The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for. Advanced Li-S Battery Systems

Size: px
Start display at page:

Download "The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for. Advanced Li-S Battery Systems"

Transcription

1 Supporting information for: The Use of Redox Mediators for Enhancing Utilization of Li 2 S cathodes for Advanced Li-S Battery Systems Stefano Meini 1,, Ran Elazari 2,,, Ariel Rosenman 2, Arnd Garsuch 3 and Doron Aurbach 2,* 1. Chair of Technical Electrochemistry, Technische Universität München 2. Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel 3. BASF SE, Ludwigshafen am Rhein, 67063, Germany Present address: BASF SE, Ludwigshafen am Rhein, 67063, Germany Present address: ICL-IP, Beer Sheva, 84101, Israel * address: Doron.Aurbach@biu.ac.il These authors contributed equally to this work. 1

2 Electrode preparation PVdF bonded Li 2 S electrodes were prepared by spreading using an Eppendorf pipette an ink composed of a mixture of 59% Li 2 S (Aldrich, 99%, as received), 33% carbon black (Printex XE-2) and 8% PVdF binder in N-methyl-pyrrolidone on a 14 mm diameter disk aluminum current collector. The inks were prepared using the following procedure: mixtures of carbon black and Li 2 S (mixed by hand in a mortar for 15 min) were added to a PVdF solution in NMP, and subsequently magnetically stirred for 3 hours in a glass vial. The slurry was spread onto Al disks (100 µl of slurry on each disk), and the solvent was evaporated at room temperature for at least 48 hours. The whole process was performed in an Ar-filled glove box with a MBraun purifying system (O 2 < 1 ppm, H 2 O < 1 ppm). The active mass was 3 mgcm -2. It has to be noticed that the electrode preparation procedure used herein does not involve complex electrode engineering or advanced materials such as carbon nanotubes or nano-sized Li 2 S. As we do not expect excellent rate capability nor fast kinetics of Li 2 S electrochemistry in such electrodes, on the other hand this allows us to prove the effectiveness of redox mediators on an electrode prepared with a procedure that could be easier/more convenient to scale up to larger scale, compared to other more advanced techniques. Electrochemical and XRD characterization of Li 2 S electrodes The Li 2 S cathodes were tested in a two electrodes configuration with coin-type cells (2523, NRC, Canada) vs. lithium metal (Chemetall Foote Corporation, USA) with 60 µl of electrolyte solution and polypropylene membranes (Tonen, Stela) as a separator. The basic electrolyte solution used in this work, referred to as "standard electrolyte solution", was DOL and DME (v:v ratio) with 10% LiTFSI and 2% of LiNO 3 (by weight) to minimize shuttle phenomena. 1,2,3 The RM tested as additives to the standard solution were: Ferrocene Fe(η 5 -C 5 H 5 ) 2, LiI, Decamethylferrocene Fe(η 5 -C 5 Me 5 ) 2, Dibenzenechromium Cr(η 6 -C 6 Me 6 ) 2, and Cobaltocene Co(η 5 -C 5 H 5 ) 2. All additives were employed in 50 mm concentration, except Decamethylferrocene (30 mm) because of its lower solubility. The cells were assembled in the very same 2

3 argon-filled glove box wherein electrode preparation took place, in order to avoid any contact of the electrodes with ambient air. Coin-cells were cycled at 30 C using BT2000 battery cycler (Arbin Instruments, USA). X-ray diffraction (XRD) patterns obtained with a D8 Advance system (Bruker Inc.) using Cu Kα radiation (λ=1.54 Å). Electrochemical characterization of electrolyte solutions by Cyclic Voltammetry The standard electrolyte solution 10 % LiTFSI + 2 % LiNO 3 in DOL:DME 1:1, and the redox mediators additives dissolved to 5 mm concentration in standard solution, were characterized by cyclic voltammetry using a Teflon T-cell with glassy carbon working and counter electrodes, and Li metal as reference electrode (PGSTAT Autolab electrochemical measuring system from Eco Chemie, Inc., The Netherlands). Figure S1 shows the cyclic voltammogram of our standard electrolyte solution recorded at 0.2 mv/s between V Li. An irreversible electroreduction of LiNO 3 can be clearly observed at cell voltage <1.85 V Li. In order to avoid the continuous reduction of LiNO 3 concentration caused by reduction at the cathode surface upon cycling, we set the lower cutoff for cycling to a safe value of 1.9 V Li, above which no other cathodic processes take place rather than those concerning Li-S electrochemistry. That expedient allows us to maintain the benefits of LiNO 3 additive through a higher number of cycles. Figure S1. Cyclic voltammogram (6 th scan) of 10 % LiTFSI + 2 % LiNO 3 in DOL:DME 1:1 electrolyte solution (standard solution), recorded at 0.2 mv/s on a glassy carbon disc working electrode in an Ar-filled 3

