Effect of Ternary Gas Mixtures on the Microstructure of Refractory Metals and Alloys Deposited by Low Pressure Plasma Spraying

Size: px
Start display at page:

Download "Effect of Ternary Gas Mixtures on the Microstructure of Refractory Metals and Alloys Deposited by Low Pressure Plasma Spraying"

Transcription

1 Effect of Ternary Gas Mixtures on the Microstructure of Refractory Metals and Alloys Deposited by Low Pressure Plasma Spraying Rajan Bamola, Santa Fe Springs, U.S.A. and Albert Sickinger, Irvine, U.S.A. To overcome the problem of depositing dense refractory coatings, a study was undertaken on the effect of using three plasma gases simultaneously when depositing tungsten and tungsten alloys utilizing Low Pressure Plasma Spraying (LPPS). A greater degree of control of the plasma flame temperature, jet velocity, and heat transfer capability is believed to occur when using ternary gas mixtures. Samples were prepared and coated using Argon, Helium, and Hydrogen in different ratios. Variations of chamber pressures were used as an additional parameter to control and optimize the deposits. The samples were sectioned and analyzed. Microstructural features such as porosity, unmelted particles, and grain size, were characterized using optical and Scanning Electron Microscopy (SEM). Fractography was used to determine lamellar thickness and distribution. Mechanical properties were evaluated by measuring the microhardness of the different coatings in comparison to one another. 1 Introduction Tungsten possesses many properties; high melting point, high thermionic emission, and high density, desirable in industrial, nuclear and military applications, not found in other metals and alloys. Unfortunately, these properties limit the use of conventional forming and joining techniques when fabricating structures. Much research has been devoted to low pressure plasma spray techniques to form tungsten coatings and structures, however, it is accepted that densities above 92-95% of theoretical are difficult to achieve [1, 2]. A major factor contributing to the lower densities found in reduced pressure sprayed tungsten is less efficient heat transfer between the plasma and the powder particles at a lower pressure environment compared with plasma spraying at ambient pressures. It can be reasoned that denser deposits may be achieved by increasing the chamber pressure and increasing the substrate temperatures to allow better flowability of the particles as they impact the substrate. However, increasing the chamber pressure will also decrease the plasma velocity hence the particles velocities which may negate the advantages of the processing route theorized above. This paper lists the results of using high enthalpy, high velocity plasmas achieved by simultaneously mixing argon, hydrogen, and helium to spray tungsten at various ratios and various chamber pressures. Planche et.al. have reported that particle velocities were higher in the case of Ar-He mixtures when compared to Ar-H 2 at similar isotherms [3]. Particle surface temperatures were higher in the case of Ar-H 2 mixtures then in Ar-He mixtures. They also studied the effects of a ternary gas, Ar-He-H 2, on particle velocities and found an increase in particle velocities compared to binary mixtures of Ar-H 2 and Ar-He. However, axial velocities showed a faster decrease in the ternary mixture. This was attributed to a greater turbulent flow in this case. It must be kept in mind that this study was done in air; therefore, plasma dynamics may be different at reduced pressures. 2 Experimental Procedure A modified Electro Plasma Inc. (EPI) Low Pressure Plasma Spray (LPPS) system equipped with an 03CA torch and a modified anode was used to apply the coating. Initial studies at different chamber pressure levels of 40 (30), 80 (60), 133, 200 (150), and 266 (200) mbar (Torr) used reverse arc sputter cleaning followed by coating application. The substrates consisted of mild steel specimen measuring 25 x 50 x 5 mm grit blasted using 350 µm (36 grit) aluminum oxide. The tungsten powder was obtained from Osram Sylvania, with a particle size distribution of -44 to +5 µm, Figure 1. The majority of particles were between 10 µm and 35 µm, which enabled us to study the melting behavior as a function of the various processing parameters. The particle morphology is shown in Figure 2. Acumulated [%] Particle Size Distribution Particle Size [um] Figure 1: Powder Particle Size Distribution Chart 1

2 An automatic polisher was used to grind and polish all samples in the same manner and the same time. Microstructural studies consisted of electrolytic etching in a NaOH solution at 10V for 12 seconds [4], and examining using an optical microscope. Microstructural features such as splat diameters and thicknesses, resolidified or unmolten particles were analyzed using image analysis. Splat diameters and thicknesses were measured at 1000X magnification. The volume of the splat was used to calculate the diameter of the equivalent powder sphere. Porosity was determined on unetched samples using a grid system and black and white contrast. This allowed better differentiation between pores and artifacts. Figure 2: SEM Photograph of the Tungsten Powder Initial studies at different chamber pressures showed that the modified anode configuration used for the ternary plasma gas parameters worked better at lower pressures of <133 mbar. Also, using reverse arc sputter cleaning applied too much heat to the substrates, which modified the microstructure in the interfacial regions. To produce samples for comparative purposes reverse arc cleaning was omitted and samples were produced using the parameters listed in Table 1. The deposition procedure consisted of evacuating the chamber to mbar ( mtorr), backfilling with argon to the operating pressure of 80 mbar and applying the coating using the same powder feed rate and preprogrammed passes for each sample. Substrate temperature was measured at the end of every coating cycle using an optical pyrometer to evaluate the effect of the different gas mixtures on heat input to the substrate. Table 1: Parameters used for Sample Production Sample #1 #2 #3 #4 #5 Argon [l/min] Helium [l/min] Hydrogen [l/min] (200) 47 (50) 140 (150) Amp Volts Power [kw] Feedrate [g/min] Sub. Temp. [ C] Chamber pressure [mbar] Since reverse arc cleaning was omitted all coatings detached from the substrate. The detached pieces were mounted so the cross-section could be polished. Microhardness was measured using a Tukon Microhardness tester with a 100 gram load and a Knoop indenter. A minimum of five readings were taken on each sample. For ease of comparison the average values were converted in HV using graphical techniques from which the hardness in MPa were calculated. Fractography was conducted by breaking the detached coatings across their cross-section and examining at 200, 400, and 4000X using a JEOL 820 Digital Scanning Electron Microscope (SEM). 3 Results and Discussion Microstructure Representative micro-sections from the samples produced in this study are shown in Figure 3. Distinct differences in microstructures were observed between samples sprayed using binary gas mixtures and those sprayed using ternary mixtures. Samples sprayed using Ar-H 2 (#1) had coating microstructures comprised of roughly spherical particles similar to those in the as-received powder, embedded in a matrix of splats. The size of the spherical particles measured approximately 25 µm and below. The equivalent sphere (original particle size) of the splats ranged from 12 to 22 µm. Of interest was the low fraction of particles molten or otherwise of sizes greater then 30 µm. Samples sprayed with Ar He (#2) revealed a denser structure than those sprayed with Ar-H 2. Equivalent diameter calculations indicated particles with original diameters of µm and below formed splats, these can be observed in the lower section of sample 2 in Figure 3. Unmolten particles measured from 25 µm and below. Very small spherical particles from 10 µm and below could also be observed. When compared with sample 1, a lower fraction of unmolten particles were observed in the samples sprayed with Ar-He. As in the case of the Ar-H 2 sprayed samples, particles measuring greater then 30 µm were not observed. This is probably due to the larger particles having low heat input and higher mass bouncing off the coating. 2

