, Inc. ABSTRACT Protective

More information

Our Sustainability Goals We will be Resource Smart, Ecoinspired, and Community Driven.

Our Sustainability Goals We will be Resource Smart, Ecoinspired, and Community Driven. Design Story Designed by Jerome Caruso Celle s patented Cellular Suspension system forms a flex map that conforms to your unique shape and stature, supporting your spine while giving you freedom to move.

More information

ENVIRONMENTAL PRODUCT DECLARATION AXIOM

ENVIRONMENTAL PRODUCT DECLARATION AXIOM Committed to Sustainability. Armstrong World Industries is committed to delivering ceiling solutions that reduce the environmental impact of the buildings you create; from product design and raw material

More information

Environmental Life Cycle Assessment PSE 476/FB 576

Environmental Life Cycle Assessment PSE 476/FB 576 Environmental Life Cycle Assessment PSE 476/FB 576 Lecture 13: Global Warming and Carbon Footprinting Richard Venditti Fall 2016 Richard A. Venditti Forest Biomaterials North Carolina State University

More information

FIBERGLASS INSULATION

FIBERGLASS INSULATION FIBERGLASS INSULATION 1. INTRODUCTION TO WARM AND FIBERGLASS INSULATION This chapter describes the methodology used in EPA s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas

More information

STEEL. Performance features like fire, humidity, corrosion, and seismic. Product application and use. Product ingredients and their sources

STEEL. Performance features like fire, humidity, corrosion, and seismic. Product application and use. Product ingredients and their sources Suprafine Xl SUSPENSION SYSTEM Committed to Sustainability. Armstrong World Industries is committed to delivering solutions that reduce the environmental impact of the buildings you create; from product

More information

Interlocking Concrete Pavers and Paving Slabs

Interlocking Concrete Pavers and Paving Slabs Interlocking Concrete Pavers and Paving Slabs ENVIRONMENTAL PRODUCT DECLARATION VERIFICATION Expocrete, an Oldcastle company is the recognized leading manufacturer and innovator of Hardscapes and Masonry

More information

Environmental Implications of Increasing Wood Use in Building Construction. Dr. Jim Bowyer Dovetail Partners Minneapolis, MN

Environmental Implications of Increasing Wood Use in Building Construction. Dr. Jim Bowyer Dovetail Partners Minneapolis, MN Environmental Implications of Increasing Wood Use in Building Construction Dr. Jim Bowyer Dovetail Partners Minneapolis, MN Environmental Implications of Increasing Wood Use in Building Construction Importance

More information

LEXMARK MS810DN ENVIRONMENTAL PRODUCT DECLARATION MONO LASER PRINTER

LEXMARK MS810DN ENVIRONMENTAL PRODUCT DECLARATION MONO LASER PRINTER ENVIRONMENTAL PRODUCT DECLARATION LEXMARK MS810DN MONO LASER PRINTER Lexmark hardware, software and services combine to help our customers securely and efficiently capture, manage and print information.

More information

Carbon Storage and Low Energy Intensity in Harvested Wood Products. Jim Bowyer Dovetail Partners, Inc. Minneapolis, MN

Carbon Storage and Low Energy Intensity in Harvested Wood Products. Jim Bowyer Dovetail Partners, Inc. Minneapolis, MN Carbon Storage and Low Energy Intensity in Harvested Wood Products Jim Bowyer Dovetail Partners, Inc. Minneapolis, MN Carbon in Harvested Wood Products Proximate analysis of wood Carbon storage in forests

More information

PANDUIT 4-PAIR COPPER DATA CABLE RISER RATED

PANDUIT 4-PAIR COPPER DATA CABLE RISER RATED ENVIRONMENTAL PRODUCT DECLARATION PANDUIT 4-PAIR COPPER DATA CABLE RISER RATED At Panduit, we re serious about sustainability. Everyone s talking about sustainability these days. Companies are making huge

More information

Life Cycle Assessment (LCA)

