EXAM 2 PREP. 8 th Grade, Week 2, Day 3 July 3, 2013

Size: px
Start display at page:

Download "EXAM 2 PREP. 8 th Grade, Week 2, Day 3 July 3, 2013"

Transcription

1 EXAM 2 PREP 8 th Grade, Week 2, Day 3 July 3, 2013

2 But first! POP QUIZ! (1) Name two factors that can affect enzyme activity. (2) An irreversible inhibitor binds to the enzyme. (3) Name one type of enzyme inhibition and what it does to Vmax of the reaction. (4) What is negative feedback? (5) What is an allosteric enzyme? BONUS: What is the example that we talked about in class and how many subunits does it have?

3 Announcements UNITS you need to include units with every answer if it needs them You need to at least TRY on EVERY homework problem You need to show your work for everything You need to write NEATLY and LEGIBLY You need to READ THE QUESTION CAREFULLY Pay attention to things like positive vs. negative

4 DISCLAIMER Just because it isn t in this review doesn t mean it s not on the test

5 Thermochemistry

6 What kind of reaction is this? How do you know? Surroundings Energy released as heat

7 Exothermic Reaction energy is lost from the system to the surroundings, the products are at a lower energy than the reactants

8 What kind of reaction is this? How do you know? Surroundings Energy gained by the system

9 Endothermic Reaction energy is gained from the surroundings to the system, the products are at a higher energy than the reactants

10 UNITS Specific heat capacity J/g-C (or J/g-K) Molar heat capacity - J/mol-C (or J/mol-K) When using q = ms T or q = mc T q J or kj (whichever I ask for!) m in GRAMS (not kilograms) T can be in K or ⁰C, just reflect that in your final units When using G = H - T S G in kj/mol H in kj/mol T in K S in J/mol (not kj/mol)

11 Conversions Don t worry about converting between degrees Celsius and Kelvin you won t have to do this on the exam BUT your final unit must be correct JOULES à KILLIJOULES Move the decimal point 3 places to the left number should get smaller KILLIJOULES à JOULES Move the decimal point 3 places to the right the number should get bigger

12 Practice Conversions J = how many kj? kj = how many J? 13.3 J = how many kj? 4567 kj = how many J?

13 Practice Conversions J = how many kj? kj kj = how many J? 34,560 J 13.3 J = how many kj?.0133 kj 4567 kj = how many J? 4,567,000 J

14 Specific heat and heat capacity Specific Heat Capacity Represented by s Heat needed to raise 1 gram of a substance 1 degree Celsius q = ms t For this formula, you need m in GRAMS Molar Heat Capacity Represented by c Heat needed to raise 1 mole of a substance 1 degree Celsius q = mc t For this formula, you need m in MOLES Otherwise you need to convert back and forth!

15 So let s practice: 216 J of energy is required to raise the temperature of aluminum from 15 o to 35 o C. Calculate the mass of aluminum. (Specific Heat Capacity of aluminum is 0.90 J o C -1 g -1 ).

16 Answer: 216 J of energy is required to raise the temperature of aluminum from 15 o to 35 o C. Calculate the mass of aluminum. (Specific Heat Capacity of aluminum is 0.90 J o C -1 g -1 ). q = m x C x DT m= q/c x DT m= 216J/(0.90J/g o C x 20 o C ) m= 12g

17 More Practice The initial temperature of 150g of ethanol was 22 o C. What will be the final temperature of the ethanol if 3240 J was needed to raise the temperature of the ethanol? (Specific heat capacity of ethanol is 2.44 J o C -1 g -1 ).

18 Answer: The initial temperature of 150g of ethanol was 22 o C. What will be the final temperature of the ethanol if 3240 J was needed to raise the temperature of the ethanol? (Specific heat capacity of ethanol is 2.44 J o C -1 g -1 ). q = m x C x DT DT = q/m x C DT = 3240J/(150g x 2.44J/g o C) DT = 8.85 o C T final = 22 o C o C= 30.9 o C

19 More Practice 145 grams of copper begin at a temperature of 36⁰C and end at a temperature of 54⁰C. The c of copper is J/ mol-k. How much heat was used in this reaction?

20 Answer: 145 grams of copper begin at a temperature of 36⁰C and end at a temperature of 54⁰C. The c of copper is J/ mol-k. How much heat (in kj) was used in this reaction? Must first convert grams of copper to moles. (145g)/(63.55g/mol) = 2.28 moles copper Then q = mc T = (2.28)(24.78)(54-36) = (2.28)(24.78)(18) = J = kj

21 More Practice An iron bar of mass 869 grams cools from 94⁰C to 74.6⁰. Calculate the heat released (in kj) by the metal. Specific heat for iron is J/g ⁰C.

22 Answer: An iron bar of mass 869 grams cools from 94⁰C to 74.6⁰. Calculate the heat released (in kj) by the metal. Specific heat for iron is J/g ⁰C. q = mc T (869g)(0.444 J/g ⁰C)(-19.4⁰C) = x 10^3 J = kj

23 More Practice Consider two metals, A and B, each having a mass of 100 g and an initial temperature of 20⁰C. The specific heat of A is larger than that of B. Under the same heating conditions, which metal would take longer to reach a temperature of 21⁰C?