3 Samples sprayed with l/min argon, 47 l/min helium, and l/min hydrogen (# 3) revealed a blocky microstructure of mostly partially molten particles interdispersed with splats originating from particles averaging about 16 µm. The blocky structures were created by two or more partially molten particles sintering together during coating build-up. During metallographic preparation this sample exhibited more particle pull-out then the others indicating lower cohesive strength in this case. Sample 1 (un Samples produced from spraying with l/min argon, l/min helium, and l/min hydrogen (# 4) revealed dense microstructures with a high percentage of splats. The average size of the original particles were µm. The microstructure at 1000X also showed spherical particles 5 µm and less. These appeared to have originated from the powder, where discrete particles or agglomerations of these size particles were observed, see Figure 2. Samples produced from spraying with l/min argon, 140 l/min helium, and l/min hydrogen (#5) showed a dense structure. An interesting feature of these samples were the larger splat widths and lengths that could be measured. The average original diameters of these splats were 22 µm. The largest splats observed resulted in a calculation of 34 µm for the original particle diameter. As in the case of the sample 3, blocky structures from the sintering of two or more particles were observed, but not to that extent, which indicates a higher degree melting of larger particles at higher power levels. Sample 2 (un ( Porosity The major cause of porosity of the various specimen can be related to the fraction of resolidified, unmolten and semi-molten particles in the coatings. Pores originate from interstices created between these types of particles, shown in Figure 4. Area A shows porosity created between various partially molten particles, whereas B shows porosity created between a resolidified particle, a splat, and a partially molten particle. Another cause of porosity that can be observed are those caused by particle fragments preventing flow of partially molten particles into the interstices; area C. Sample 3 (un C A Sample 4 (un B Sample 5 (un ( Figure 4: Metallographical Micro-Section, etched, at 1000X magnification The porosity measurements are presented in Table 2. Figure 3: Metallographical Micro-Sections at 200X (un and 400X ( magnification Table 2: Results of Porosity Measurements Sample #1 #2 #3 #4 #5 Porosity [%]

4 Sample 1 contained the highest fraction of partially molten and unmolten particles; this resulted in it having the highest porosity level. Samples 3 and 5 contained more blocky formations, which are due to agglomeration of two or more partially molten particles sintered together. In the case of sample 5, the higher enthalpy plasma of 132 kw allowed heating of larger particles enabling them to get incorporated into the coating. Sample 4 showed the lowest porosities and the lowest fraction of unmolten particles and agglomerations of partially molten sintered particles. It must be noted that porosity measurements are within experimental error of each other. However, they are useful to indicate a trend in the coating microstructure. Microhardness The microhardness of the coatings are directly related to the porosity and hence the percentage of unmolten, partially molten, and resolidified particles in the coatings. It is worth noting that even though sample 2 had the second highest hardness, the scatter in this case was more then in the other coatings. This can be attributed to the wide variance in structures found in this coating; fine well spread splats and smaller unmolten and partially molten particles. Sample 4 had the least variance in microhardness values this is reflected in the fairly uniform microstructure observed in this sample when compared to the others. Average microhardness values using a Knoop indenter with a 100 gram load are presented in Table 3. Table 3: Knoop Micro Hardness measurements with calculated values for HV and MPa as comparison Fractography The fractographic study using SEM revealed a key difference between samples sprayed using hydrogen, whether in binary or ternary gas mixtures, and those sprayed using just argon-helium. In samples sprayed using hydrogen a high volume of extremely small particles about 1 2 µm were observed throughout the cross-section. These particles were found to originate from the powder (Figure 2), where they appear as discrete particles or agglomerations of 10 µm or more. Samples sprayed using Ar-He contained a much smaller percentage of these particles. A possible explanation could be that in argon-helium plasmas these extremely small particles have trajectories, which cause a high fraction of them to be expelled from the spray pattern hitting the target. However, cinematic studies would need to be performed to verify this theory. In coatings produced using the binary Ar-H 2 parameters, powder particles larger than 25 µm did not melt. According to the sieve analysis in Figure 1, the powder had 17% of particles above 25 µm, in the coating were less then 5% of these particles remaining, which indicates that the majority of these sized particles are not sufficiently heated and did not appear in the coating. Particles between 10 µm and 25 µm formed splats, particles less then 10 µm appear resolidified. About 30% of the area studied in sample 1 appeared as partially molten or superheated particles, capable of being deformed but not forming the traditional pancake shaped splats, which is shown in Figure Microhardness [HK100] # 1 # 2 # 3 # 4 # 5 Sample Number Sample #1 #2 # 3 #4 #5 Knoop Hardness [HK 100 ] (measured) Vickers Hardness [HV 100 ] (calculated) Indentation force [MPa] (calculated) Figure 5: SEM Fractomicrograph of Sample 1 (Ar-H 2 ) The major difference between sample 1 (Ar-H 2 ) and sample 2 (Ar-He) are the smaller splats and the low fraction of unmolten particles in sample 2, shown in Figure 6. This can be explained by the higher velocity plasma with Ar-He allowing heating and deformation of smaller particles but insufficient heating of the larger particles leading to their bouncing off the coating. 4

5 Figure 6: SEM Fractomicrograph of Sample 2 (Ar-He) Samples 3, 4, and 5, produced with Ar-He-H 2 ternary gas mixtures had similar structures with a trend towards increased heating with higher power levels. The microstructure of sample 3 showed increased bonding between partially molten particles forming agglomerated structures along with splats. Sample 4, which is shown in Figure 7, had sufficient power to allow deformation of partially molten and superheated particles to minimize porosity, whereas, in sample 5 the higher power level lead to incorporation of larger partially molten and unmolten particles. These larger particles were not found in the other coatings. acceleration/deceleration rates and peak velocities. Alumina particles, for example, showed a difference of 100m/s between µm particles and µm particles at 67 mbar. The difference in mass between a 25 µm particle and a 45 µm particle is almost a factor of 7. In the case of tungsten, the difference in mass from 15 µm to 25 µm particles is almost a factor of 5. Therefore, one would expect a dramatic decrease in particle velocity of the larger tungsten particles. Also one can calculate using heat capacity data that it takes about five times as much energy to obtain a T of 3000ºK for a 25 µm particle than for a 15 µm particle. This explains why the larger particles bounce off at lower power levels in some samples, but adhere at higher power levels in other samples. In this study, the gun nozzle faced downwards to minimize the effects of trajectory differences between particles of different masses. Realistically, one would still expect different mass particles to occupy different positions in the plasma stream and thus experience different kinetic and thermal histories. 4 Conclusion Measurable differences in LPPS tungsten coating microstructures were observed in samples sprayed using binary gases compared to those using ternary gas mixtures. Chamber pressures of less than 133 mbar (<100 Torr) offer greater degree of control of the plasma characteristics when using ternary gases of Ar-He-H 2 Ternary gas mixtures of Ar-He-H 2 require more control than binary gas mixtures to produce optimized microstructures. Powder particle size was found to be more influential on microstructure optimization above a certain power level. 5 References Figure 7: SEM Fractomicrograph of Sample 4 (Ar-He-H 2 ) Particle plasma interaction is a complex relationship in an LPPS system. Research has shown that varying the arc gas flows and compositions in LPPS does not show significant effects on particle velocity, but these changes can greatly influence particle heating [5]. The same study revealed that the particle mass was a significant factor. As the particle mass increases there is a transition to lower [1] Neiser R.A, Watson R.D., Smolik G.R., Hollis K.J., An Evaluation of Plasma Sprayed Tungsten for Fusion Reactors, Proc. of NTSC Anaheim, CA 19, p [2] McKechnie T., Near Net Shape Forming- Metals, Proc. of 1 st ITSC Montreal, Canada, 2000, p [3] Planche M.P., Fauchais P., Coudert J.F., Betoule O., Valletoux H, Comparison of D.C. Plasma Jet Velocity Distribution for Different Plasma Gas Mixtures: Ar-H 2, Ar-He, Ar-He-H 2, Proc. of 7 th NTSC Boston, MA, 1994, [4] Petzow G., Metallographic Etching, ASM 1978, p. 55. [5] Smith M., Laser Measurement of Particle Velocities in Vacuum Plasma Spray Deposition, 1 st Plasma Technik Symposium Proceedings, 1988, V1, p