4 glovebox. A Teflon T-cell comprising a glassy carbon counter electrode and a Li metal reference electrode was used. Figure S2 shows the cyclic voltammograms of each electrolyte solution we use. All metallocenes show well established reversible behaviour of the Mc + /Mc couples in the whole potential range explored. However, despite its efficiency, LiI doesn't show a fully reversible behaviour, as it was previously reported, which relates to the ability of iodine moieties to build relatively stable ion couples in non-aqueous solvents having moderate donor numbers. 4 With the five additives reported herein, we are thus able to explore the whole potential range of Li-S batteries. Figure S2. Steady-state cyclic voltammograms of all the red-ox additives studied in this work, dissolved to 5 mm concentration in our standard electrolyte solution (that is, 10 % LiTFSI + 2 % LiNO 3 in DOL:DME 1:1): a) Co(η 5 -C 5 H 5 ) 2, b) Cr(η 6 -C 6 H 6 ) 2, c) Fe(η 5 -C 5 Me 5 ) 2, d) LiI, e) Fe(η 5 -C 5 H 5 ) 2. All CVs were recorded at 0.2 4

5 mv/s on a glassy carbon disc working electrode in an Ar-filled glovebox. A Teflon T-cell comprising a glassy carbon counter electrode and a Li metal reference electrode was used. 5

6 Voltage profiles upon cycling of Li-Li 2 S cells Upon cell activation, an overpotential hump attributed to the initial charging of pristine Li 2 S electrodes is shown in Figure S3b. Figure S3. a) Comparison between the voltage profiles in the first charge of Li 2 S electrodes cycled at C/10 rate ( 0.5 ma) using 10% LiTFSI + 2% LiNO 3 in DOL/DME 1/1 (black curve) and different redox mediators: 50 mm LiI (magenta curve), Fe(η 5 -C 5 H 5 ) 2 (red curve), and 30 mm Fe(η 5 -C 5 Me 5 ) 2 (orange curve). High voltage cut-offs were chosen as the minimum value needed for a complete Li 2 S electrooxidation (4.0, 3.2, 3.6, and 3.2 V Li respectively). b) Detail of the initial potential peak of Li 2 S charge profiles shown in Figure S3a (part of the curve enclosed in the dotted black square). 6

7 The maximum voltage peak obtained with the various solutions was found to be correlated to the additive's reduction potential determined by cyclic voltammetry (Figure S2). While the highest peak at 3.2 V Li is measured for the Li/Li 2 S cell charged in an electrolyte solution without any RM, a moderate hump at 2.8 V Li is observed for cells containing Decamethylferrocene as an additive to the electrolyte solution corresponding nicely to its reduction potential (Figure S3b). Sporadic Li-Li 2 S coin cells showed surprisingly higher charge capacities in the activation cycle than the theoretical value expected (1167 mahg -1 Li2S). As an example, the specific charge capacity of a Li-Li 2 S cell using 30 mm Decamethylferrocene additive reached 1700 mahg -1 Li2S (Figure S3a). We believe that these kinds of artefacts can arise when using redox mediators due to shuttling mechanisms additional to the classic polysulfide shuttle phenomenon existing in Li-S cells, in particular at the beginning of cell's life when the SEI layer on the anode is not yet fully formed. Some Li-Li 2 S cells using redox mediators as additives showed unstable voltage values upon charging (Figure S3a, orange curve); a definitive explanation for this phenomenon is not yet available. We speculate that fast RM such as metallocenes, eventually accumulated in cavities within the electrode matrices can release very quickly polysulfides when they come in contact with Li 2 S particles. This can lower the electrode s potential in several hundreds of millivolts to a mixed potential RM/polysulfide, thus resulting in a spike. We suggest that the random nature of this phenomenon has to do with a structural inhomogeneity of the electrodes used herein. Despite those singularities, all cells exhibited the typical cycling behavior of Li-S batteries, showing two potential plateaus upon both discharge and charge (Figure S4). It can be observed that the charge/discharge overpotential (i.e. the potential difference between charge and discharge plateaus) is decreasing in the following order: NO additive > LiI > Ferrocene > Decamethylferrocene. We do not believe that this observation is related to an additional beneficial effect of RM on the battery performance, but rather to the different utilized capacity achieved by the corresponding cells. In fact, since the absolute current (ma) applied to all cells is the same, all cells with lower utilized 7