24 Answer: Consider two metals, A and B, each having a mass of 100 g and an initial temperature of 20⁰C. The specific heat of A is larger than that of B. Under the same heating conditions, which metal would take longer to reach a temperature of 21⁰C? Metal A Why?

25 More Practice A 6.22 kg piece of copper metal is heated from 20.5⁰C to 324.3⁰C.Calculate the heat absorbed (in kj) by the metal. Specific heat for copper is J/g ⁰C.

26 Answer: A 6.22 kg piece of copper metal is heated from 20.5⁰C to 324.3⁰C.Calculate the heat absorbed (in kj) by the metal. Specific heat for copper is J/g ⁰C. q = mc T q = (6,220g)( J/g ⁰C)(304.3⁰C) = kj

27 More Practice At what T is the following reaction spontaneous? Br2(l) à Br2(g) Where H = kj/mol, S = 93.2 J/mol.K.

28 Answer: At what T is the following reaction spontaneous? Br2(l) à Br2(g) Where H = kj/mol, S = 93.2 J/mol.K. G = H - T S = 0, set equal to 0, for when a reaction will become negative, and thus spontaneous. Rearrange the equation to solve for T. T = H/ S = (30.91 kj/mol)/(93.2 J/mol.K) =.332 K

29 Enthalpy, Entropy, & Free Energy Enthalpy = H Measure of heat flow, determines endothermic vs. exothermic H > 0, endothermic reaction H < 0, exothermic reaction Entropy = S Measure of disorder Free Energy = G Energy available to do work, determines spontaneous vs. nonspontaneous G > 0, not spontaneous reaction G < 0, spontaneous reaction

30 Enzyme Kinetics and Inhibition

31 Estimate Km

32 Answer: Km = mm

33 Enzyme Kinetics High Km means affinity Why? Low Km means affinity Why?

34 Lineweaver-Burke Plot Taking the inverse of the Michaelis-Menten hyperbola graph gives us the equation of a straight line Vmax can be found where on the graph? Km can be found where on the graph?

35 Lineweaver-Burke Plot Taking the inverse of the Michaelis-Menten hyperbola graph gives us the equation of a straight line Vmax can be found where on the graph? Km can be found where on the graph?

36 Enzyme Inhibition

37 What s changing with each type and how? What would the Lineweaver-Burke plot of all 3 look like?

38 Answer:

39 Negative Feedback The end product of a metabolic pathway affects its own production A product later in the pathway will stop the earlier reactions that lead to its own production A à B à C à D à E Why would you want to do this?

40 What kind of enzymes does this show? Why is the purple line a different shape than the blue line?

41 Effectors Regulate Allosteric Enzymes Negative effectors inhibit the enzyme activity the curve will shift to the right Positive effectors increase enzyme activity the curve will shift to the left

42 Equations you will need to be able to use: q = ms T or q = mc T Hreaction = H(products) H(reactants) G = H - T S Vo = Vmax[S]/(Km + [S])

6 Enzymes II W. H. Freeman and Company

6 Enzymes II W. H. Freeman and Company 6 Enzymes II 2017 W. H. Freeman and Company The role of an enzyme in an enzyme-catalyzed reaction is to: A. bind a transition state intermediate, such that it cannot be converted back to substrate. B.

More information

Enzyme kinetics. Irreversible inhibition inhibitor is bound tightly to enzyme - very slow dissociation can be covalent or non covalently bound

Enzyme kinetics. Irreversible inhibition inhibitor is bound tightly to enzyme - very slow dissociation can be covalent or non covalently bound Enzymes can be regulated by acceleration and inhibition inhibition very common - several different mechanisms competitive / non competitive reversible / irreversible Irreversible inhibition inhibitor is

More information

Enzymes II. Dr. Kevin Ahern

Enzymes II. Dr. Kevin Ahern Enzymes II Dr. Kevin Ahern E+S ES ES* EP E+P Michaelis- Menten Kinetics E+S ES ES* EP E+P Michaelis- Menten Kinetics Rate of Formation E+S ES ES* EP E+P

More information

Calorimetry. Aim: To calculate the change in energy during an exothermic or endothermic reaction.

Calorimetry. Aim: To calculate the change in energy during an exothermic or endothermic reaction. Calorimetry Aim: To calculate the change in energy during an exothermic or endothermic reaction. Measuring Heat Energy Heat is measured in Joules or kilojoules English unit is Calories 1 Cal= 1 kilocalorie=

More information

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism

G = H (T S) I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism I. Cellular Metabolism & Reaction Coupling Figure 1: Metabolism Metabolism represents the sum total of ALL chemical reactions within the cell. These reactions can be regarded as either catabolic or anabolic

More information

Warm Up. If you put ice into warm water, what would happen to the ice? What would happen to the water? How is energy conserved in this exchange?

Warm Up. If you put ice into warm water, what would happen to the ice? What would happen to the water? How is energy conserved in this exchange? Chapter 15 Warm Up If you put ice into warm water, what would happen to the ice? What would happen to the water? How is energy conserved in this exchange? Agenda QOTD: What is the difference between potential

More information

Calorimetry. Aim: Calculating the energy change during a reaction.