Life Cycle Assessment (LCA) Life Cycle Assessment (LCA) Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy) 1.Theme description The Life Cycle Assessment (LCA) allows to evaluate the interactions that a product

More information

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN and ISO 14025

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN and ISO 14025 ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804 and ISO 14025 Saint-Gobain Denmark A/S Gyproc Gyptone 12.5 mm with Activ Air Date of issue: 2017-07-17 Valid until: 2022-05-16 Version : 1

More information

Setu Multipurpose Chair with Lyris 2

Setu Multipurpose Chair with Lyris 2 Setu Multipurpose Chair with Lyris 2 Design Story Designed by Studio 7.5 Setu is Studio 7.5 s solution for today s more collaborative, less formal workspaces. Material innovation gives the Setu chair its

More information

Comparative Life Cycle Assessment of Reusable vs. Disposable Textiles

Comparative Life Cycle Assessment of Reusable vs. Disposable Textiles Comparative Life Cycle Assessment of Reusable vs. Disposable Textiles Comparative Life Cycle Assessment of Reusable vs. Disposable Textiles Prepared for Textile Rental Services Association of America 188

More information

DOCUMENTATION FOR THE PAPER CALCULATOR VERSION 3.2

DOCUMENTATION FOR THE PAPER CALCULATOR VERSION 3.2 DOCUMENTATION FOR THE PAPER CALCULATOR VERSION 3.2 Submitted to: Environmental Paper Network By: Franklin Associates, A Division of ERG June 2015 Table of Contents PAPER CALCULATOR DOCUMENTATION INTRODUCTION...

More information

IPC Handrails UNCPC Code: Builders ware of products According to ISO 14025

IPC Handrails UNCPC Code: Builders ware of products According to ISO 14025 This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products

More information

Relate Seating. Environmental Product Declaration

Relate Seating. Environmental Product Declaration Seating Models Upholstered back work chair with adjustable arms and without arms. Mesh back work chair with adjustable arms. Product Description work chairs offer the perfect combination of versatility

More information

ENVIRONMENTAL PRODUCT DECLARATION

ENVIRONMENTAL PRODUCT DECLARATION Duro-Fleece Single-Ply PVC Roof Membrane ENVIRONMENTAL PRODUCT DECLARATION VERIFICATION Company Name Product Type Product Name Manufacturing Site EPD Scope Duro-Last, Inc. Single-ply PVC roofing Duro-Fleece

More information

LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT

LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT 1 st International EIMPack Congress 2012 LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT OPERATIONS Sandra Ferreira Marta Cabral Nuno Cruz Pedro Simões Rui Cunha Marques Lisbon, 29 November 2012 EIMPack: Economic

More information

I m green PE Life Cycle Assessment

I m green PE Life Cycle Assessment I m green PE Life Cycle Assessment Introduction One of the greatest challenges faced by our society is to reduce its greenhouse gas emissions to ensure that we do not have climactic changes with disastrous

More information

Carbon Footprint Analysis for Kaiser Permanente Food Procurement Alternatives in Northern California

Carbon Footprint Analysis for Kaiser Permanente Food Procurement Alternatives in Northern California Carbon Footprint Analysis for Kaiser Permanente Food Procurement Alternatives in Northern California Prepared for the Community Alliance with Family Farmers by John Talberth, Ph.D. Shana Sweitzer, Research

More information

SMART. Seafood Packaging

SMART. Seafood Packaging SMART Seafood Packaging Index ~ 02 WHERE WE ARE ~ 03 COMPANY ~ 08 POLYPROPYLENE SEAFOOD BOXES: UNIQUE FEATURES ~ 09 PRODUCTS RANGE ~ 16 PERLA BOX ~ 17 LIVE FISH BOX ~ 04 QUALITY POLICY ~ 10 ICE BOX ~