8 capacity have been cycled at higher charge discharge rates, which results in higher overpotentials. For example, the cells with no additive achieve a maximum capacity of 200 mah/g, 3 times less than the cells with Decamethylferrocene that reach a capacity of 600 mah/g. The presented corollary is that the active material of the cell with no additive is cycled at a 3-fold higher current rate than the cell with Decamethylferrocene, thereof the higher overpotential. Indeed, the capacity trend Decamethylferrocene > Ferrocene > LiI > NO additive is inversely proportional to that observed for charge/discharge overpotentials. Figure S4. Comparison between discharge and charge voltage profiles of Li-Li 2 S cells in the 10 th, 50 th and 150 th cycles, using a) 10% LiTFSI + 2% LiNO 3 in DOL/DME 1/1 and different redox mediators: b) 50 mm Fe(η 5 -C 5 H 5 ) 2 (red curve), c) 50 mm LiI (magenta curve), and d) 30 mm Fe(η 5 -C 5 Me 5 ) 2 (orange curve). Cells are galvanostatically charged at C/10 ( 0.5 ma) up to 4.0, 3.2, 3.6 and 3.2 V Li respectively, and subsequently cycled at C/10 between V Li. 8

9 References (1) Mikhaylik Y.V. Electrolytes for Lithium Sulfur Cells. US 2008/ , (2) Aurbach, D.; Pollak, E.; Elazari, R.; Salitra, G.; Kelley, C.S.; Affinito, J. On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries. J. Electrochem. Soc. 2009, 156, A694 A702. (3) Elazari, R.; Salitra, G.; Talyosef, Y.; Grinblat, J.; Kelley, C.S.; Xiao, A.; Affinito, J.; Aurbach, D. Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy. J. Electrochem. Soc. 2010, 157, A1131 A1138. (4) El-Hallag, I.S. Electrochemical Oxidation of Iodide at a Glassy Carbon Electrode in Methylene Chloride at Various Temperatures. J. Chil. Chem. Soc. 2010, 55,

Supporting Information

Supporting Information Supporting Information In Situ-formed Li 2 S in Lithiated Graphite Electrodes for Lithium-Sulfur Batteries Yongzhu Fu, Chenxi Zu, Arumugam Manthiram Electrochemical Energy Laboratory & Materials Science

More information

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) 6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016) Porous Co3O4 irregular Micro-cubes with lithium storage performances Ting Wanga, Hao Zhengb, Jinsong Chengc,

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell, Kristina Edström, Matthew J. Lacey Department of Chemistry - Ångström Laboratory, Uppsala University,

More information

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery

A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A Stable Graphite Negative Electrode for the Lithium- Sulfur Battery Fabian Jeschull, Daniel Brandell,

More information

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme

More information

Layered TiS 2 Positive Electrode for Mg Batteries

Layered TiS 2 Positive Electrode for Mg Batteries Supporting Information: Layered TiS 2 Positive Electrode for Mg Batteries Xiaoqi Sun, Patrick Bonnick and Linda F. Nazar* Department of Chemistry and the Waterloo Institute of Nanotechnology, University

More information

Supporting Information

Supporting Information Supporting Information Novel DMSO-based Electrolyte for High Performance Rechargeable Li-O 2 Batteries Dan Xu, a Zhong-li Wang, a Ji-jing Xu, a Lei-lei Zhang, a,b and Xin-bo Zhang a* a State Key Laboratory

More information

Supporting Information for

Supporting Information for Supporting Information for Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries Guangyuan Zheng, Yuan Yang, Judy J. Cha, Seung Sae Hong and Yi

More information

High Performance Lithium Battery Anodes Using Silicon Nanowires

High Performance Lithium Battery Anodes Using Silicon Nanowires Supporting Online Materials For High Performance Lithium Battery Anodes Using Silicon Nanowires Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins and Yi Cui * *To