Calorimetry. Aim: Calculating the energy change during a reaction. Calorimetry Aim: Calculating the energy change during a reaction. Measuring Heat Energy Heat is measured in Joules or kilojoules Calorimeter an insulated device used to measure the absorption or release

More information

Thermochemistry/phase changes review Station 1

Thermochemistry/phase changes review Station 1 Thermochemistry/phase changes review Station 1 (Show all work) Answers are posted below to check yourself 1. Calculate the heat necessary to raise the temperature of 40.0 g of aluminum from 20.0 o C to

More information

Lecture 7: 9/7. CHAPTER 7 Kinetics and Regulation

Lecture 7: 9/7. CHAPTER 7 Kinetics and Regulation Lecture 7: 9/7 CHAPTER 7 Kinetics and Regulation Chapter 7 Outline The rate or velocity of an enzymatic reaction Consider a simple reaction: The velocity or rate of the reaction is determined by measuring

More information

Furnace. 1. (10 points) mol/s 53.5% H2O CO2

Furnace. 1. (10 points) mol/s 53.5% H2O CO2 MEEBAL Exam 3 December 2012 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

Work hard. Be nice. Name: Period: Date: UNIT 10: Energy Lesson 5: Calculating Heat using q = mcδt!

Work hard. Be nice. Name: Period: Date: UNIT 10: Energy Lesson 5: Calculating Heat using q = mcδt! Name: Period: Date: UNIT 10: Energy Lesson 5: Calculating Heat using q = mcδt! By the end of today, you will have an answer to: How can we calculate the amount of heat it takes to change the temperature?

More information

Prac Results: Alkaline Phosphatase

Prac Results: Alkaline Phosphatase The Steady State Assumption BMED282 U2L3 Enzyme s and Regulation [conc] Product Substrate Time (min) The Steady State Assumption Prac Results: Alkaline Phosphatase [conc] Total Enzyme added = [] + [Efree]

More information

Lab 3: Enzyme Kinetics

Lab 3: Enzyme Kinetics Lab 3: Enzyme Kinetics Background Catalysts are agents that speed up chemical processes. The majority of catalysts produced by living cells that speed up biochemical processes are called enzymes. Enzymes

More information

Calculating energy changes from burning fuels

Calculating energy changes from burning fuels Calculating energy changes from burning fuels TEACHERS AND TECHNICIANS NOTES Specification reference: C3.3.1 Energy from reactions (a) The relative amounts of energy released when substances burn can be

More information

B I N G-B I N G-T O E. FREE Space

B I N G-B I N G-T O E. FREE Space B I N G-B I N G-T O E FREE Space B I N G-B I N G-T O E GAME RULES Right side of room X Left side of room O 2 players from each team go head to head (standing by opposite team) Team may not help First team

More information

Enzymes and Coenzymes I. Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology

Enzymes and Coenzymes I. Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology Enzymes and Coenzymes I Dr. Sumbul Fatma Clinical Chemistry Unit Department of Pathology What are Enzymes? Enzymes are biological catalysts that speed up the rate of a reaction without being changed in

More information

CHM101 Lab - Energy Grading Rubric

CHM101 Lab - Energy Grading Rubric Name Team Name CHM101 Lab - Energy Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points earned Lab Performance Printed

More information

I. Enzyme Action Figure 1: Activation Energy (Ea) Activation Energy (Ea):

I. Enzyme Action Figure 1: Activation Energy (Ea) Activation Energy (Ea): I. Enzyme Action Figure 1: Activation Energy (Ea) *Activation energy represents an energy barrier that reactant molecules must overcome in order to react & form products. Think of an Olympic track star

More information

Heat of Fusion & Heat of Vaporization Lab

Heat of Fusion & Heat of Vaporization Lab Name: Period: Purpose Heat of Fusion & Heat of Vaporization Lab In this two-part activity, you will determine the change in heat of fusion, and heat of vaporization for water. Introduction In ancient times,

More information

lab12.1 Name Period experiment 12.1 specific heat capacity of a metal Please read and complete this pre-lab prior to performing this experiment.

lab12.1 Name Period experiment 12.1 specific heat capacity of a metal Please read and complete this pre-lab prior to performing this experiment. energy 1 2 lab12.1 Name Period experiment 12.1 specific heat capacity of a metal Please read and complete this pre-lab prior to performing this experiment. Theory: Have you observed how some metals stay

More information

Dr. Jeffrey P. Thompson bio350

Dr. Jeffrey P. Thompson bio350 Chapter 8 Enzymes Green light GFP Blue light Modern day catalysis Catalysis (reaction promotion) may have gotten its beginning g in an RNA- dominated world. Most catalysis today has evolved into using

More information

ENZYMES. Unit 3 - Energy

ENZYMES. Unit 3 - Energy ENZYMES Unit 3 - Energy What is an enzyme? What do they do? What is an enzyme? What do they do? Key Things to remember: They are proteins They are catalysts They are reusable - not consumed in reaction

More information

13. Friction changes mechanical energy into heat energy.

13. Friction changes mechanical energy into heat energy. 1. What basic form of energy is present in radioactive substances. A) nuclear B) chemical C) mechanical D) electrical 2. What basic form of energy is present in a blowing wind? A) nuclear B) chemical C)

More information

Homework 20: Heat and Temperature I Due: Thursday, January 27, 2011

Homework 20: Heat and Temperature I Due: Thursday, January 27, 2011 Name: Date: Period: Homework 20: Heat and Temperature I Due: Thursday, January 27, 2011 1. Fill in the following chart, using the appropriate temperature conversion formulas: Temperature in Kelvin Fahrenheit

