Roop Lal (Asst. Prof.)

Size: px
Start display at page:

Download "Roop Lal (Asst. Prof.)"

Transcription

1 Fracture of metal and alloys, brittle and ductile, fracture, FRACTURE It is defined as the separation of a specimen into two or more parts by an applied stress. Fracture can be classified as either brittle or ductile. The former occurs after little or no plastic deformation, whereas the latter occurs after extensive plastic deformation. A comparison of these are made in Table 7. Table 7. Fracture is caused by physical and chemical forces and takes place in two stages: (i) crack initiation, i.e. initial formation of a crack and (ii) (ii) crack propagation, i.e. spreading of crack. Metals exhibit different types of fractures, which depend upon (i) type of material (ii) rate of stressing, i.e. loading (iii) state of stress and (iv) temperature. The main types of fractures shown by metals are: (i) brittle fracture (ii) shear fracture (iii) cleavage fracture and (iv) ductile fracture (Fig. 36). Fig. 36 Types of fractures observed in metals subjected to uniaxial tension (a) brittle fracture (b) shear fracture (c) ductile fracture (d) completely ductile fracture Brittle Fracture: The word brittle is associated with a minimum of plastic deformation, i.e. with a brittle fracture the material fractures with very rapid propagation of crack with very little or no plastic deformation like a china cup. The salient features of brittle fracture are:

2 (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) Brittle fracture occurs when a small crack in a material grows and the movement of crack involves very little plastic deformation of the metal adjacent to the crack. Growth continues until fracture occurs (crack propagation). At the surface of a material, the atoms do not have as many neighbours as those in the interior of a solid and therefore they form fewer bonds. Obviously, surface atoms are at a higher energy than a plane of interior atoms. Brittle fracture contains in destroying the interatomic bonds by normal stresses. Brittle fracture in metals is characterised by a rapid rate of crack propagation with minimum energy of absorption, with no gross deformation and very little microdeformation. Adjacent parts of the metal are separated by stresses normal to the fracture surface. This does not produce plastic deformation and therefore requires less energy than a ductile failure where energy is introduced in the process of forming dislocations and other imperfections within the crystal. Brittle fracture occurs along crystal planes with fewer atomic bonds, i.e. characteristic crystallographic planes called as cleavage planes. The fracture is termed as cleavage fracture. Brittle fracture occurs at or below the elastic limit of a material. Normally brittle fracture follows the grain boundaries which can be identified by their granular and shiny look. In some instances this type of fracture can be caused by grain-boundary films of hard brittle second phase, like that formed by bismuth in copper. The tendency for brittle fracture increases with decreasing temperature, increasing strain rate and stress concentration conditions usually produced by a notch. Brittle fracture is to be avoided at all cost, because it is very dangerous and occurs without warning and usually produces disastrous consequences. Brittle fractures are of practical importance due to the failures of pressure vessels, bridges, pipe lines, hulls of ships, etc. Ductile Fracture This signifies large plastic deformation, and occurs after extensive plastic deformation prior to and during the propagation of the crack. This requires considerable energy which is absorbed in forming dislocations and other imperfections (defects) in metals. In a ductile fracture, there are three successive events involved: (i) Test sample or specimen begins necking and minute cavities form in the necked region. The plastic deformation is concentrated in this region and indicates that the formation of cavities is closely linked to plastic deformation, hence to the dislocation movement, thereby taking the longest time in the fracture process, (ii) The cavities coalesce and form minute crack at the centre of the test specimen, and The crack propagates outwardly to the surface of the specimen by a shear separation in a direction 45 to the tensile axis, resulting in a familiar cup and cone type fracture.