More information

ASSESSMENT OF THE CURRENT STATE OF THE POST-CONSUMER FIBER MARKET 1

ASSESSMENT OF THE CURRENT STATE OF THE POST-CONSUMER FIBER MARKET 1 in partnership with ASSESSMENT OF THE CURRENT STATE OF THE POST-CONSUMER FIBER MARKET 1 The effective recovery and reuse of paper products has many environmental benefits and is a key sustainability goal

More information

Belgard Pavers Interlocking Concrete Paving Units

Belgard Pavers Interlocking Concrete Paving Units Belgard Pavers Interlocking Concrete Paving Units ENVIRONMENTAL PRODUCT DECLARATION VERIFICATION For over 60 years, Anchor, an Oldcastle Company based in Red Bank, NJ has been a leading manufacturer of

More information

Life Cycle Analysis of Paper Products

Life Cycle Analysis of Paper Products Life Cycle Analysis of Paper Products Dr. Richard A. Venditti Department of Forest Biomaterials North Carolina State University Raleigh, NC 27695-8005 Richard Venditti, Professor, Sabbatical Leave Jan-July

More information

CRADLE-TO-GATE LIFE CYCLE INVENTORY ANALYSIS FOR BIO-MATE COMPOSTING SYSTEM

CRADLE-TO-GATE LIFE CYCLE INVENTORY ANALYSIS FOR BIO-MATE COMPOSTING SYSTEM ETRC257/16/1020 (R150/11) Report CRADLE-TO-GATE LIFE CYCLE INVENTORY ANALYSIS FOR BIO-MATE COMPOSTING SYSTEM Prepared for: Promise Earth (M) Sdn. Bhd. 46 A and 48A-1, First Floor, Lebuh Enggang, Off Jalan

More information

Life cycle Assessment

Life cycle Assessment Life cycle Assessment Life Cycle Assessment LCA is a 'cradle to grave' method of assessing environmental impact. It is an analysis which covers the entire life cycle of a product or function, from the

More information

VIEW DYNAMIC GLASS PROCESSED GLASS

VIEW DYNAMIC GLASS PROCESSED GLASS ENVIRONMENTAL PRODUCT DECLARATION VIEW DYNAMIC GLASS PROCESSED GLASS A leader in building innovation, View Inc. is the first company to successfully advance the large-scale commercialization of dynamic

More information

Toilet papers [EDP (1)]

Toilet papers [EDP (1)] Toilet papers [EDP 2002-30(1)] 1. General 1.1. Scope and definition This requirement specifies technical considerations, declaration format and communication necessary for developing and issuing Environmental

More information

Life Cycle Assessment of Polypropylene Pressure Piping Systems

Life Cycle Assessment of Polypropylene Pressure Piping Systems Life Cycle Assessment of Polypropylene Pressure Piping Systems On behalf of aquatherm GmbH September 10, 2015 On behalf of thinkstep AG and its subsidiaries Document prepared by Title Takuma Ono Consultant

More information

ENVIRONMENTAL PRODUCT DECLARATION

ENVIRONMENTAL PRODUCT DECLARATION Duro-Last EV Single-Ply PVC Roof Membrane ENVIRONMENTAL PRODUCT DECLARATION VERIFICATION Company Name Product Type Product Name Manufacturing Site EPD Scope Duro-Last, Inc. Single-ply PVC roofing Duro-Last

More information

N A T I O N A L C O U N C I L F O R A I R A N D S T R E A M I M P R O V E M E N T

N A T I O N A L C O U N C I L F O R A I R A N D S T R E A M I M P R O V E M E N T ncasi N A T I O N A L C O U N C I L F O R A I R A N D S T R E A M I M P R O V E M E N T LIFE CYCLE ASSESSMENT OF NORTH AMERICAN PRINTING AND WRITING PAPER PRODUCTS FINAL REPORT prepared for American Forest

More information

Life Cycle Assessment of Polymers in an Automotive Assist Step

Life Cycle Assessment of Polymers in an Automotive Assist Step Life Cycle Assessment of Polymers in an Automotive Assist Step for American Chemistry Council by PE INTERNATIONAL, Inc. April 23, 2012 Contact: Christoph Koffler Margaret Zahller PE INTERNATIONAL, Inc.