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira *, KURODA Toshio *, KIMURA Hisamichi ** and INOUE Akihisa ** Abstract Metallic

More information

Tungsten Coating for Thermal Fusion Material Produced by Gas Tunnel Type Plasma Spraying.

Tungsten Coating for Thermal Fusion Material Produced by Gas Tunnel Type Plasma Spraying. Title Author(s) Tungsten Coating for Thermal Fusion Material Produced by Gas Tunnel Type Plasma Spraying Kobayashi, Akira Citation Transactions of JWRI. 37(1) P.63-P.67 Issue Date 28-7 Text Version publisher

More information

Improvement of Mild Steel Surface Properties by Fly-ash + Quartz + Illmenite Composite Coating

Improvement of Mild Steel Surface Properties by Fly-ash + Quartz + Illmenite Composite Coating Indian Institute of Technology Kharagpur From the SelectedWorks of Ajit Behera Winter December, 2012 Improvement of Mild Steel Surface Properties by Fly-ash + Quartz + Illmenite Composite Coating Ajit

More information

Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying

Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira*, YANO Shoji**, KIMURA Hisamichi***, and INOUE Akihisa*** Abstract Metal glass has excellent functions such as

More information

Examination of tribological properties of oxide-polymer and carbide-polymer coatings formed by flame, plasma and HVOF spray processes

Examination of tribological properties of oxide-polymer and carbide-polymer coatings formed by flame, plasma and HVOF spray processes Examination of tribological properties of oxide-polymer and carbide-polymer coatings formed by flame, plasma and HVOF spray processes R. Samur 1, H. Demirer 2 1 Department of Metallurgy, Faculty of Technical

More information

Application of Fly-ash Composite in Plasma Surface Engineering

Application of Fly-ash Composite in Plasma Surface Engineering Indian Institute of Technology Kharagpur From the SelectedWorks of Ajit Behera Winter December 14, 2012 Application of Flyash Composite in Plasma Surface Engineering Ajit Behera, Indian Institute of Technology

More information

Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying

Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying Transactions of JWRI, Vol. 35 (2006), No. 2 Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying KOBAYASHI Akira*, YANO Shoji**, KIMURA Hisamichi *** and INOUE Akihisa***

More information

Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch

Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch Materials Letters 58 (2003) 179 183 www.elsevier.com/locate/matlet Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch Chang-Jiu Li*, Bo Sun Key State

More information

DRY SLIDING WEAR PERFORMANCE OF THERMAL SPRAYED MICRO- NANO BORON CARBIDE COATING ON 410 GRADE STEEL

DRY SLIDING WEAR PERFORMANCE OF THERMAL SPRAYED MICRO- NANO BORON CARBIDE COATING ON 410 GRADE STEEL DRY SLIDING WEAR PERFORMANCE OF THERMAL SPRAYED MICRO- NANO BORON CARBIDE COATING ON 410 GRADE STEEL K. V. Sreenivas Rao, Girisha K. G. and Anil K. C. Akash R&D Center, Department of Mechanical Engineering,

More information

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process I Arul raj 1, S Ramachandran 2 Research scholar, Faculty of Mechanical Engineering, Sathyabama University,

More information

High Quality Ceramic Coatings Sprayed by High Efficiency Hypersonic Plasma Spraying Gun Sheng Zhu, Binshi Xu and JiuKun Yao

High Quality Ceramic Coatings Sprayed by High Efficiency Hypersonic Plasma Spraying Gun Sheng Zhu, Binshi Xu and JiuKun Yao Materials Science Forum Online: 2005-01-15 ISSN: 1662-9752, Vols. 475-479, pp 3981-3984 doi:10.4028/www.scientific.net/msf.475-479.3981 2005 Trans Tech Publications, Switzerland High Quality Ceramic Coatings

More information

Laser assisted Cold Spray

Laser assisted Cold Spray 2009-02-16 Laser assisted Cold Spray Andrew Cockburn, Matthew Bray, Rocco Lupoi Bill O Neill Innovative Manufacturing Research Centre (IMRC) Institute for Manufacturing, Department of Engineering, University

More information

THERMAL SPRAY COATINGS

THERMAL SPRAY COATINGS THERMAL SPRAY COATINGS THERMAL SPRAY is a group of processes in which metals, alloys, ceramics, plastics and composite materials in the form of powder, wire, or rod are fed to a torch or gun with which

More information

Functionally Graded Thermal Barrier Composite Coatings Formed by Gas Tunnel Type Plasma Spraying

Functionally Graded Thermal Barrier Composite Coatings Formed by Gas Tunnel Type Plasma Spraying Functionally Graded Thermal Barrier Composite Coatings Formed by Gas Tunnel Type Plasma Spraying Akira KOBAYASHI JWRI, Osaka University 11-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan Email: kobayasi@jwri.osaka-u.ac.jp

More information

PROCESS CONTROL OF THERMAL BARRIER COATING SYSTEM BY CURRENT VARIANT CHANGES TO ALTER THE MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS

PROCESS CONTROL OF THERMAL BARRIER COATING SYSTEM BY CURRENT VARIANT CHANGES TO ALTER THE MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS Volume XI, Issue I, June 2015, Page 129 135 PROCESS CONTROL OF THERMAL BARRIER COATING SYSTEM BY CURRENT VARIANT CHANGES TO ALTER THE MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS A. Imran 1, S. Alam

More information

Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process

Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process Surface & Coatings Technology 190 (2005) 388 393 www.elsevier.com/locate/surfcoat Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process

More information

Consolidation of Magnesium Alloys Using Cold Spray. Theresa Dillon, Victor Champagne, and Matthew Trexler US Army Research Laboratory.