More information

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation I. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation I Dr. Mamoun Ahram Summer, 2017 Mechanisms of regulation Expression of isoenzymes Regulation of enzymatic activity Inhibitors Conformational changes Allostery Modulators Reversible

More information

Enzymes and Coenzymes I

Enzymes and Coenzymes I Enzymes and Coenzymes I Objectives :- What are enzymes? Classification of enzymes and naming. Coenzymes, Cofactors, Isoenzymes. Enzyme activity and specificity. Factors affecting enzyme activity. Enzyme

More information

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering Materials and Energy Balance in Metallurgical Processes Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 09 Basics

More information

Measurement of Enzyme Kinetics by UV-Visible Spectroscopy

Measurement of Enzyme Kinetics by UV-Visible Spectroscopy UV-0002 UV-Visible Spectroscopy Introduction Enzyme activity is frequently investigated in the medicinal, biochemistry, and food science research fields to elucidate the rate of which reaction occurs and

More information

SIGNIFICANT FIGURES WORKSHEET

SIGNIFICANT FIGURES WORKSHEET SIGNIFICANT FIGURES WORKSHEET PART 1 - Determine the number of significant figures in the following numbers. 1.) 0.02 2.) 0.020 3.) 501 4.) 501.0 5.) 5,000 6.) 5,000. 7.) 6,051.00 8.) 0.0005 9.) 0.1020

More information

Process Design Decisions and Project Economics Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Gawahati

Process Design Decisions and Project Economics Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Gawahati Process Design Decisions and Project Economics Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Gawahati Module - 3 Reactor Design and Cost Estimation Lecture - 16

More information

Georgia Performance Standards Framework for Physical Science 8 th Grade

Georgia Performance Standards Framework for Physical Science 8 th Grade The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

Chapter 3 - Energy and Matter Practice Problems

Chapter 3 - Energy and Matter Practice Problems Chapter 3 - Energy and Matter Practice Problems 1) Helium is a(n) A) compound. B) heterogeneous mixture. C) element. D) homogeneous mixture. E) electron. 2) Air is a(n) A) compound. B) heterogeneous mixture.

More information

Name: 2017 AP Environmental Science Summer Assignment

Name: 2017 AP Environmental Science Summer Assignment P a g e 1 Name: 2017 AP Environmental Science Summer Assignment The Summer Assignment is due on the first day of class. P a g e 2 AP Environmental Science Summer Assignment (This assignment is due on the

More information

Chapter 5 Thermochemistry

Chapter 5 Thermochemistry Chapter 5 Thermochemistry 233 Chapter 5 Thermochemistry Figure 5.1 Sliding a match head along a rough surface initiates a combustion reaction that produces energy in the form of heat and light. (credit:

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

BC 367, Exam 2 November 13, Part I. Multiple Choice (3 pts each)- Please circle the single best answer.

BC 367, Exam 2 November 13, Part I. Multiple Choice (3 pts each)- Please circle the single best answer. Name BC 367, Exam 2 November 13, 2008 Part I. Multiple Choice (3 pts each)- Please circle the single best answer. 1. The enzyme pyruvate dehydrogenase catalyzes the following reaction. What kind of enzyme

More information

(a) Rearrange the Michaelis Menten equation to give V 0 as a function of V 0 /[S]. (b) What is the significance of the slope, the vertical intercept,

(a) Rearrange the Michaelis Menten equation to give V 0 as a function of V 0 /[S]. (b) What is the significance of the slope, the vertical intercept, 1. Active yet responsive. What is the biochemical advantage of having a K M approximately equal to the substrate con- centration normally available to an enzyme? 2. Destroying the Trojan horse. Penicillin

More information

(6) 1. Describe three major structural differences between DNA and RNA

(6) 1. Describe three major structural differences between DNA and RNA BCH 4053 July 20, 2001 HOUR TEST 3 NAME (6) 1. Describe three major structural differences between DNA and RNA. Page Points 1 2 3 4 5 (6) 2. Which form of DNA (A, B, or Z) (Put answer in blank) Total has

More information

EXPERIMENT 1: Thermochemistry

EXPERIMENT 1: Thermochemistry EXPERIMENT 1: Thermochemistry Heat Flows Associated with Physical Processes Laboratory Techniques You will be expected to measure temperatures precisely and quickly in addition to becomin familiar with

More information

UNIVERSITY OF TORONTO FA CUL TY OF APPLIED SCIENCE AND ENGINEERING . DEPARTMENT OF CHEMICAL ENGINEERING AND APPLIED CHEMISTRY

UNIVERSITY OF TORONTO FA CUL TY OF APPLIED SCIENCE AND ENGINEERING . DEPARTMENT OF CHEMICAL ENGINEERING AND APPLIED CHEMISTRY NAME: STUDENT NUMBER: ----------- UNIVERSITY OF TORONTO FA CUL TY OF APPLIED SCIENCE AND ENGINEERING. DEPARTMENT OF CHEMICAL ENGINEERING AND APPLIED CHEMISTRY CHE 208 Process Engineering, Fall-2017 EXAMINER:

More information

STELLA Assignment #2 - BOD

STELLA Assignment #2 - BOD STELLA Assignment #2 - BOD 1) In this problem, you will be tracking the biochemical oxygen demand (BOD) impact of a waste discharged from the Watapiti waste facility. The plant discharges 7.5 x 10 5 liters/day

More information

CHEM J-8 June Answer: THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM J-8 June Answer: THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY. CHEM1101 2014-J-8 June 2014 A 1.0 kg sample of copper metal is heated to 100.0 C. The copper sample is immersed in a volume of water initially at 25.0 C. What volume of water is required so that the final

More information

Each enzyme has a unique 3-D shape and recognizes and binds only the specific substrate of a reaction.