3 The various stages involved in ductile fracture are shown in Fig. 38. Necking begins at the points of plastic instability where the increase in strength due to strain-hardening fails to compensate for the decrease in cross-sectional area. This occurs at maximum load. The formation of a neck introduces a triaxial state of stress in the region. A hydrostatic component of tension acts along the axis of the specimen at the centre of the necked region. Many fine cavities form in this region (Fig. 38(c)), and under continued straining these grow and coalesce into a central crack. This crack grows in a direction perpendicular to the axis of the specimen until it approaches the surface of the specimen. It then propagates to the surface of the specimen in a direction roughly 45 to the tensile axis to form the cone part of the fracture (Fig. 38(e)). One can also explain the fracture of ductile materials in terms of work-hardening coupled with crack nucleation and growth. The initial cavities are often observed to form at foreign inclusions where gliding dislocations can pile up and produce sufficient stress so that void or micro crack is formed. Let us consider a test specimen which is subjected to a slowly increasing load. Material begins to work harden, when the elastic limit is exceeded. The permanent elongation increases with increasing the load and the cross sectional area decreases simultaneously. The associated decrease in area leads to the formation of a neck in the test specimen as stated earlier. Due to high dislocation density of the necked region and the material being subjected to a complex stress, i.e., no longer a simple tensile stress, the dislocations are separated from each other because due to repulsive inter atomic forces. The dislocations come closer together with the increase of the resolved shear stress on the slip plane. The cracks are formed due to high shear stress and the presence of low angle grain boundaries. Once a crack is formed then it can grow or elongate by means of dislocations which slip. We may note that crack propagation for this mechanism is along the slip plane and these cracks coalesce. Obviously, one crack grows at the expense of others and finally crack growth results in failure. Fig. 38 Various successive stages in the ductile fracture of a specimen (tensile test) Ductile to Brittle Transition This is commonly observed in BCC metals and almost missing in most of the FCC metals. This transition is observed at low temperatures, extremely high rates of strain or notching the

4 material. This is very important when selecting materials for engineering purposes. The notched bar impact test for metals can be used to determine the temperature over which the transition from ductile to brittle takes place. Such a temperature is termed as transition temperature. One can explain the ductile to brittle transition with the help of Fig. 42. Figure shows the plot of brittle fracture stress (σf) and the yield stress (σy) as a function of temperature or strain rate. We note that the curve Fig. 42 Ductile to brittle transitions as a function of grain size and temperature for brittle fracture stress rises slightly to the left because the surface energy increases as temperature decreases. We note a strong temperature dependence in the yield stress curve as in BCC metals and metal oxide ceramics. From figure it is clear that the two curves intersect and a vertical line is drawn at the point of intersection, which is called the ductile-brittle transition temperature. Now, if a material is stressed at a temperature or strain rate which is to the right side of line CD, it will reach its yield point prior it reaches the brittle fracture stress and will undergo some plastic deformation prior to fracture. However, applying a stress under conditions which lie left of the line CD will result in brittle fracture. Obviously, at all temperatures, below the transition temperature, the fracture stress is smaller than that of the yield stress. This reveals that fracture stress may be controlled by the yield stress. As the applied stress reaches a value equal to the yield stress, the crack is nucleated at the intersection of the slip planes and propagates rapidly. The temperature range over which the rapid changes takes place is termed as the transition region. For mild steel, the consumption of energy in an impact test as a function of temperature is shown in Fig. 43. By fast loading, one can achieve a high strain rate in impact testing machines. We know that increasing the strain rate is equivalent to lowering the temperature. This means the materials which are ductile when strained slowly at a given temperature will behave in a brittle manner when subjected to a high strain rate. We may note that the ductile to brittle transition is quite dangerous from a design point of view.

5 Fig. 43 For mild steel, the variation of impact energy as a function of temperature T Fatigue Failure Fatigue: It is the failure of a material by fracture when subjected to a cyclic stress. Fatigue can occur at a stress whose amplitude is much smaller than the static load required to produce fracture. The maximum stress that a material can withstand without failure for a specific large number of cycles of stress is termed its fatigue or endurance limit. Fatigue is distinguished by three main features: (i) loss of strength (ii) loss of ductility and (iii) increased uncertainty in strength and service life. Engineering materials are often subjected to fluctuating loads while in service. Few examples of components which are subjected to fluctuating loads or alternate stresses are: (i) aircraft wings subjected to turbulent air (ii) leaf springs bent to and fro (iii) connecting rods pushed and pulled in piston engines and (iv) some parts of compressors, pumps and turbines, etc. subjected to repeated loading and vibration. If a metal wire is bent to and fro several times, it ultimately breaks. Rotating and vibrating parts of machines as in aeroplanes are liable to undergo fatigue and cause accidents. Fatigue fractures occur without any warning. They result in brittle fracture. About 80% of failure in engineering components takes place due to fatigue failure. Steel have generally a fatigue limit which is normally 0.4 to 0.5 times the tensile strength of the material. Under following conditions, the fatigue fracture progresses rapidly: (i) maximum tensile stress of sufficiently high value (ii) large vibrations or fluctuations in applied stress (iii) large number of cycles of applied stress and