Consolidation of Magnesium Alloys Using Cold Spray. Theresa Dillon, Victor Champagne, and Matthew Trexler US Army Research Laboratory. Consolidation of Magnesium Alloys Using Cold Spray Theresa Dillon, Victor Champagne, and Matthew Trexler US Army Research Laboratory Abstract The cold spray process is a powder consolidation method that

More information

INVESTIGATION OF MICROSTRUCTURES OF PLASMA AND HVOF SPRAYED CARBIDE COATINGS

INVESTIGATION OF MICROSTRUCTURES OF PLASMA AND HVOF SPRAYED CARBIDE COATINGS Powder Metallurgy Progress, Vol.7 (2007), No 1 52 INVESTIGATION OF MICROSTRUCTURES OF PLASMA AND HVOF SPRAYED CARBIDE COATINGS J. Trpčevská, W. Žorawski, D. Jakubéczyová, J. Briančin, E. Zdravecká Abstract

More information

INVESTIGATION OF HVOF THERMAL SPRAYED MICRO B4C, MICRO- 1%, 2%, 3% NANO B4C COATINGS ON DRY SLIDING WEAR PERFORMANCE OF 410 GRADE STEEL

INVESTIGATION OF HVOF THERMAL SPRAYED MICRO B4C, MICRO- 1%, 2%, 3% NANO B4C COATINGS ON DRY SLIDING WEAR PERFORMANCE OF 410 GRADE STEEL INVESTIGATION OF HVOF THERMAL SPRAYED MICRO B4C, MICRO- 1%, 2%, 3% NANO B4C COATINGS ON DRY SLIDING WEAR PERFORMANCE OF 410 GRADE STEEL Girisha K. G. 1, Anil K. C. 2, Akash 1 and K. V. Sreenivas Rao 1

More information

THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING

THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING Materials Engineering, Vol. 17, 2010, No. 1 11 THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING Zita Iždinská 1, Ahmed Nasher 1, Karol Iždinský 2 Received 29

More information

Šárka Houdková a Radek Enžl b Olga Bláhová c Petra Pechmanová a Jitka Hlinková c

Šárka Houdková a Radek Enžl b Olga Bláhová c Petra Pechmanová a Jitka Hlinková c METAL 22 MECHANICAL PROPERTIES OF THERMALLY SPRAYED COATINGS Šárka Houdková a Radek Enžl b Olga Bláhová c Petra Pechmanová a Jitka Hlinková c a Institute of Interdisciplinary Studies, University of West

More information

Microstructure and Mechanical Properties of HA/ZrO2 Coatings by Gas Tunnel Plasma Spraying.

Microstructure and Mechanical Properties of HA/ZrO2 Coatings by Gas Tunnel Plasma Spraying. Title Author(s) Microstructure and Mechanical Properties of HA/ZrO2 Coatings by Gas Tunnel Plasma Spraying MORKS, Magdi F.; KOBAYASHI, Akira Citation Transactions of JWRI. 36(1) P.47-P.51 Issue Date 2007-07

More information

Lecture-52 Surface Modification Techniques: HVOF and Detonation Spraying

Lecture-52 Surface Modification Techniques: HVOF and Detonation Spraying Fundamentals of Surface Engineering: Mechanisms, Processes and Characterizations Prof.D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology-Roorkee Lecture-52

More information

Advances in high velocity oxygen fuel spraying enhance long-term durability in Bosch Rexroth large hydraulic cylinder rods

Advances in high velocity oxygen fuel spraying enhance long-term durability in Bosch Rexroth large hydraulic cylinder rods profile Drive & Control Technical Article Advances in high velocity oxygen fuel spraying enhance long-term durability in Bosch Rexroth large hydraulic cylinder rods Gas Temperature (10 3 ºF) 30 25 20 15

More information

THE EFFECT OF INTERSPLAT POROSITY ON PROPERTIES OF W DEPOSITS. Ondřej KOVÁŘÍK, Petr HAUŠILD, Jan SIEGL

THE EFFECT OF INTERSPLAT POROSITY ON PROPERTIES OF W DEPOSITS. Ondřej KOVÁŘÍK, Petr HAUŠILD, Jan SIEGL THE EFFECT OF INTERSPLAT POROSITY ON PROPERTIES OF W DEPOSITS Ondřej KOVÁŘÍK, Petr HAUŠILD, Jan SIEGL katedra materiálů, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze Ondrej.Kovarik@fjfi.cvut.cz

More information

Cost-efficient wear / corrosion protective coatings using High Velocity Oxy Fuel Wire Spraying

Cost-efficient wear / corrosion protective coatings using High Velocity Oxy Fuel Wire Spraying Published Technical Paper Int. Conference EUROMAT 99 in Munich, Sept. 1999 Cost-efficient wear / corrosion protective coatings using High Velocity Oxy Fuel Wire Spraying Johannes Wilden, Andreas Wank Institute

More information

Development of Alternative Method of Blasting and Ultra-High Adhesive Strength Thermal Spray Coatings by Vacuum Arc Treatment* 1

Development of Alternative Method of Blasting and Ultra-High Adhesive Strength Thermal Spray Coatings by Vacuum Arc Treatment* 1 Materials Transactions, Vol. 50, No. 4 (2009) pp. 825 to 831 #2009 Japan Thermal Spraying Society Development of Alternative Method of Blasting and Ultra-High Adhesive Strength Thermal Spray s by Vacuum

More information

Evaluation of Tungsten Carbide Coatings Sprayed with High Velocity Plasma using a Process Map

Evaluation of Tungsten Carbide Coatings Sprayed with High Velocity Plasma using a Process Map Evaluation of Tungsten Carbide Coatings Sprayed with High Velocity Plasma using a Process Map R. McCullough, R. Molz, D. Hawley Sulzer Metco (US) Inc. Westbury, NY, USA Abstract Process mapping is an ideal

More information

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85 Trends in Automotive Applications of Thermal Spray Technology in Japan p. 1 Production Plasma in the Automotive Industry: A European Viewpoint p. 7 The Effect of Microstructure on the Wear Behavior of

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management DIFFUSION BONDING OF AL ALLOY USING DIFFERENT IINTERLAYERS Assist. Prof. Dr. Ahmed A. Akbar*, Samer K. Khaleel * Asst. Prof. Dr. at University of Technology, Production Engineering and Metallurgy, Iraq

More information

THE TECHNOLOGY AND PROPERTIES OF COMBINED SPRAYED BARRIER COATINGS

THE TECHNOLOGY AND PROPERTIES OF COMBINED SPRAYED BARRIER COATINGS PROFESSIONAL STUDIES: THE TECHNOLOGY AND PROPERTIES OF COMBINED SPRAYED BARRIER COATINGS Toomas Pihl Tallinn University of Applied Sciences Estonia Valdek Mikli Tallinn University of Technology Estonia