Each enzyme has a unique 3-D shape and recognizes and binds only the specific substrate of a reaction. 1 Enzyme = protein molecule that serves as a biological catalyst. allow life to go on. speed up and regulate metabolic reactions. Catalyst= a chemical that speeds up the rate of a reaction without itself

More information

COMPUTER SIMULATION OF ENZYME KINETICS

COMPUTER SIMULATION OF ENZYME KINETICS COMPUTER SIMULATION OF ENZYME KINETICS I. Introduction. Enzymes are biological catalysts. A catalyst alters the speed at which a chemical reaction reaches its completion or equilibrium point. It does not

More information

Chapter 2 Electric Arc Furnace as Thermoenergetical Unit

Chapter 2 Electric Arc Furnace as Thermoenergetical Unit Chapter 2 Electric Arc Furnace as Thermoenergetical Unit 2.1 Thermal Performance of Furnace: Terminology and Designations There are different forms of energy. Heat is one of them. Heat is a form of energy

More information

Biochemistry 2000 Midterm 2 1 of 5. Student Name : KEY Student ID :

Biochemistry 2000 Midterm 2 1 of 5. Student Name : KEY Student ID : Biochemistry 2000 Midterm 2 1 of 5 Student Name : KEY 2014-03-28 Student ID : Instructions: Write neatly and clearly. Cross out with a single line any material you do not wish to have marked. Marks will

More information

Experiment 30A ENERGY CONTENT OF FUELS

Experiment 30A ENERGY CONTENT OF FUELS Experiment 30A ENERGY CONTENT OF FUELS FV 12/10/2012 MATERIALS: 12-oz. aluminum beverage can with top cut out and holes on side, thermometer, 100 ml graduated cylinder, 800 ml beaker, long-stem lighter,

More information

Experiment 3, Hydrate Experiment Chemistry 201, Wright College, Department of Physical Science and Engineering

Experiment 3, Hydrate Experiment Chemistry 201, Wright College, Department of Physical Science and Engineering Name Date Experiment 3, Hydrate Experiment Chemistry 201, Wright College, Department of Physical Science and Engineering Hydrates are ionic compounds with water loosely bound in their solid, crystalline

More information

McCord CH302 Exam 1 Spring 2017

McCord CH302 Exam 1 Spring 2017 112 version last name first name signature McCord CH302 Exam 1 Spring 2017 50375 / 50380 Reminder: Be sure and correctly bubble in your name, uteid, and version number on your bubblesheet. The Periodic

More information

FactSage Independent Study

FactSage Independent Study FactSage Independent Study FactSage Independent Study 1 Question 1 The following amount of slag granules (298K) is melted in an induction furnace in a graphite crucible 112g SiO 2, 360g FeO, 100g CaO,

More information

Homework for Unit Vocab for Unit 6; due: 2. Pg 333 (1-5), Pg 335 (1-4), Pg 337 (1-4), Pg 339 (1-6), No sentences; due:

Homework for Unit Vocab for Unit 6; due: 2. Pg 333 (1-5), Pg 335 (1-4), Pg 337 (1-4), Pg 339 (1-6), No sentences; due: Unit 6 Heat Homework for Unit 6 1. Vocab for Unit 6; due: 2. Pg 333 (1-5), Pg 335 (1-4), Pg 337 (1-4), Pg 339 (1-6), No sentences; due: 3. Temperature change activity; due: 4. Heat Transfer Homework; due:

More information

Specific Heat Of Water Answer

Specific Heat Of Water Answer We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with specific heat of water

More information

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max.

R13. II B. Tech I Semester Regular/Supplementary Examinations, Oct/Nov THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. SET - 1 1. a) Discuss about PMM I and PMM II b) Explain about Quasi static process. c) Show that the COP of a heat pump is greater than the COP of a refrigerator by unity. d) What is steam quality? What

More information

The Equilibrium Constant (K eq)

The Equilibrium Constant (K eq) The Constant (K eq) 1. The Law: K eq is called the. Keq = [PRODUCTS] [REACTANTS] eg. aa + bb + xx + yy + where a, b, x, y are of the balanced equation. A,B,X & Y are the and in the equation Keq = [X] x

More information

LECTURE 9 PHASE CHANGE. Lecture Instructor: Kazumi Tolich

LECTURE 9 PHASE CHANGE. Lecture Instructor: Kazumi Tolich LECTURE 9 PHASE CHANGE Lecture Instructor: Kazumi Tolich Lecture 9 2 Reading chapter 17.6. Phase change and energy conservation Phase changes and energy conservation 3 If heat is exchanged within a system,