More information

Declaration Owner: JD Steel Co., Inc. Scott Hamilton (907)

Declaration Owner: JD Steel Co., Inc. Scott Hamilton (907) Declaration Owner: JD Steel Co., Inc. Scott Hamilton Shamilton@jdsteel.com (907) 746-6750 Products Fabricated Reinforcing Bar (ASTM A615, A706) Declared Unit The declared unit is one metric ton of fabricated

More information

Deliverable 5-2: Report on Life Cycle Analysis: a) Composting and b) Anaerobic Digestion

Deliverable 5-2: Report on Life Cycle Analysis: a) Composting and b) Anaerobic Digestion ISWM - TINOS ISWM-TINOS: Development and implementation of a demonstration system on Integrated Solid Waste Management for Tinos in line with the Waste Framework Directive Deliverable 5-2: Report on Life

More information

ENVIRONMENTAL PRODUCT DECLARATION STEEL DECK STEEL ROOF DECK STEEL FLOOR DECK

ENVIRONMENTAL PRODUCT DECLARATION STEEL DECK STEEL ROOF DECK STEEL FLOOR DECK ENVIRONMENTAL PRODUCT DECLARATION STEEL DECK STEEL ROOF DECK STEEL FLOOR DECK The Member Companies of the Steel Deck Institute (SDI) believe that the sustainability of the products that they manufacture

More information

Comparative LCA of 4 types of drinking cups used at events; Eco-efficiency analysis of 4 types of drinking cups used at events

Comparative LCA of 4 types of drinking cups used at events; Eco-efficiency analysis of 4 types of drinking cups used at events Comparative LCA of 4 types of drinking cups used at events; Eco-efficiency analysis of 4 types of drinking cups used at events By A. Vercalsteren, C. Spirinckx, T. Geerken and P. Claeys VITO, Mol, Belgium;

More information

Framework for Carbon Footprints for paper and board products. April 2017

Framework for Carbon Footprints for paper and board products. April 2017 Framework for Carbon Footprints for paper and board products April 2017 EXECUTIVE SUMMARY Executive Summary Climate change has become a topic of high public interest. Building on this, politicians are

More information

A LIFE CYCLE ASSESSMENT-BASED COMPARISON OF ENGINEERING THERMOSET AND ALUMINUM IN AN AUTOMOTIVE UNDER-THE-HOOD APPLICATION

A LIFE CYCLE ASSESSMENT-BASED COMPARISON OF ENGINEERING THERMOSET AND ALUMINUM IN AN AUTOMOTIVE UNDER-THE-HOOD APPLICATION A LIFE CYCLE ASSESSMENT-BASED COMPARISON OF ENGINEERING THERMOSET AND ALUMINUM IN AN AUTOMOTIVE UNDER-THE-HOOD APPLICATION David P. Evers, Sigrid ter Heide, Tanis J. Marquette Hexion Inc. 180 E. Broad

More information

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN and ISO Isover Roof N 160 mm. Realization data: Version:

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN and ISO Isover Roof N 160 mm. Realization data: Version: ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804 and ISO 14025 Isover Roof N 160 mm Realization data: Version: Main product information General Information Manufacturer: Saint-Gobain Isover

More information

Gasoline [EDP (1)]

Gasoline [EDP (1)] Gasoline [EDP 2002-30(1)] 1. General 1.1. Scope and definition This requirement specifies technical considerations, declaration format and communication necessary for developing and issuing Environmental

More information

PEER REVIEWED FINAL REPORT LCI SUMMARY FOR SIX TUNA PACKAGING SYSTEMS. Prepared for THE PLASTICS DIVISION OF THE AMERICAN CHEMISTRY COUNCIL