6 (iv) other variables which may change the conditions of failure such as stress concentration, over loading, corrosion, residual stresses, etc. Due to difficulty of recognizing fatigue conditions, fatigue failures comprise percentage of failures occurring in engineering. The point at which the curve flattens out is termed as the fatigue limit and is well below the normal yield stress. The fatigue strength is usually defined as the stress that produces failure in a given number of cycles usually To avoid stress concentrations, rough surfaces and tensile residual stresses, fatigue specimens must be carefully prepared. Fatigue properties of a material are affected by several factors, e.g.: (i) Corrosion: The effect of corrosion is to reduce the number of cycles required to reach for every stress amplitude. We can protect the steel against salt corrosion by chromium or zinc-plating. (ii) Surface Finish: Scratches, dents, identification marks can act as stress raisers and so reduce the fatigue properties. It is reported that shot peening a surface produces surface compressive residual stresses and improves the fatigue performance. Electro-plating produces tensile residual stresses and have a detrimental effect on the fatigue properties. (iii) Temperature: As a consequence of oxidation or corrosion of the metal surface increasing, increase in temperature can lead to a reduction in fatigue properties. (iv) Micro Structure of an Alloy: Composition of an alloy and its grain size can affect its fatigue properties. In comparison to coarse grained steel, finer grain size steels have higher strength. In addition to higher strength, fine grain size also results in better resistance to cracking, better machine finish and improved plastic deformation. In comparison to fine grains, coarse grained steels are less tough and have a greater tendency for distortion. Addition of lead and sulphur in steel increases its machinability and can act as nuclei for fatigue and so reduce fatigue properties. (v) Residual Stresses: Residual stresses are produced by fabrication and finishing processes. Case hardening of steels by carburising results in compressive residual stresses, on surface it improves the fatigue. Several machining processes produce tensile residual stresses, which impair the properties. (vi) Heat Treatment: This reduces residual stresses within a metal. By producing compressive residual stresses in surfaces, case hardening improves fatigue properties. However hardening and tempering treatments reduce surface compressive stresses and so adversely affect fatigue properties. (vii) Stress Concentrations: These are caused by sudden changes in cross-section, keyways, holes, or sharp corners can more easily lead to a fatigue failure. Even a small hole lowers fatigue-limit by 30%. To study the effect of stress raisers on fatigue, a specimen containing V-notch or circular notch is prepared. When specimen is loaded, the notch has the following effects: (i) a taxial state of stress is produced (ii) stress gradient is set up from the root of the notch to the center of the specimen (iii) there is stress concentration at the notch. A crack is developed due to stress concentration at the root. Fatigue Fracture This results from the presence of fatigue cracks, usually initiated by cyclic stresses, at surface imperfections, e.g. machine markings and slip steps. Although the initial stress concentration associated with these cracks are too low to cause brittle fracture, however they may be sufficient to cause slow growth of the cracks into the interior. Eventually the cracks may become sufficiently deep and therefore the stress concentration exceeds the fracture strength and sudden failure occurs. It is reported that the extent of the crack propagation process depends upon the brittleness of the material under test. In brittle materials the crack grows to