More information

Test Bank Cell and Molecular Biology Concepts and Experiments 7th Edition Karp

Test Bank Cell and Molecular Biology Concepts and Experiments 7th Edition Karp Test Bank Cell and Molecular Biology Concepts and Experiments 7th Edition Karp Completed downloadable package TEST BANK for Cell and Molecular Biology Concepts and Experiments 7th Edition by Gerald Karp

More information

PLANT and PROCESS PRINCIPLES COMBUSTION PROCESSES

PLANT and PROCESS PRINCIPLES COMBUSTION PROCESSES PLANT and PROCESS PRINCIPLES COMBUSTION PROCESSES This work covers Outcome 4 of the syllabus for the Edexcel HNC/D module Plant Process Principles 21725P and part of the Engineering Council Certificate

More information

Evaluation copy. Energy Content of Fuels. computer OBJECTIVES MATERIALS

Evaluation copy. Energy Content of Fuels. computer OBJECTIVES MATERIALS Energy Content of Fuels Computer 24 is an important property of fuels. This property helps scientists and engineers determine the usefulness of a fuel. is the amount of heat produced by the burning of

More information

, as well as some other materials. Use boiling point elevation to determine the percentages of each by mass.

, as well as some other materials. Use boiling point elevation to determine the percentages of each by mass. Remarks: - Use appropriate units. Note: SI units are always acceptable. - If you take apart the test, write your team number on every page in the space provided. - Sometimes, the answers won t make sense.

More information

succeeding in the vce, 2017

succeeding in the vce, 2017 Unit 3 Chemistry succeeding in the vce, 2017 extract from the master class teaching materials Our Master Classes form a component of a highly specialised weekly program, which is designed to ensure that

More information

EXTRA CREDIT OPPORTUNITY: Due end of day, Thursday, Dec. 14

EXTRA CREDIT OPPORTUNITY: Due end of day, Thursday, Dec. 14 EXRA CREDI OPPORUNIY: Due end of day, hursday, Dec. 4 his extra credit set of questions is an opportunity to improve your test scores (including an insurance policy for your final exam grade). here are

More information

Allosteric Effects & Cooperative Binding

Allosteric Effects & Cooperative Binding Allosteric Effects & Cooperative Binding The shape of the binding curve for oxygen to myoglobin is hyperbolic and follows the equation for non-cooperative binding: Y=[L]/(KD + [L]). The binding curve for

More information

Density. How tightly the atoms are packed together in an object

Density. How tightly the atoms are packed together in an object Density How tightly the atoms are packed together in an object Mass vs Weight Mass is the amount of matter in an object. (it doesn t change) Weight is determined based on the amount of gravity pulling

More information

(b) Fertilizers help to increase agricultural production. chemical property physical property

(b) Fertilizers help to increase agricultural production. chemical property physical property Score 1. [Chang7 1.P.011.] Do the following statements describe chemical or physical properties? (a) Oxygen gas supports combustion. chemical property physical property (b) Fertilizers help to increase

More information

Phase Changes & Heating Curves

Phase Changes & Heating Curves Add Important Phase Changes & Heating Curves Page: 579 Phase Changes & Heating Curves NGSS Standards: HS-PS3-1 MA Curriculum Frameworks 2006): 3.3 Knowledge/Understanding Goals: phases and phase changes

More information

An Additional Method for Analyzing the Reversible Inhibition of an Enzyme Using Acid Phosphatase as a Model

An Additional Method for Analyzing the Reversible Inhibition of an Enzyme Using Acid Phosphatase as a Model Send Orders for Reprints to reprints@benthamscience.ae 14 Current Enzyme Inhibition, 215, 11, 14-146 An Additional Method for Analyzing the Reversible Inhibition of an Enzyme Using Acid Phosphatase as

More information

The effect of temperature on the rate of an enzyme catalyzed reaction. Subtitle

The effect of temperature on the rate of an enzyme catalyzed reaction. Subtitle The effect of temperature on the rate of an enzyme catalyzed reaction Subtitle In this experiment, we will continue to study acid phosphatase kinetics. Acid phosphatase kinetics Time Enzyme concentration

More information

Final Exam Review Activity Section I Section II

Final Exam Review Activity Section I Section II Final Exam Review Activity Physics 100 May 9, 2018 Professor Menningen Section I. Answer True (+) or False (O) Name: 1. Molecules at 200 ºC have twice the average kinetic energy than molecules at 100 ºC.

More information

Warm-up: 2/6/15 2/9/2015 LATENT HEAT AND PHASE CHANGES INTERNAL ENERGY

Warm-up: 2/6/15 2/9/2015 LATENT HEAT AND PHASE CHANGES INTERNAL ENERGY If thermal energy is added to the water at a rate of 84 W, how much time would it take to bring the vat of water from room temperature (21.0 C) to boiling (100.0 C)? Warm-up: 2/6/15 { George Washington

More information

Heat Transfer and Heat Capacity

Heat Transfer and Heat Capacity Heat Transfer and Heat Capacity Strand Topic Phases of Matter and Kinetic Molecular Theory Investigating properties of matter Primary SOL CH.5 The student will investigate and understand that the phases

More information

Part II. [24 pts] Problems [6 pts] How many ml of soda are there in a bottle that contains 16 liq oz?