More information

Metal-Matrix Composites and Thermal Spray Coatings for Earth Moving Machines Quarter 5 Report

Metal-Matrix Composites and Thermal Spray Coatings for Earth Moving Machines Quarter 5 Report Metal-Matrix Composites and Thermal Spray Coatings for Earth Moving Machines Quarter 5 Report Reporting Period Start Date: 1/01/02 Reporting Period End Date: 3/31/02 Authors: Li Liu, D(Caterpillar), Trent

More information

WC-Cu cermet materials: production and characterization. Flávio Diogo Gonçalves Guerreiro

WC-Cu cermet materials: production and characterization. Flávio Diogo Gonçalves Guerreiro WC-Cu cermet materials: production and characterization Flávio Diogo Gonçalves Guerreiro flavio.guerreiro@tecnico.ulisboa.pt Instituto Superior Técnico, Lisboa, Portugal Abstract Due to the similar properties

More information

Cold Spray Action Team Materials Characterization of Pure Copper Consolidated by Liquid Particle Acceleration and the Cold Gas- Dynamic Spray Process

Cold Spray Action Team Materials Characterization of Pure Copper Consolidated by Liquid Particle Acceleration and the Cold Gas- Dynamic Spray Process Cold Spray Action Team Materials Characterization of Pure Copper Consolidated by Liquid Particle Acceleration and the Cold Gas- Dynamic Spray Process Victor Champagne Materials Characterization of Pure

More information

High Speed Titanium Coatings by Supersonic Laser Deposition

High Speed Titanium Coatings by Supersonic Laser Deposition High Speed Titanium Coatings by Supersonic Laser Deposition R. Lupoi, M. Sparkes, A. Cockburn and W. O Neill Institute for Manufacturing, Department of Engineering, University of Cambridge, 17 Charles

More information

Structure Control of Plasma Sprayed Zircon Coating by Substrate Preheating and Post Heat Treatment

Structure Control of Plasma Sprayed Zircon Coating by Substrate Preheating and Post Heat Treatment Materials Transactions, Vol. 46, No. 3 (25) pp. 669 to 674 #25 Japan Thermal Spraying Society Structure Control of Plasma Sprayed Zircon Coating by Substrate Preheating and Post Heat Treatment Masato Suzuki,

More information

The principle Of Tungsten Inert Gas (TIG) Welding Process

The principle Of Tungsten Inert Gas (TIG) Welding Process The principle Of Tungsten Inert Gas (TIG) Welding Process This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role.

More information

Surface Coating of Tungsten Carbide by Electric Exploding of Contact

Surface Coating of Tungsten Carbide by Electric Exploding of Contact Surface Coating of Tungsten Carbide by Electric Exploding of Contact Evgeny G. Grigoryev General Physics Department, Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409, Russia Abstract.

More information

Microstructure and Phase Composition of Titanium Coatings Plasma Sprayed with a Shroud

Microstructure and Phase Composition of Titanium Coatings Plasma Sprayed with a Shroud Microstructure and Phase Composition of Titanium Coatings Plasma Sprayed with a Shroud Hong Zhou 1*, Zhi Liu 2 and Liancong Luo 3 1 Centre for Engineering, Waikato Institute of Technology, Hamilton 3240,

More information

LASER SURFACE ALLOYING (LSA) OF ALUMINIUM (AA 1200) WITH TiB 2 FOR HARDNESS IMPROVEMENT Paper (802)

LASER SURFACE ALLOYING (LSA) OF ALUMINIUM (AA 1200) WITH TiB 2 FOR HARDNESS IMPROVEMENT Paper (802) LASER SURFACE ALLOYING (LSA) OF ALUMINIUM (AA 200) WITH TiB 2 FOR HARDNESS IMPROVEMENT Paper (802) Abimbola Patricia Popoola *, Sisa Pityana,2 Department of Chemical and Metallurgical Engineering, Tshwane

More information

AUTOMOTIVE APPLICATIONS. Testing Instructions

AUTOMOTIVE APPLICATIONS. Testing Instructions AUTOMOTIVE APPLICATIONS Issue date: 11.02 A Testing Instructions Designation Reference Coverage Scope GOE 504 B 14 GOE 505 B 15 GOE 520 B 24 quality testing (all material specifications) quality testing

More information

Improvement of corrosion resistance of HVOF thermal sprayed coatings by gas shroud

Improvement of corrosion resistance of HVOF thermal sprayed coatings by gas shroud Improvement of corrosion resistance of HVOF thermal sprayed coatings by gas shroud Jin Kawakita, Takeshi Fukushima, Seiji Kuroda, and Toshiaki Kodama National Research Institute for Materials Science Abstract

More information

STUDY ON HYDROXYAPATITE COATING ON BIOMATERIALS BY PLASMA SPRAY METHOD

STUDY ON HYDROXYAPATITE COATING ON BIOMATERIALS BY PLASMA SPRAY METHOD STUDY ON HYDROXYAPATITE COATING ON BIOMATERIALS BY PLASMA SPRAY METHOD Dr. Hanumantharaju H. G 1, Dr. H. K. Shivanand 2, Prashanth K. P 3, K. Suresh Kumar 4, S. P. Jagadish 5 1,2 UVCE, Department of Mechanical

More information

Potential of High Velocity Oxy Fuel Thermal Spraying in Turbine Shaft Repairing. Production Technology Research Institute, branch of ACECR

Potential of High Velocity Oxy Fuel Thermal Spraying in Turbine Shaft Repairing. Production Technology Research Institute, branch of ACECR Potential of High Velocity Oxy Fuel Thermal Spraying in Turbine Shaft Repairing M. Jalali Azizpour 1 S. Norouzi H.Mohammadi Majd 3 D.Sajedipour 4 E. Pipelzadeh 5 B.Aslani 6 H.Talebi 7 A.Ghamari 8 1, 3,

More information

BALKANTRIB O5 5 th INTERNATIONAL CONFERENCE ON TRIBOLOGY JUNE Kragujevac, Serbia and Montenegro

BALKANTRIB O5 5 th INTERNATIONAL CONFERENCE ON TRIBOLOGY JUNE Kragujevac, Serbia and Montenegro BALKANTRIB O5 5 th INTERNATIONAL CONFERENCE ON TRIBOLOGY JUNE.15-18. 2005 Kragujevac, Serbia and Montenegro SURFACE INTEGRITY AND TRIBOLOGICAL BEHAVIOR OF PLASMA SPRAYED ALUMINA COATINGS ON STEEL AND ALUMINUM

More information

Microstructural Studies of Thermal Spray Coating

Microstructural Studies of Thermal Spray Coating Microstructural Studies of Thermal Spray Coating Chennupati Vijaya Kumar SSIT, Sathupally-Khammam, India Subhash Kamal, PhD Universiti Teknologi Petronas, Malaysia ABSTRACT Chromium carbide nickel chrome,

More information

Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas

Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas Continuous Synthesis of Carbon Nanoclusters Using Well-Controlled Thermal Plasmas T. Ohishi*, Y. Yoshihara and O. Fukumasa Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai,