More information

Application in High-Performance Lithium-

Application in High-Performance Lithium- Solution Ionic Strength Engineering as a Generic Strategy to Coat Graphene Oxide (GO) on Various Functional Particles and Its Application in High-Performance Lithium- Sulfur (Li-S) Batteries Jiepeng Rong,Mingyuan

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information

Operando Electron Magnetic Measurements in Li-ion Batteries. Supporting Information Electronic Supplementary Material (ESI) for Energy. This journal is The Royal Society of Chemistry 2014 Operando Electron Magnetic Measurements in Li-ion Batteries Gregory Gershinsky, Elad Bar, Laure Monconduit,

More information

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries

Supporting Information. Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Supporting Information Exploring Stability of Nonaqueous Electrolytes for Potassium-Ion Batteries Yu Lei,, Lei Qin,, Ruliang Liu,, Kah Chun Lau, Yiying Wu, Dengyun Zhai, *, Baohua Li, and Feiyu Kang *,

More information

Supplementary Information for

Supplementary Information for Supplementary Information for An elastic and Li-ion-percolating hybrid membrane stabilizes Li metal plating Quan Pang, Laidong Zhou, Linda F. Nazar* Department of Chemistry and the Waterloo Institute for

More information

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH

Nanocrystalline LiFePO4 as cathode material for lithium battery applications S.C SIAH Nanocrystalline LiFePO as cathode material for lithium battery applications Abstract S.C SIAH Engineering Science Programme, National University of Singapore Kent Ridge, Singapore 119260 LiFePO was prepared

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013 Sodium-ion battery based on ion exchange membranes as electrolyte and separator Chengying Cao, Weiwei Liu, Lei Tan, Xiaozhen Liao and Lei Li* School of Chemical and Chemistry Engineering, Shanghai Jiaotong

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

Supporting Information

Supporting Information Supporting Information Garnet electrolyte with an ultra-low interfacial resistance for Li-metal batteries Yutao Li, Xi Chen, Andrei Dolocan, Zhiming Cui, Sen Xin, Leigang Xue, Henghui Xu, Kyusung Park,

More information

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide

Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Korean J. Chem. Eng., 27(1), 91-95 (2010) DOI: 10.1007/s11814-009-0298-0 RAPID COMMUNICATION Effect of heat treatment on electrochemical characteristics of spinel lithium titanium oxide Sung-Chul Hong*,

More information

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries

Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Supplementary Information Nanostructured Li 2 S-C Composites as Cathode Material for High Energy Lithium/Sulfur Batteries Kunpeng Cai 1,, Min-Kyu Song 1,, Elton J. Cairns 2,3, and Yuegang Zhang 1,,* 1

More information

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University

IBM Almaden June 27, Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University IBM Almaden June 27, 2017 Seongmin Ha, Dongho Koo, Kyu Tae Lee * Chemical and Biological Engineering Seoul National University (ktlee@snu.ac.kr) 1) Introduction 2) Failure mechanism of a redox mediator

More information

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode

Towards High-Safety Potassium-Sulfur Battery Using. Potassium Polysulfide Catholyte and Metal-Free Anode Supporting Information Towards High-Safety Potassium-Sulfur Battery Using Potassium Polysulfide Catholyte and Metal-Free Anode Jang-Yeon Hwang, Hee Min Kim, Chong S. Yoon, Yang-Kook Sun* Department of

More information

Supplemental Information for:

Supplemental Information for: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Supplemental Information for: A Novel Lithium-sulfur Battery Cathode from Butadiene Rubber-caged

More information

Supporting Information for

Supporting Information for Supporting Information for A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium as Positive Electrode Ali Abouimrane, 1,* Damien Dambournet, 1 Karena W. Chapman, 2 Peter J. Chupas,

More information

On the Dynamic Frontier of R&D of novel power sources

On the Dynamic Frontier of R&D of novel power sources On the Dynamic Frontier of R&D of novel power sources In collaboration with BASF,GM,Pellion Doron Aurbach Bar Ilan university, Israel Dr. Ran Elazari Ariel Rosenman Prof. Gregory Salitra Daniel Sharon

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting information A Low Temperature Molten Salt Process for Aluminothermic