PEER REVIEWED FINAL REPORT LCI SUMMARY FOR SIX TUNA PACKAGING SYSTEMS. Prepared for THE PLASTICS DIVISION OF THE AMERICAN CHEMISTRY COUNCIL PEER REVIEWED FINAL REPORT LCI SUMMARY FOR SIX TUNA PACKAGING SYSTEMS Prepared for THE PLASTICS DIVISION OF THE AMERICAN CHEMISTRY COUNCIL by FRANKLIN ASSOCIATES, A DIVISION OF EASTERN RESEARCH GROUP,

More information

Life Cycle Environmental Performance of Renewable Building Materials in the Context of Residential Construction

Life Cycle Environmental Performance of Renewable Building Materials in the Context of Residential Construction Life Cycle Environmental Performance of Renewable Building Materials in the Context of Residential Construction Construction of Structures Manufacturing Processes Service Life and Use Forest Growth and

More information

Product Category Rules (PCR) (Approved PCR ID: PA-AA-01)

Product Category Rules (PCR) (Approved PCR ID: PA-AA-01) (Provisional Translation) Product Category Rules (PCR) (Approved PCR ID: PA-AA-01) PCR Name: Nonglutinous Rice (Japonica) Release Date: September 4, 2009 CFP Calculation and Labeling Pilot Program *The

More information

OVERHEAD GLAZING ALUMINUM SLOPED CURTAIN WALL

OVERHEAD GLAZING ALUMINUM SLOPED CURTAIN WALL ENVIRONMENTAL PRODUCT DECLARATION OVERHEAD GLAZING ALUMINUM SLOPED CURTAIN WALL Kawneer Company, Inc., part of Arconic's global Building and Construction Systems (BCS) business, has provided the commercial

More information

Legrand's environmental commitments

Legrand's environmental commitments 128, Av. du Maréchal-de-Lattre-de-Tassigny 87045 Limoges cedex - France Tel: +33 (0)5 55 06 87 87 Fax: +33 (0)5 55 06 88 88 i Your usual Sales office Website: www.legrand.fr Product Environmental Profile

More information

IFS Coatings. Gainesville, Texas 3601 N Interstate 35, Gainesville, TX

IFS Coatings. Gainesville, Texas 3601 N Interstate 35, Gainesville, TX IFS Coatings Gainesville, Texas 3601 N Interstate 35, Gainesville, TX 76240 www.ifscoatings.com coatingsinfo@ifscoatings.com Facilities represented This declaration represents the production of IFS High

More information

IFS Coatings. Gainesville, Texas 3601 N Interstate 35, Gainesville, TX

IFS Coatings. Gainesville, Texas 3601 N Interstate 35, Gainesville, TX IFS Coatings Gainesville, Texas 3601 N Interstate 35, Gainesville, TX 76240 www.ifscoatings.com coatingsinfo@ifscoatings.com Facilities represented This declaration represents the production of IFS High

More information

Module 6. Life Cycle Assessment

Module 6. Life Cycle Assessment Module 6. Life Cycle Assessment NSF Summer Institute on Nano Mechanics and : A Short Course on Nanotechnology, Biotechnology, and Green Manufacturing for Creating Sustainable Technologies June 20-24, 2005

More information

Video media players / recorders [EDP (1)]

Video media players / recorders [EDP (1)] Video media players / recorders [EDP 2003-75(1)] 1. General 1.1. Scope and definition This requirement specifies technical considerations, declaration format and communication necessary for developing

More information

PC built-in optical disk drives [EDP (1)]

PC built-in optical disk drives [EDP (1)] PC built-in optical disk drives [EDP 2002-188(1)] 1. General 1.1. Scope and definition This requirement specifies technical considerations, declaration format and communication necessary for developing

More information

Flexible Packaging, Waste Prevention, and Environmental Considerations

Flexible Packaging, Waste Prevention, and Environmental Considerations Flexible Packaging, Waste Prevention, and Environmental Considerations Prepared for Environmental Summit January 25, 2007 St. Petersburg Beach, Florida David Allaway Oregon Department of Environmental