More information

Solidification Morphology Analysis of SLM of Cu Powder

Solidification Morphology Analysis of SLM of Cu Powder Solidification Morphology Analysis of SLM of Cu Powder Jorge A. Ramos Grez Pontificia Universidad Católica de Chile Mechanical and Metallurgical Engineering Department David L. Bourell The University of

More information

Wear Resistance of AlN-Al Cermet Coatings Deposited by HVOF Spray Process. Matsumoto, Taihei; Cui, Lin; Nogi, Kiyoshi

Wear Resistance of AlN-Al Cermet Coatings Deposited by HVOF Spray Process. Matsumoto, Taihei; Cui, Lin; Nogi, Kiyoshi Title Author(s) Wear Resistance of AlN-Al Cermet Coatings Deposited by HVOF Spray Process Matsumoto, Taihei; Cui, Lin; Nogi, Kiyoshi Citation Transactions of JWRI. 36(1) P.35-P.39 Issue Date 27-7 Text

More information

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS

CHAPTER-4 EXPERIMENTAL DETAILS. 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS CHAPTER-4 EXPERIMENTAL DETAILS 4.1 SELECTION OF MATERIAL FOR CC GTAW & PC GTAW OF 90/10 & 70/30 Cu-Ni ALLOY WELDS Hot rolled plates of 90/10 and 70/30 Cu-Ni alloys of 5 mm thickness were selected as test

More information

STUDY OF FAILURE PROCESSES IN SPECIMENS WITH DIFFERENT TYPE OF COATINGS

STUDY OF FAILURE PROCESSES IN SPECIMENS WITH DIFFERENT TYPE OF COATINGS Jan Siegl STUDY OF FAILURE PROCESSES IN SPECIMENS WITH DIFFERENT TYPE OF COATINGS Czech Technical University - Faculty of Nuclear Sci. and Physical Engineering, Department of Materials, Trojanova 13, 112

More information

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding

Influence of Shielding Gas on Aluminum Alloy 5083 in Gas Tungsten Arc Welding Available online at www.sciencedirect.com Procedia Engineering 29 (2012) 2465 2469 2012 International Workshop on Information and Electronics Engineering (IWIEE) Influence of Shielding Gas on Aluminum

More information

Institute for Diagnostic Imaging Research

Institute for Diagnostic Imaging Research Institute for Diagnostic Imaging Research (Repair applications of the LPCS process) Roman Gr. Maev, Emil Strumban, Volf Leshchinskiy, and Dmitry Dzhurinskiy CSAT 2014, Worcester, MA Low Pressure Cold Spray

More information

Corrosion Testing of Several Waterwall Coatings

Corrosion Testing of Several Waterwall Coatings Corrosion Testing of Several Waterwall Coatings Prepared for Dominion Power April 15, 2013 Prepared by John N. DuPont, PhD Energy Research Center Lehigh University Bethlehem, PA 18015 Objective: The objective

More information

Surface Integrity and Tribological Behavior of Plasma Sprayed Alumina Coatings on Steel and Aluminum Substrates

Surface Integrity and Tribological Behavior of Plasma Sprayed Alumina Coatings on Steel and Aluminum Substrates N.M. VAXEVANIDIS, D.E. MANOLAKOS, G.P. PETROPOULOS Surface Integrity and Tribological Behavior of Plasma Sprayed Alumina Coatings on Steel and Aluminum Substrates RESEARCH Ceramic coatings produced by

More information

The Many Facets and Complexities of 316L and the Effect on Properties

The Many Facets and Complexities of 316L and the Effect on Properties The Many Facets and Complexities of 316L and the Effect on Properties Ingrid Hauer Miller Höganäs AB, Höganäs, Sweden state and country Ingrid.hauer@hoganas.com, +46702066244 Abstract One of the most widely

More information

Dependence of Adhesion Strength of Plasma Spray on Coating Surface Properties

Dependence of Adhesion Strength of Plasma Spray on Coating Surface Properties Indian Institute of Technology Kharagpur From the SelectedWorks of Ajit Behera April, 2012 Dependence of Adhesion Strength of Plasma Spray on Coating Surface Properties Ajit Behera, Indian Institute of

More information

SURFACE BEHAVIOUR OF CU-AL AND CU INTERMETALLIC COATING PRODUCED BY ARC SPRAYED. Yıldız Y.ÖZBEK*, Nuray KARAKUŞ, Ekrem ALTUNCU, Fatih ÜSTEL

SURFACE BEHAVIOUR OF CU-AL AND CU INTERMETALLIC COATING PRODUCED BY ARC SPRAYED. Yıldız Y.ÖZBEK*, Nuray KARAKUŞ, Ekrem ALTUNCU, Fatih ÜSTEL SURFACE BEHAVIOUR OF CU-AL AND CU INTERMETALLIC COATING PRODUCED BY ARC SPRAYED Yıldız Y.ÖZBEK*, Nuray KARAKUŞ, Ekrem ALTUNCU, Fatih ÜSTEL Sakarya University, Engineering Faculty, Department of Metallurgy

More information

needed for the SOFC electrolyte membrane application. Few directed vapor deposition

needed for the SOFC electrolyte membrane application. Few directed vapor deposition Chapter 3 Experimental Procedure 3.1 Overview Prior to this study, DVD has not been used to create the type of dense metal oxide layers needed for the SOFC electrolyte membrane application. Few directed

More information

Plasma spheroidization of nickel powders in a plasma reactor

Plasma spheroidization of nickel powders in a plasma reactor Bull. Mater. Sci., Vol. 27, No. 5, October 2004, pp. 453 457. Indian Academy of Sciences. Plasma spheroidization of nickel powders in a plasma reactor G SHANMUGAVELAYUTHAM and V SELVARAJAN* Department

More information

FRACTURE OF THERMAL SPRAYED NANOSTRUCTURED COATINGS

FRACTURE OF THERMAL SPRAYED NANOSTRUCTURED COATINGS ICF1001056OR FRACTURE OF TERMAL SPRAYED NANOSTRUCTURED COATINGS Maurice Gell, Leon Shaw, Eric Jordan, ong Luo and Daniel Goberman School of Engineering, University of Connecticut Storrs, CT 06269, USA

More information

related to the welding of aluminium are due to its high thermal conductivity, high

related to the welding of aluminium are due to its high thermal conductivity, high Chapter 7 COMPARISON FSW WELD WITH TIG WELD 7.0 Introduction Aluminium welding still represents a critical operation due to its complexity and the high level of defect that can be produced in the joint.

More information

Improving The Wear Resistance of Mechanical Harvester Basecutter Blades by Surface Engineering.