Part II. [24 pts] Problems [6 pts] How many ml of soda are there in a bottle that contains 16 liq oz? CHM 1030 Examination 1A January 30, 2002 SOME GENERAL INFORMATION 1 in = 2.54 cm 1 mile = 5280 ft 16 oz = 1 lb = 453.6 g 32 liq oz = 1 qt = 0.25 gal = 0.946 L speed of light (c) = 2.998 10 8 m/s 1 cal

More information

Experiment 1: Conservation of Energy and the First Law of Thermodynamics 1

Experiment 1: Conservation of Energy and the First Law of Thermodynamics 1 Experiment 1: Conservation of Energy and the First Law of Thermodynamics 1 Introduction In this activity you will study the flow of energy in the experimental set-up as you run it through a cycle. First

More information

The temperature of the acid before the magnesium is added is 22.0 C. The energy released by the reaction can be calculated using the equation

The temperature of the acid before the magnesium is added is 22.0 C. The energy released by the reaction can be calculated using the equation 1 Sue investigates the reaction between magnesium ribbon and dilute hydrochloric acid. Look at the apparatus she uses. thermometer 0.5 g of magnesium 25.0 g of dilute hydrochloric acid The temperature

More information

Introduction to Thermal Energy

Introduction to Thermal Energy Introduction to Thermal Energy Mar 10 7:33 AM 1 Thermal Energy vs. Temperature vs. Heat Mar 10 7:33 AM 2 Mar 10 12:53 PM 3 2 nd Law of Thermodynamics Thermal Equilibrium thermal energy is always transferred

More information

CHM-202 General Chemistry and Laboratory II Laboratory 2 Molar Mass by Freezing Point Depression

CHM-202 General Chemistry and Laboratory II Laboratory 2 Molar Mass by Freezing Point Depression Purpose CHM-202 General Chemistry and Laboratory II Laboratory 2 Molar Mass by Freezing Point Depression In this experiment, you will determine the molar mass of a nonelectrolytic solvent by measuring

More information

The first law of thermodynamics can be stated in terms of the heat energy transferred into the system,

The first law of thermodynamics can be stated in terms of the heat energy transferred into the system, Module 2, Lesson 2 Heat Pumps and Refrigerators Objective: By the end of this lesson you will be able describe the difference between a heat engine and a heat pump/refrigerator and be able to differentiate

More information

The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name:

The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: 1 Course title Introductory Biochemistry for Medical Students 2 Course number 0501112 3 Credit hours (theory,

More information

How Can Chemical Processes Be Designed to Optimise Efficiency?

How Can Chemical Processes Be Designed to Optimise Efficiency? How Can Chemical Processes Be Designed to Optimise Efficiency? Area of Study 1: What are the Options for Energy Production? Area of Study 2: How Can the Versatility of Non-Metals Be Explained? What is

More information

Please write down your name(s). An individual student or up to 4 students in a group can do the case.

Please write down your name(s). An individual student or up to 4 students in a group can do the case. Assignment 1_CBIO39-01 Total 30 points A) Case Study (20 points) Due Date: 10-05-2016 Please write down your name(s). An individual student or up to 4 students in a group can do the case. Student Name(s):

More information

Enzymes III. Dr. Kevin Ahern

Enzymes III. Dr. Kevin Ahern Enzymes III Dr. Kevin Ahern Enzyme Inhibition Enzyme Inhibition Competitive Inhibitor Resembles Natural Substrate and Competes with it for Binding to the Active Site Enzyme Inhibition Normal Substrate

More information

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 02 Sterilization

Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 02 Sterilization Bioreactors Prof G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology, Madras Lecture - 02 Sterilization Welcome, to this second lecture on Bioreactors. This is a mooc on Bioreactors.

More information

Bioreaction Kinetics Seungwook Kim Chem. & Bio. Eng.

Bioreaction Kinetics Seungwook Kim Chem. & Bio. Eng. Bioreaction Kinetics 2 2004 Seungwook Kim Chem. & Bio. Eng. Reference Chemistry and the Living Organism, 6 th edition, Molly M. Bloomfield, Lawrence J. Stephens, John Wiley & Sons, Inc. Enzymes 1. Most

More information

EAS1600 Spring 2014 Lab 05 Heat Transfer

EAS1600 Spring 2014 Lab 05 Heat Transfer Name Lab section EAS1600 Spring 2014 Lab 05 Heat Transfer Objectives In this lab we will investigate the ways heat can be transferred between bodies. Using the calorimetric approach, we will verify the

More information

In the U.S., fossil fuel combustion provides 70% of electricity 85% of total energy. Fossil fuels produce large amounts of CO 2

In the U.S., fossil fuel combustion provides 70% of electricity 85% of total energy. Fossil fuels produce large amounts of CO 2 In the U.S., fossil fuel combustion provides 70% of electricity 85% of total energy Fossil fuels produce large amounts of CO 2 The supply of fossil fuels is finite, and may be running out (estimates vary)

More information

Experimental Design. Margaret A. Daugherty. Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III E + S ES E + P

Experimental Design. Margaret A. Daugherty. Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III E + S ES E + P Lecture 14: Enzymes & Kinetics III Michaelis Menton Kinetics and Inhibition Margaret A. Daugherty Fall 2003 Experimental Design k 1 k cat E + S ES E + P k -1 I want to measure the reactivity of my enzyme

More information

Chapter 12 Module 3. AMIS 310 Foundations of Accounting

Chapter 12 Module 3. AMIS 310 Foundations of Accounting Chapter 12, Module 3 AMIS 310: Foundations of Accounting Slide 1 CHAPTER 1 MODULE 1 AMIS 310 Foundations of Accounting Professor Marc Smith Hi everyone, welcome back. Let s continue our discussion on cost

More information

Topic 1 Review Questions Set 1

Topic 1 Review Questions Set 1 Topic 1 Review Questions Set 1 Base your answers to questions 1-5 on your knowledge of Earth Science, the Earth Science Reference Tables, and the diagrams below. The diagrams represent three samples of

More information

How Do You Choose Cookware?