More information

Tools to Measure Sustainability: Life Cycle Assessment

Tools to Measure Sustainability: Life Cycle Assessment Tools to Measure Sustainability: Life Cycle Assessment March 7, 2012 Dr. Anahita Williamson, Director Kate Winnebeck, LCACP, Senior EHS Specialist New York State Pollution Prevention Institute at RIT Life

More information

DEVELOPING A SIMPLE LIFE CYCLE ASSESSMENT (LCA) TOOL TO ASSESS CLIMATE ADAPTIVE BUILDINGS

DEVELOPING A SIMPLE LIFE CYCLE ASSESSMENT (LCA) TOOL TO ASSESS CLIMATE ADAPTIVE BUILDINGS 8 DEVELOPING A SIMPLE LIFE CYCLE ASSESSMENT (LCA) TOOL TO ASSESS CLIMATE ADAPTIVE BUILDINGS Fernando K C A Department of Chemical & Process Engineering, University of Moratuwa, Katubedda, Sri Lanka chalaka@postgrad.unu.edu,

More information

LIFE-CYCLE ASSESSMENT (LCA) FOR SPRAY POLYURETHANE FOAMS

LIFE-CYCLE ASSESSMENT (LCA) FOR SPRAY POLYURETHANE FOAMS LIFE-CYCLE ASSESSMENT (LCA) FOR SPRAY POLYURETHANE FOAMS Rick Duncan Spray Polyurethane Foam Alliance George Pavlovich Bayer MaterialScience LLC Shen Tian Bayer MaterialScience LLC The information provided

More information

WP5 LCA of selected packaging products

WP5 LCA of selected packaging products WP5 LCA of selected packaging products INTRODUCTION Paper and board in Europe is a very commonly used raw material for packaging. Paper packaging can exist in many different makes and forms and its production

More information

Life Cycle Assessment (LCA) of Poplar Plantations Global warming potential and energy consumption in the US PNW

Life Cycle Assessment (LCA) of Poplar Plantations Global warming potential and energy consumption in the US PNW Life Cycle Assessment (LCA) of Poplar Plantations Global warming potential and energy consumption in the US PNW Ph.D.(c )Marcia Vasquez-Sandoval and Dr. Michael Milota Wood Science and Engineering Department,

More information

STEELCRAFT F SERIES FRAMES

STEELCRAFT F SERIES FRAMES ENVIRONMENTAL PRODUCT DECLARATION STEELCRAFT F SERIES FRAMES Allegion is pioneering safety by protecting people where they live and work and protecting our environment at the same time. We promote the

More information

Guidance document Life cycle assessment for the self-adhesive label

Guidance document Life cycle assessment for the self-adhesive label Guidance document Life cycle assessment for the self-adhesive label Prepared by Why is Life Cycle Assessment useful? Labels play a critical role in the communication and marketing of products. The growing

More information

INSULATED VINYL SIDING INDUSTRY AVERAGE

INSULATED VINYL SIDING INDUSTRY AVERAGE ENVIRONMENTAL PRODUCT DECLARATION INSULATED VINYL SIDING INDUSTRY AVERAGE The Vinyl Siding Institute, Inc. (VSI) is the trade association for manufacturers of vinyl and other polymeric siding and suppliers

More information

Life Cycle Assessment of Plasterboard

Life Cycle Assessment of Plasterboard Technical Report Life Cycle Assessment of Plasterboard Quantifying the environmental impacts throughout the product life cycle, building the evidence base in sustainable construction WRAP helps individuals,

More information

Returnable/Reusable Corrugated Containers

Returnable/Reusable Corrugated Containers Returnable/Reusable Corrugated Containers 1 Returnable Containers Returnable Containers Pallet Bins,Milk Crates, Beverage Trays, Totes Almost all Constructed of Plastic, Metal, or Wire Returnable Containers

More information

ENVIRONMENTAL PRODUCT DECLARATION

ENVIRONMENTAL PRODUCT DECLARATION ENVIRONMENTAL PRODUCT DECLARATION TO MARKET 1208 N. Council Road Oklahoma City, OK 73127 PRODUCTS: Atmosphere and Strata Performance To Market has been designing and selling environmentally friendly commercial

More information

MBA Building Supplies

MBA Building Supplies MBA Building Supplies www.mbastuds.com 888.248.8076 Product This EPD represents light gauge steel framing and accessories manufactured at the following MBA Building Supplies locations: Libertyville, Il

More information

When It Comes To Eco-friendly Decking...