Improving The Wear Resistance of Mechanical Harvester Basecutter Blades by Surface Engineering. Improving The Wear Resistance of Mechanical Harvester Basecutter Blades by Surface Engineering. Kavian Cooke and Gossett Oliver: Mechanical Engineering Department, University of Technology, Jamaica Andrew

More information

COMPARISON OF ABRASIVE WEAR RESISTANCE BETWEEN HVOF THERMALLY SPRAYED ALLOY-BASED AND CERMET COATINGS

COMPARISON OF ABRASIVE WEAR RESISTANCE BETWEEN HVOF THERMALLY SPRAYED ALLOY-BASED AND CERMET COATINGS COMPARISON OF ABRASIVE WEAR RESISTANCE BETWEEN HVOF THERMALLY SPRAYED ALLOY-BASED AND CERMET COATINGS Zdeněk ČESÁNEK, Šárka HOUDKOVÁ, Jan SCHUBERT, Michaela KAŠPAROVÁ VZÚ Plzeň s.r.o., Tylova 46, 301 00

More information

Material Product Data Sheet Tungsten Carbide Nickel Chromium Self-Fluxing Powders

Material Product Data Sheet Tungsten Carbide Nickel Chromium Self-Fluxing Powders Material Product Data Sheet Tungsten Carbide Nickel Chromium Self-Fluxing Powders Thermal Spray Powder Products: Metco 31C-NS, Metco 32C, Metco 34F, Metco 34FP, Metco 36C, WOKA 7701, WOKA 7702, WOKA 7703,

More information

Novel Technologies for Similar and Dissimilar Titanium Joints

Novel Technologies for Similar and Dissimilar Titanium Joints Novel Technologies for Similar and Dissimilar Titanium Joints October 8, 2012 Michael Eff Project Engineer 614.688.5212 meff@ewi.org EWI. dedicated to Materials Joining and related process development

More information

pdfmachine trial version

pdfmachine trial version EFFECT OF WELDING TECHNIQUES (GTAW & SMAW) ON THE MICROSTRUCTURE & MECHANICAL PROPERTIES OF MILD STEEL SA 516 Gr. 70 By Dr. Muhammad Taqi Zahid Butt, S. Ahmed, S. Rasool, U. Ali and S. U. Rehman* ABSTRACT

More information

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING

POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu ALLOYS FABRICATED BY SELECTIVE LASER MELTING Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference POROSITY DEVELOPMENT AND CRACKING BEHAVIOR OF Al-Zn-Mg-Cu

More information

Exercises in Welding Process and Equipment --- Part 4: Cutting Process and Equipment ---

Exercises in Welding Process and Equipment --- Part 4: Cutting Process and Equipment --- JICA_OHJI Exercises in Welding Process and Equipment --- Part 4: Cutting Process and Equipment --- Takayoshi OHJI Professor Emeritus, Osaka University Dr. of Engineering VIRTUAL WELD CO.,LTD t-ohji@alvec.co.jp

More information

in Materials for High Performance Applications. The University of Birmingham, England, U.K., B15 2TT.

in Materials for High Performance Applications. The University of Birmingham, England, U.K., B15 2TT. Wear behaviour of plasma sprayed TiC-15%Ni coatings R. J. C. Cardoso*, M. A. Ashworth\ M. H. Jacobs* ^Department of Science and Technology ofmaterials, The Federal University of Bahia, RuaAristides Novis,

More information

Novel Cold Spray Nanostructured Aluminum. Aberdeen Proving Ground Maryland USA 2 University of Central Florida

Novel Cold Spray Nanostructured Aluminum. Aberdeen Proving Ground Maryland USA 2 University of Central Florida Novel Cold Spray Nanostructured Aluminum Victor K. Champagne 1, Matthew Trexler 1, Yongho Sohn 2, and George E. Kim 3 1 US Army Research Laboratory Aberdeen Proving Ground Maryland 21005-5069 USA 2 University

More information

Available online at Fatigue Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application

Available online at  Fatigue Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application Available online at www.sciencedirect.com Procedia Procedia Engineering Engineering 2 (2010) 00 (2009) 1617 1623 000 000 Procedia Engineering www.elsevier.com/locate/procedia Fatigue 2010 Fatigue in AISI

More information

Available online at ScienceDirect. Physics Procedia 50 (2013 )

Available online at  ScienceDirect. Physics Procedia 50 (2013 ) Available online at www.sciencedirect.com ScienceDirect Physics Procedia 50 (2013 ) 169 176 International Federation for Heat Treatment and Surface Engineering 20th Congress Beijing, China, 23-25 October

More information

g

g THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47th St., New York, N.Y. 10017 96-0T-500 The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings

More information

Journal of Faculty of Engineering & Technology

Journal of Faculty of Engineering & Technology JFET 24(2) (2017) 01-10 Journal of Faculty of Engineering & Technology journal homepage: www.pu.edu.pk/journals/index.php/jfet/index EFFECT OF SURFACE PROFILE OF MILD STEEL SUBSTRATE UPON ADHESION STRENGTH

More information

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process Supriya Shashikant Patil 1 Dr. Sachin K Patil 2 1 PG Student, Production Engineering Department, ajarambapu Institute of

More information

EVALUATION OF THE POTENTIAL OF LOW PRESSURE PLASMA SPRAYING AND SIMULTANEOUS SPRAY PEENING FOR PROCESSING OF SUPERALLOYS. Abstract

EVALUATION OF THE POTENTIAL OF LOW PRESSURE PLASMA SPRAYING AND SIMULTANEOUS SPRAY PEENING FOR PROCESSING OF SUPERALLOYS. Abstract EVALUATION OF THE POTENTIAL OF LOW PRESSURE PLASMA SPRAYING AND SIMULTANEOUS SPRAY PEENING FOR PROCESSING OF SUPERALLOYS J V Wright Combustion Technology and Engineering Centre Lucas Aerospace Limited

More information

Analysis of Bending Stresses On Coating Materials by Experimental and FE Method

Analysis of Bending Stresses On Coating Materials by Experimental and FE Method Analysis of Bending Stresses On Coating Materials by Experimental and FE Method Umesh G 1, Biradar Mallikarjun 2, Dr. C.S.Ramesh 3 1 Student, IV th Semester M.Tech.(Machine Design), 2 Associate Professor,

More information

EFFECTS OF BORON CARBIDE ADDITION ON HARDNESS AND MICROSTRUCTURE OF Al-Si/B 4 C COMPOSITE. of Malaysia, 43600, Bangi Selangor, Malaysia

EFFECTS OF BORON CARBIDE ADDITION ON HARDNESS AND MICROSTRUCTURE OF Al-Si/B 4 C COMPOSITE. of Malaysia, 43600, Bangi Selangor, Malaysia EFFECTS OF BORON CARBIDE ADDITION ON HARDNESS AND MICROSTRUCTURE OF Al-Si/B 4 C COMPOSITE Anis Syukriah Ibrahim 1, Abdul Razak Daud*,1 and Yusof Abdullah 2 1 Department of Applied Physics, Faculty of Science

More information

Development of composite thermal barrier coatings with anisotropic microstructure

Development of composite thermal barrier coatings with anisotropic microstructure Vacuum 59 (2000) 185}193 Development of composite thermal barrier coatings with anisotropic microstructure S. Sharafat, A. Kobayashi *, V. Ogden, N.M. Ghoniem Mechanical & Aerospace Engineering Department,