More information

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode

SUPPORTING INFORMATION. A Rechargeable Aluminum-Ion Battery Based on MoS 2. Microsphere Cathode SUPPORTING INFORMATION A Rechargeable Aluminum-Ion Battery Based on MoS 2 Microsphere Cathode Zhanyu Li a, Bangbang Niu a, Jian Liu a, Jianling Li a* Feiyu Kang b a School of Metallurgical and Ecological

More information

High-Performance All-Solid-State Lithium-Sulfur. Battery Enabled by a Mixed-Conductive Li 2 S

High-Performance All-Solid-State Lithium-Sulfur. Battery Enabled by a Mixed-Conductive Li 2 S Supporting information High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li 2 S Nanocomposite Fudong Han, Jie Yue, Xiulin Fan, Tao Gao, Chao Luo, Zhaohui Ma, Liumin

More information

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Supporting Information: In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Yi Zhao, Jiaxin Li, Ning Wang, Chuxin Wu, Yunhai Ding, Lunhui Guan*

More information

Supporting Information

Supporting Information Supporting Information Nucleation and Growth of Lithium Peroxide in the Li O2 Battery Sampson Lau and Lynden A. Archer * * E-mail: laa25@cornell.edu Chemical and Biomolecular Engineering, Cornell University,

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

Supporting Information

Supporting Information Supporting Information Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO 3 Yifan Dong, Tyler Slade, Matthew J. Stolt, Linsen Li, Steven N. Girard, Liqiang

More information

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries

Supporting Information for. A Water-in-Salt Electrolyte for Potassium-Ion Batteries Supporting Information for A Water-in-Salt Electrolyte for Potassium-Ion Batteries Daniel P. Leonard #, Zhixuan Wei #, Gang Chen, Fei Du *, Xiulei Ji * Department of Chemistry, Oregon State University,

More information

Nitrogen-Doped Graphdiyne Applied for Lithium-

Nitrogen-Doped Graphdiyne Applied for Lithium- Supporting Information for Nitrogen-Doped Graphdiyne Applied for Lithium- Ion Storage Shengliang Zhang,, Huiping Du,, Jianjiang He,, Changshui Huang,*, Huibiao Liu, Guanglei Cui and Yuliang Li Qingdao

More information

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes

Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using Dual-Salt Electrolytes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supplemental Information Toward the Design of High Voltage Magnesium-Lithium Hybrid Batteries using

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Exploiting Robust Biopolymer Network Binder for Ultrahigh-Areal-

More information

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion

Intercalation of Bi nanoparticles into graphite enables ultrafast. and ultra-stable anode material for Sodium-ion Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Intercalation of Bi nanoparticles into

More information

Li-S S and Li-Air Systems: The Characterization Challenge

Li-S S and Li-Air Systems: The Characterization Challenge Li-S S and Li-Air Systems: The Characterization Challenge Petr Novák Anna Evans Arnd Garsuch (BASF SE) Hermann Kaiser Pascal Maire Tiphaine Poux Holger Schneider 2 Go beyond Li-ion! But what is there???

More information

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries

More information

Alkaline Rechargeable Ni/Co Batteries: Cobalt Hydroxides as. Negative Electrode Materials

Alkaline Rechargeable Ni/Co Batteries: Cobalt Hydroxides as. Negative Electrode Materials Supplementary Information: Alkaline Rechargeable Ni/Co Batteries: Cobalt Hydroxides as Negative Electrode Materials X. P. Gao, S. M. Yao, T. Y. Yan, Z. Zhou Institute of New Energy Material Chemistry,

More information

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1 SUPPORTING INFORMATION Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle Based Lithium Ion Battery Anodes Tae Hoon Hwang, Yong Min Lee, Byung Seon Kong, Jin-Seok Seo, and Jang Wook Choi,,*

More information

A membrane-free ferrocene-based high-rate semiliquid

A membrane-free ferrocene-based high-rate semiliquid Supporting Information A membrane-free ferrocene-based high-rate semiliquid battery Yu Ding,, Yu Zhao,, and Guihua Yu, * Materials Science and Engineering Program and Department of Mechanical Engineering,

More information

Supplementary Information

Supplementary Information Supplementary Information Low Temperature Plasma Synthesis of Mesoporous Fe 3 O 4 Nanorods Grafted on Reduced Graphene Oxide for High Performance Lithium Storage Quan Zhou, a Zongbin Zhao,* a Zhiyu Wang,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors Supporting information MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors Lanyong Yu, Longfeng Hu, Babak Anasori, Yi-Tao Liu, Qizhen Zhu, Peng Zhang, Yury Gogotsi,