When It Comes To Eco-friendly Decking... When It Comes To Eco-friendly Decking... It turns out that making new plastic out of old plastic is not that green after all. Especially compared with REDWOOD. Here s What s Real. is a petroleum product.

More information

Life-Cycle Assessment (LCA) for Spray Polyurethane Foams

Life-Cycle Assessment (LCA) for Spray Polyurethane Foams Life-Cycle Assessment (LCA) for Spray Polyurethane Foams SprayFoam 2012 Dallas InterContinental Hotel February 2, 2012 Rick Duncan Spray Polyurethane Foam Alliance George Pavlovich Bayer MaterialScience

More information

LCA Background Report for Steel Specialty Products

LCA Background Report for Steel Specialty Products Ceilings and Interior Systems Construction Association LCA Background Report for Steel Specialty Products Life cycle assessment background report in support of an Environmental Product Declaration (EPD)

More information

LEEDing with LCA & EPDs

LEEDing with LCA & EPDs A business unit of AISI www.recycle-steel.org LEEDing with LCA & EPDs MBA Green Builders Symposium October 15 th, 2015 Presentation Objectives Background on AISI/SRI LCA Overview Whole Building LCA LEED

More information

LIFE CYCLE ASSESSMENT OF A BIOREACTOR AND AN ENGINEERED LANDFILL FOR MUNICIPAL SOLID WASTE TREATMENT

LIFE CYCLE ASSESSMENT OF A BIOREACTOR AND AN ENGINEERED LANDFILL FOR MUNICIPAL SOLID WASTE TREATMENT LIFE CYCLE ASSESSMENT OF A BIOREACTOR AND AN ENGINEERED LANDFILL FOR MUNICIPAL SOLID WASTE TREATMENT Waste Management 2003 Jean-François Ménard, Renée Michaud, Julie-Anne Chayer, Pascal Lesage, Louise

More information

EPS Cold Chain SOLUTIONS FRESH SEAFOOD AGRICULTURAL PRODUCE & FRESH FOOD PHARMACEUTICAL & LIFE SCIENCES

EPS Cold Chain SOLUTIONS FRESH SEAFOOD AGRICULTURAL PRODUCE & FRESH FOOD PHARMACEUTICAL & LIFE SCIENCES EPS Cold Chain SOLUTIONS FRESH SEAFOOD AGRICULTURAL PRODUCE & FRESH FOOD PHARMACEUTICAL & LIFE SCIENCES EPS COLD CHAIN SOLUTIONS Of all of the ways expanded polystyrene protects valuable resources, cold

More information

Legrand's environmental commitments

Legrand's environmental commitments Product Environmental Profile 128, Av. du Maréchal-de-Lattre-de-Tassigny 87045 Limoges cedex - France Tel: +33 (0)5 55 06 87 87 Fax: +33 (0)5 55 06 88 88 i Your usual Sales office Website: www.legrand.fr

More information

LCA of beverage container production, collection and treatment systems

LCA of beverage container production, collection and treatment systems Authors: Hanne Lerche Raadal, Ole M. K. Iversen and Ingunn Saur Modahl Report no.: OR.14.16, Ver. 1.0 ISBN: 978-82-7520-746-1 ISBN: 978-82-7520-746-1 LCA of beverage container production, collection and

More information

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN and ISO 14025

ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN and ISO 14025 ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804 and ISO 14025 Gyproc Rf 15 mm Date: 31 st January 2014 Version : 1 N VERIFICATION 60460036_GYPROC General information Manufacturer: Saint-Gobain