More information

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder

Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder Injection Moulding and Heat Treatment of Ni-Cr-Si-B Alloy Powder M. Y. Anwar 1, M. Ajmal 1, M. T. Z. Butt 2 and M. Zubair 1 1. Department of Met. & Materials Engineering, UET Lahore. 2. Faculty of Engineering

More information

Experimental O 3. Results and discussion

Experimental O 3. Results and discussion Introduction Surface coatings to protect against oxidation extend the service temperature and the service life of basic metals. The commercially used coating systems can be divided into three main groups:

More information

Thermal Spray Process Training

Thermal Spray Process Training 1 of 8 Thermal Spray Process Training Sauer Engineering John P. Sauer jopsauer@fuse.net 513-290-3617 Thermal Spray Process Course 2 of 8 Course offerings would be a combination of days and topics below

More information

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys

Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys A R C H I V E S o f F O U N D R Y E N G I N E E R I N G Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 14 Issue 1/2014 85 90 20/1 Characterization

More information

Effect of Plasma Spraying Parameters on the Microstructure and Strength of TiO 2 Coatings

Effect of Plasma Spraying Parameters on the Microstructure and Strength of TiO 2 Coatings Effect of Plasma Spraying Parameters on the Microstructure and Strength of TiO 2 Coatings Muhammad Jabir Suleiman, Siti Mariam Mohamad, and Ahmad Nizam Abdullah Abstract TiO 2 coatings were prepared on

More information

Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet

Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet Korean J. Chem. Eng., 17(3), 299-303 (2000) Preparation of Ultra-fine Alumina Powders by D. C. Plasma Jet Seung-Min Oh and Dong-Wha Park Department of Chemical Engineering, Inha University, 253 Yonghyun-Dong,

More information

LASER CLADDING OF ALUMINIUM USING TiB 2

LASER CLADDING OF ALUMINIUM USING TiB 2 LASER CLADDING OF ALUMINIUM USING TiB 2 (Paper Number 1202) Sanjay Kumar and Sisa Pityana CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa Abstract Modification of Aluminium surface

More information

METHODS OF COATING FABRICATION

METHODS OF COATING FABRICATION METHODS OF COATING FABRICATION Zbigniew Grzesik http://home.agh.edu.pl/~grzesik Department of Physical Chemistry and Modelling DEFINITION The coating is the thin outer layer of the object, which physiochemical

More information

Repetition: Electrochemistry

Repetition: Electrochemistry Repetition: Electrochemistry Process types Cathodic deposition Anodic oxidation Electroless deposition Repetition: Cathodic Deposition Basic set up Potential curve - + U(x) - Me + S - + - K 300 nm + +

More information

Product Data Sheet Martensitic Matrix Hardfacing Alloy with Fine Scale, Extremely Hard Molybdenum Borides and Vanadium Carbides

Product Data Sheet Martensitic Matrix Hardfacing Alloy with Fine Scale, Extremely Hard Molybdenum Borides and Vanadium Carbides Product Data Sheet Martensitic Matrix Hardfacing Alloy with Fine Scale, Extremely Hard Molybdenum Borides and Vanadium Carbides Powder Products: Metco 1030A, Metco 1030B Wire Products: Metco 8224 US patent

More information

Deposition of Amorphous Aluminium Powder Using Cold Spray

Deposition of Amorphous Aluminium Powder Using Cold Spray Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposition May 21 24, 2012, Houston, Texas, USA R.S. Lima, A. Agarwal, M.M. Hyland, Y.-C. Lau, C.-J. Li, A. McDonald,

More information

Development of Al-SiC Compsite Material By Powder Metaullargy Route

Development of Al-SiC Compsite Material By Powder Metaullargy Route Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 3, March -2015 Development

More information

Heat Transfer Simulation to Determine the Impact of Al-5Mg Arc Sprayed Coating onto 7075 T6 Al Alloy Fatigue Performance

Heat Transfer Simulation to Determine the Impact of Al-5Mg Arc Sprayed Coating onto 7075 T6 Al Alloy Fatigue Performance 11 th International LS-DYNA Users Conference Simulation (5) Heat Transfer Simulation to Determine the Impact of Al-5Mg Arc Sprayed Coating onto 7075 T6 Al Alloy Fatigue Performance G. D Amours, B. Arsenault,

More information

Surface Effect of Laser Power on Microstructural Evolution and Hardness Behaviour of Titanium Matrix Composites

Surface Effect of Laser Power on Microstructural Evolution and Hardness Behaviour of Titanium Matrix Composites , June 29 - July 1, 2016, London, U.K. Surface Effect of Laser Power on Microstructural Evolution and Hardness Behaviour of Titanium Matrix Composites Musibau O. Ogunlana and Esther T. Akinlabi, Member,

More information

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure

Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure Fundamental Characteristics of a Microwave Discharge Type Plasma Source Working under Atmosphere Pressure KOBAYASHI Akira*, TAKAO Yoshiyuki**, KOMURASAKI Kimiya*** Abstract The microwave discharge plasma

More information

Research on Using Plasma Thermal Spraying Technology for Enameling

Research on Using Plasma Thermal Spraying Technology for Enameling Research on Using Plasma Thermal Spraying Technology for Enameling Liang Menglin 1 Chen Anming 1 Wang Haiyun 1 Zeng Dayan 2 Yin Yehao 2 (1.Hunan Lifa Glaze Technologies Co., Xiangtan City, Hunan Province,

More information

Process Maps for Plasma Spray Part II: Deposition and Properties

Process Maps for Plasma Spray Part II: Deposition and Properties Process Maps for Plasma Spray Part II: Deposition and Properties Xiangyang Jiang, Jiri Matejicek, Anand Kulkarni, Herbert Herman, Sanjay Sampath, Delwyn Gilmore* and Richard Neiser* Center for Thermal

More information

OPTIMALLASER TREATMENT PARAMETERS OF AA 6061-O ALUMINUM ALLOY

OPTIMALLASER TREATMENT PARAMETERS OF AA 6061-O ALUMINUM ALLOY OPTIMALLASER TREATMENT PARAMETERS OF AA 6061-O ALUMINUM ALLOY Waleed Al-Ashtari and Zahraa Abdulsattar Department of Mechanical Engineering, College of Engineering, University of Baghdad, Iraq E-Mail:

More information

On the Interface Between LENS Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components

On the Interface Between LENS Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components On the Interface Between LENS Deposited Stainless Steel 304L Repair Geometry and Cast or Machined Components D. D. Gill, J. E. Smugeresky, M. F. Harris, C. V. Robino, M. L. Griffith Sandia National Laboratories*

More information

Investigation on the Cutting Process of Plasma Sprayed Iron Base Alloys

Investigation on the Cutting Process of Plasma Sprayed Iron Base Alloys Key Engineering Materials Online: 2010-09-06 ISSN: 1662-9795, Vols. 447-448, pp 821-825 doi:10.4028/www.scientific.net/kem.447-448.821 2010 Trans Tech Publications, Switzerland Investigation on the Cutting

More information