More information

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents

Supplemental Information. A Low-Cost and High-Energy Hybrid. Iron-Aluminum Liquid Battery Achieved. by Deep Eutectic Solvents JOUL, Volume 1 Supplemental Information A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,

More information

Low Charge Overpotentials in Lithium-Oxygen Batteries Based on Tetraglyme Electrolytes with Limited Amount of Water

Low Charge Overpotentials in Lithium-Oxygen Batteries Based on Tetraglyme Electrolytes with Limited Amount of Water Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information (ESI) Low Charge Overpotentials in Lithium-Oxygen

More information

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning

The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning 2016 International Conference on Intelligent Manufacturing and Materials (ICIMM 2016) ISBN: 978-1-60595-363-2 The Preparation of C/Ni Composite Nanofibers with Pores by Coaxial Electrospinning Yiqiang

More information

The Li-O 2 Battery with a Dimethylformamide Electrolyte

The Li-O 2 Battery with a Dimethylformamide Electrolyte The Li-O 2 Battery with a Dimethylformamide Electrolyte Yuhui Chen, Stefan A. Freunberger, Zhangquan Peng, Fanny Bardé and Peter G. Bruce* School of Chemistry, University of St. Andrews, North Haugh, St.

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information New insight into working mechanism of Lithium/Sulfur batteries: in situ and operando X-ray diffraction characterization Sylwia Waluś,* a,b Céline Barchasz, a Jean-François

More information

Supporting Information for. Mixture is Better: Enhanced Electrochemical Performance of Phenyl Selenosulfide in Rechargeable Lithium Batteries

Supporting Information for. Mixture is Better: Enhanced Electrochemical Performance of Phenyl Selenosulfide in Rechargeable Lithium Batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information for Mixture is Better: Enhanced Electrochemical Performance of Phenyl Selenosulfide

More information

suppressing charging instabilities of Li-O 2 batteries

suppressing charging instabilities of Li-O 2 batteries Supporting information for Highly efficient Br /NO 3 dual-anion electrolyte for suppressing charging instabilities of Li-O 2 batteries Xing Xin, Kimihiko Ito, Yoshimi Kubo* GREEN, National Institute for

More information

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery**

LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and. cycle stability for Li-S battery** Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for Li-S battery**

More information

Sulfur Speciation in Li-S Batteries Determined by Operando X-ray

Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Supporting Information for: Sulfur Speciation in Li-S Batteries Determined by Operando X-ray Absorption Spectroscopy Marine Cuisinier, Pierre-Etienne Cabelguen, Scott Evers, Guang He, Mason Kolbeck, Arnd

More information

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode.

Supplementary Figure 1 The lithium polysulfide distribution on the patterned electrode. Supplementary Figure 1.The lithium polysulfide distribution on the patterned electrode. SEM image of the ITO-carbon electrode after dipping into Li 2 S 8 solution and drying, which shows the random distribution

More information

Sb C Nanofibers with Long Cycle Life as an Anode Material for High-performance Sodium-ion Batteries

Sb C Nanofibers with Long Cycle Life as an Anode Material for High-performance Sodium-ion Batteries Supplementary Material (ESI) for Energy & Environmental Science Sb C Nanofibers with Long Cycle Life as an Anode Material for High-performance Sodium-ion Batteries Lin Wu, a Xiaohong Hu, b* Jiangfeng Qian,

More information

Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating a photocatalyst

Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating a photocatalyst Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Reducing the charging voltage of a Li-O 2 battery to 1.9 V by incorporating

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supplementary Information Printed Microelectrodes for Scalable, High-areal-capacity

More information

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes

Supporting information. Carbon Matrix: An Ultrafast Na-Storage Cathode with. the Potential of Outperforming Li-Cathodes Supporting information Carbon-Coated Na 3 V 2 (PO 4 ) 3 Embedded in Porous Carbon Matrix: An Ultrafast Na-Storage Cathode with the Potential of Outperforming Li-Cathodes By Changbao Zhu, Kepeng Song, Peter

More information

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries

Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Supporting Information Hierarchical 3D ZnCo 2 O 4 Nanowire Arrays/Carbon Cloth Anodes for A Novel Class of High-Performance Flexible Lithium-ion Batteries Bin Liu, Jun Zhang, Xianfu Wang, Gui Chen, Di