How Do You Choose Cookware? Cookin' Chem Activity 6 How Do You Choose Cookware? GOALS In this activity you will: Explore the concept of specific heat capacity. Experimentally determine the specific heat capacity of various substances.

More information

Thermodynamics Practice Exam

Thermodynamics Practice Exam Thermodynamics Practice Exam Note: All problems included in this practice exam are drawn from problems used in previous semesters. Exams typically include 7 or 8 problems that are a mixture of qualitative

More information

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal.

N = N A ρ Pb A Pb. = ln N Q v kt. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. 지난문제. Below are shown three different crystallographic planes for a unit cell of some hypothetical metal. The circles represent atoms: (a) To what crystal system does the unit cell belong? (b) What would

More information

IDS 102 Answers for Specific Heat End of Module Questions

IDS 102 Answers for Specific Heat End of Module Questions IDS 102 Answers for Specific Heat End of Module Questions 1. A cup with 40 grams of 90 C water is mixed with a cup with 70 grams of water at 10 C. a. Predict the final temperature of the water. Explain

More information

Enzymes and coenzymes 1

Enzymes and coenzymes 1 Enzymes and coenzymes 1 Color index: Doctors slides Notes and explanations Extra information Highlights Biochemistry Team 437 ﺑ ﺳ م ﷲ اﻟرﺣﻣن اﻟرﺣﯾم Objectives: Understand how enzymes are able to speed

More information

SUCCEEDING IN THE VCE 2017 UNIT 3 CHEMISTRY STUDENT SOLUTIONS

SUCCEEDING IN THE VCE 2017 UNIT 3 CHEMISTRY STUDENT SOLUTIONS SUCCEEDING IN THE VCE 017 UNIT CHEMISTRY STUDENT SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/VCE-UPDATES QUESTION 1 The word "released" takes the negative sign into consideration. Answer

More information

Total Grade /150 Checked by

Total Grade /150 Checked by FIRST LETTER OF YOUR LAST NAME CHEMISTRY 1127 EXAM I NAME (PRINT) SECTION SIGNATURE TA PLEASE READ THE FOLLOWING INSTRUCTIONS Do NOT begin the exam until asked to do so. There are 8 numbered pages, a useful

More information

Final exam. Please write your name on the exam and keep an ID card ready.

Final exam. Please write your name on the exam and keep an ID card ready. Biophysics of Macromolecules Prof. R. Jungmann and Prof. J. Lipfert SS 2017 Final exam Final exam First name: Last name: Student number ( Matrikelnummer ): Please write your name on the exam and keep an

More information

1) An object weighs 75.7 kg. What is this weight in lbs? [1 lb = grams]

1) An object weighs 75.7 kg. What is this weight in lbs? [1 lb = grams] CHEMISTRY 51 SPRING 2016 NAME: Exam 1 Multiple Choice (2 pts each) 1) An object weighs 75.7 kg. What is this weight in lbs? [1 lb = 453.6 grams] a) 34.3 pounds b) 167 pounds c) 343 pounds d) 16.7 pounds

More information

BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary Education (K.C.S.E)

BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary Education (K.C.S.E) Name. School Candidate s Signature. Index No /. Date. 233/2 CHEMISTRY Paper 2 (Theory) JULY / AUGUST - 2012 Time: 2 Hours BORABU-MASABA DISTRICTS JOINT EVALUATION TEST 2012 Kenya Certificate of Secondary

More information

Experiment 1 MOLAR MASS DETERMINATION BY FREEZING POINT DEPRESSION

Experiment 1 MOLAR MASS DETERMINATION BY FREEZING POINT DEPRESSION 1 Experiment 1 MOLAR MASS DETERMINATION BY FREEZING POINT DEPRESSION Whenever a substance is dissolved in a solvent, the vapor pressure of the solvent is lowered. As a result of the decrease in the vapor

More information

Determination of the Molar Mass of a Compound by Freezing Point Depression

Determination of the Molar Mass of a Compound by Freezing Point Depression Determination of the Molar Mass of a Compound by Freezing Point Depression Objective: The objective of this experiment is to determine the molar mass of an unknown solute by measuring the freezing point

More information

STEM Energy Lesson Plan Elements Inclusion Purdue University 2017 Duke Energy Academy

STEM Energy Lesson Plan Elements Inclusion Purdue University 2017 Duke Energy Academy 1 Lesson Plan Title: Real Life Applications of Energy Concepts from AP Chemistry Teacher Name: Laura Cummings Subject: AP Chemistry School: Herron High School Grade Level: 11 th and 12th Problem statement,

More information