More information

ENVIRONMENTAL PRODUCT DECLARATION

ENVIRONMENTAL PRODUCT DECLARATION ENVIRONMENTAL PRODUCT DECLARATION RASKIN INDUSTRIES 1141 Holland Drive, Unit 23 Boca Raton FL 33487 PRODUCT Transformations MODEL 2.2 mm thickness with 20 mil wear layer FUNCTIONAL UNIT 1 Square Meter

More information

LCA Background Report for Aluminum Specialty Products

LCA Background Report for Aluminum Specialty Products Ceilings and Interior Systems Construction Association LCA Background Report for Aluminum Specialty Products Life cycle assessment background report in support of an Environmental Product Declaration (EPD)

More information

Quantification Protocol for Aerobic Composting

Quantification Protocol for Aerobic Composting Quantification Protocol for Aerobic Composting Specified Gas Emitters Regulation Version 2.0 January 2017 Title: Quantification Protocol for Aerobic Composting Number: 2.0 Program Name: Alberta Carbon

More information

Product Category Rule for Environmental Product Declarations

Product Category Rule for Environmental Product Declarations Product Category Rule for Environmental Product Declarations Program Operator ncss@nsf.org PRODUCT CATEGORY RULES REVIEW PANEL Thomas P. Gloria, Ph. D. Industrial Ecology Consultants 35 Bracebridge Rd.

More information

PRODUCT CATEGORY RULES (PCR) for preparing an environmental product declaration (EPD) for. - Cooker hood - PCR 2007:05

PRODUCT CATEGORY RULES (PCR) for preparing an environmental product declaration (EPD) for. - Cooker hood - PCR 2007:05 EPD R PRODUCT CATEGORY RULES (PCR) for preparing an environmental product declaration (EPD) for - Cooker hood - PCR 2007:05 The Swedish Environmental Management Council Version 1.0 2007-06-24 This PCR-document

More information

NRMCA Member National and Regional Life Cycle Assessment Benchmark (Industry Average) Report

NRMCA Member National and Regional Life Cycle Assessment Benchmark (Industry Average) Report NRMCA Member National and Regional Life Cycle Assessment Benchmark (Industry Average) Report Prepared for: National Ready Mixed Concrete Association (NRMCA) Prepared by: Dr. Lindita Bushi and Grant Finlayson

More information

Environmental Product Declaration (EPD) According to ISO14025, BS EN ISO 15804:2012 and International EPD System PCR 2012:01

Environmental Product Declaration (EPD) According to ISO14025, BS EN ISO 15804:2012 and International EPD System PCR 2012:01 Environmental Product Declaration (EPD) According to ISO14025, BS EN ISO 15804:2012 and International EPD System PCR 2012:01 Declaration Holder SAS International LCA Practitioner / Issuer Atkins Ltd /

More information

LCA DATABASE OF STEEL BUILDING TECHNOLOGIES

LCA DATABASE OF STEEL BUILDING TECHNOLOGIES LCA DATABASE OF STEEL BUILDING TECHNOLOGIES Ricardo Mateus. a,*, Luís Bragança a a University of Minho * Author for contact. Tel.: +351 253 510 200; Fax+351 253 510 217; E-mail: ricardomateus@civil.uminho.pt

More information

LIFE CYCLE INVENTORY METHODOLOGY REPORT

LIFE CYCLE INVENTORY METHODOLOGY REPORT LIFE CYCLE INVENTORY METHODOLOGY REPORT Life cycle inventory methodology report for steel products World Steel Association 2017 ALL RIGHTS RESERVED For permission to reproduce any part of this material,

More information

ENVIRONMENTAL PRODUCT DECLARATION

ENVIRONMENTAL PRODUCT DECLARATION ENVIRONMENTAL PRODUCT DECLARATION In accordance with EN 15804 and ISO 14025 RB 12.5 mm Rigips Standard Plasterboard Date of issue: March 2015 Valid until: March 2020 Declaration Number 3013EPD-14-0508

More information