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 218 Supporting Information anoporous sulfur bridged hexaazatrinaphthylene framework as organic cathode

More information

Supporting Information for

Supporting Information for Supporting Information for Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles Feipeng Zhao, 1 Sida Shen, 1 Liang Cheng, 1 Lu Ma, 2 Junhua Zhou, 1 Hualin Ye, 1 Na Han, 1 Tianpin

More information

HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE

HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE HALF - CELLS BASED ON SOLID VITREOUS ELECTROLYTE AND THERMO EXPANDED GRAPHITE E. Shembel, A. Kvasha 2, A. Nosenko 2, Y. Pustovalov, P. Novak Ener,Inc. Ft. Lauderdale, Florida, USA 2 Research laboratory

More information

Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium Sulfur Battery Studied by Solid-State NMR Spectroscopy

Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium Sulfur Battery Studied by Solid-State NMR Spectroscopy Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium Sulfur Battery Studied by Solid-State NMR Spectroscopy Alexander Hoefling, Dan Thien Nguyen, Pouya Partovi-Azar, Daniel Sebastiani,

More information

A high tenacity electrode by assembly of a soft sorbent and. hard skeleton for lithium-sulfur batteries

A high tenacity electrode by assembly of a soft sorbent and. hard skeleton for lithium-sulfur batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 A high tenacity electrode by assembly of a soft sorbent and hard skeleton

More information

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes

Extremely Stable Sodium Metal Batteries Enabled by Localized. High Concentration Electrolytes Supplementary Information for Extremely Stable Sodium Metal Batteries Enabled by Localized High Concentration Electrolytes Jianming Zheng, Shuru Chen, Wengao Zhao, Junhua Song, Mark H. Engelhard, Ji-Guang

More information

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes

In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes In Situ Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes Haiping Wu 1, Yue Cao 1, Linxiao Geng 2 & Chao Wang 1* 1 Department of Chemistry, University of California Riverside,

More information

Supporting Information

Supporting Information Supporting Information Conditioning-Free Electrolytes for Magnesium Batteries Using Sulfone-Ether Mixtures with Increased Thermal Stability Laura C. Merrill and Jennifer L. Schaefer*, University of Notre

More information

Supporting Information

Supporting Information Supporting Information A Class of Organopolysulfides as Liquid Cathode Materials for High Energy Density Lithium Batteries Amruth Bhargav, Michaela Elaine Bell, Jonathan Karty, Yi Cui, and Yongzhu Fu #

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2017 Supplementary Information Self-Standing Bi 2 O 3 Nanoparticles/Carbon Nanofiber

More information

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal

An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal Supporting Information An Anode-Free Sodium Battery through In-Situ Plating of Sodium Metal Adam P. Cohn 1, Nitin Muralidharan 2, Rachel Carter 1, Keith Share 2, and Cary L. Pint 1,2 * 1 Department of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Title: Identification and Characterisation of High

More information

Real-time XRD Studies of Li-O 2. Electrochemical Reaction in Nonaqueous. Lithium-Oxygen Battery

Real-time XRD Studies of Li-O 2. Electrochemical Reaction in Nonaqueous. Lithium-Oxygen Battery Supporting Information Real-time XRD Studies of Li-O 2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery Hyunseob Lim, 1,2 Eda Yilmaz 1, and Hye Ryung Byon 1* 1 Byon Initiative Research Unit,

More information

Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications Supporting Information Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications Naoki Morimoto, Takuya Kubo and Yuta Nishina 1. Materials. Graphite (SP-1) was purchased

More information

Soft silicon anodes for lithium ion batteries

Soft silicon anodes for lithium ion batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supplementary Information Soft silicon anodes for lithium ion batteries Qizhen

More information

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Supporting Information LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Xiaolong Zhang, Fangyi Cheng, Jingang Yang, Jun Chen* Key Laboratory of Advanced Energy

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2019. Supporting Information for Small, DOI: 10.1002/smll.201804609 Dual-Function, Tunable, Nitrogen-Doped Carbon for High- Performance

More information

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Jing-Fang Huang,* a and Wen-Rhone Chang a Supporting information Experimental Section

More information

A Desalination Battery

A Desalination Battery SUPPORTING INFORMATION A Desalination Battery Mauro Pasta 1, Colin D. Wessells 2, Yi Cui 2,3 and Fabio La Mantia 1, 1 Analytische Chemie Zentrum für Elektrochemie, Ruhr-Universität Bochum, Universitätsstr.

More information

Method Excitation signal applied Wave response based on method Linear Differential pulse Square wave Cyclic Developed current recorded

Method Excitation signal applied Wave response based on method Linear Differential pulse Square wave Cyclic Developed current recorded Voltammetry Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Working electrode (microelectrode) place where redox occurs surface area few mm 2 to limit current

More information

A Low-Cost High-Energy Potassium Cathode

A Low-Cost High-Energy Potassium Cathode Supporting information A Low-Cost High-Energy Potassium Cathode Leigang Xue, Yutao Li, Hongcai Gao, Weidong Zhou, Xujie Lü, Watchareeya Kaveevivitchai, Arumugam Manthiram, and John B. Goodenough * Materials

More information

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries

Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries Zhong-li Wang, Dan Xu, Yun Huang, Zhong Wu, Li-min Wang and Xin-bo

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Supplementary Information for Chemical Science, DOI: 10.1039/ ((please add manuscript

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries Adam G. Simmonds,**, Jared J. Griebel,**, Jungjin Park, Kwi Ryong Kim, Woo Jin

More information

Design and Comparative Study of O3/P2 Hybrid Structures for

Design and Comparative Study of O3/P2 Hybrid Structures for Supporting Information Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries Xingguo Qi, a,b,# Lilu Liu, a,b,# Ningning Song, c Fei Gao, d Kai Yang, d Yaxiang

More information

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Unlocking the Potential of Amorphous Red Phosphorus

More information

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA

Fundamental Chemistry of Sion Power Li/S Battery. Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Fundamental Chemistry of Sion Power Li/S Battery Yuriy Mikhaylik Sion Power Corporation, 9040 South Rita Road, Tucson, Arizona, 85747, USA Outline Thermodynamics of Li-S Discharge-charge mechanism in the

More information

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte Supplementary Information for: Novel concept of rechargeable battery using iron oxide nanorods anode and nickel hydroxide cathode in aqueous electrolyte Zhaolin Liu *, Siok Wei Tay and Xu Li Institute

More information

Energy Storage and Distributed Resources Division, Energy Technologies Area, Lawrence

Energy Storage and Distributed Resources Division, Energy Technologies Area, Lawrence Supporting Information Bio-mimetic ant-nest electrode structures for high sulfur ratio lithium-sulfur batteries Guo Ai,, Yiling Dai, Wenfeng Mao,, Hui Zhao, Yanbao Fu, Xiangyun Song, Yunfei En, Vincent

More information

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries

Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries PSI-SR-1261 Electroactive Polymer for Controlling Overcharge in Lithium-Ion Batteries A. Newman R. Pawle K. White J. Lennhoff A. Newman, R. Pawle, K. White, J. Lennhoff, "Electroactive Polymer for Controlling

More information

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of

Electronic Supporting Information. Synthesis of single crystalline hexagonal nanobricks of Electronic Supporting Information Synthesis of single crystalline hexagonal nanobricks of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with high percentage of exposed {010} active facets as high rate performance cathode

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information An amorphous material with sponge-like structure as anode for Liion and

More information

Supporting Information

Supporting Information Supporting Information Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density Chenfei Shen a,1, Mingyuan Ge a,1,2,

More information

Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly

Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly Platinum Nanostructures by Template Wetting Nanofabrication and Their Use in a Miniature Fuel Cell Membrane Electrode Assembly Eric Broaddus, Jared Fernandez, and Scott A. Gold Institute for Micromanufacturing,

More information

Supporting Information

Supporting Information Supporting Information Spherical Li Deposited inside 3D Cu Skeleton as Anode with Ultra-Stable Performance Yanyan Wang, 1 Zhijie Wang, 1 Danni Lei, 1,2 Wei Lv, 1 Qiang Zhao, 1,2 Bin Ni, 1,2 Yong Liu, 3

More information

Supporting Information

Supporting Information Supporting Information A Fluorinated Alkoxyaluminate Electrolyte for Magnesium-Ion Batteries Jake T. Herb a,b, Carl A. Nist-Lund b, Craig B. Arnold *,b,c a Department of Chemistry, Princeton University,

More information