7 a critical size from which it propagates right through the structure rapidly, whereas with ductile materials the crack keeps growing until the area left cannot support the load and an almost ductile fracture suddenly occurs. Fatigue Failure: One can recognize fatigue failures by the appearance of fracture. Fatigue failure has a number of specific features compared with failure under static loads: (i) It occurs at lower stresses than the failure at static loads, i.e., lower than the yield strength or ultimate strength. Fig.12 Stress cycles for testing of fatigue (ii) (iii) (iv) Failure starts on the surface (or near it) locally, in places of stress (strain) concentration Local stress concentrators are formed by surface defects appearing on cyclic loading or notches as traces of surface treatment or the effect of the surrounding medium. Failure occurs in a number of stages; accumulation of defects in the material; nucleation of fatigue cracks; gradual propagation and joining of some cracks into single main crack; and rapid final destruction. Failure has the typical structure which reflects the sequence of fatigue processes. A failure usually has the initial zone of destruction (the zone of nucleation of micro cracks), the fatigue zone, and the final failure zone. The initial zone of failure is usually near the surface and has small size and smooth surface. The fatigue zone is the zone where a fatigue crack gradually develops. It has typical concentric ripple lines which are an evidence of jumpwise propagation of fatigue cracks. The fatigue zone develops until the increasing stresses in the gradually diminishing actual section attain a level at which

8 instantaneous destruction takes place and forms the zone of final failure. The main basic reasons for taking place of fatigue failures are: (i) Surface imperfections like machining marks and surface irregularities. (ii) Stress concentrations like notches, keyways, screw threads and matching under-cuts. (iii) At low temperature the fatigue strength is high and decreases gradually with rise in temperature. (iv) Fatigue strength reduces by corroding environments. Following surface treatments like polishing, coatings, carburizing, nitriding, etc., their effect can be reduced. Mechanism of Fatigue Failure This is associated with the development and accumulation of micro plastic deformations in the surface layer and is based on dislocation movement. The possibility of dislocation movement at stresses below the yield limit is due to random orientation of crystals in the metal structure. At rather low mean stresses, the stresses appearing in some crystals may be sufficient for movement of weakly locked dislocations. Besides thin surface layers (to a depth of 1-2 grains) have a typically low stress for operation of Frank-Read dislocations sources. For this reasons, microplastic deformations and damage of thin surface layers can be observed in mild (annealed) metals already at an early stage of loading. Microplastic deformations manifest themselves in the form of slip lines in the surface, with the density of these lines increasing as the number of cycles increases. As dislocations emerge to the surface, their damage is enhanced and appears as steps. Slip lines become wider, change to slip bands, and gradually degenerate into extrusions and intrusions (Fig. 8.14). An extrusion is a bulge and intrusion, a depression of slip band. Extrusions and intrusions (i.e. ridges and recesses) form a rough relief of the surface. Recesses are places of concentration of strain, and therefore, of vacancies and dislocations. A high local density of vacancies and dislocations can result in the formation of voids and loose places which merge together to form sub micro cracks. The development and joining of submicrocracks in turn leads to the formation of microcracks. Fatigue are often referred to as progressive fractures. We have already remarked that fatigue is a result of cumulative process involving slip. High temperature increases the mobility of atoms, facilitating greater slip and deformation before fracture. Highly localized stress is also developed at abrupt changes in cross-section, at the base of surface scratches, at the root of a screw thread, at the edge of small inclusions of foreign substances, and at a minute blow hole or similar internal defects. We may see that these are typical conditions which give rise to the susceptibility to failure by fatigue.

9 Effect of Alloying Elements, A homogeneous mixture of two or more metals or a metal and a non-metal when fused together at a certain temperature forms a new metal after solidification, termed as an alloy. Metals in actual commercial use are almost exclusively alloys, and not pure metals, since it is possible for the design engineer to have an infinite variety of physical properties in the product by varying the metallic composition of the alloy. Alloys are normally harder than their components, less ductile and may have a much lower conductivity, whereas the highly purified single crystal of a metal is very soft and malleable, with high electrical conductivity. This is why pure metals are used only for specific applications. The alloy is usually more corrosion resistant and less affected by atmospheric conditions. The conductivity of an alloy varies with the degree of order of the alloy and the hardness varies with the particular heat treatment. Alloys are classified as binary alloys, composed of two components; as ternary alloys, composed of three components; or as multicomponent alloys. Most commercial alloys are multi component. The composition of an alloy is described by giving the percentage (either by weight or by atoms) of each element in it. Metal alloys by virtue of composition, are often grouped into two classes: (i) ferrous and non-ferrous. Ferrous alloys are those in which iron is the principal constituent, include steels and cast irons. The nonferrous alloys are all alloys that are not iron based. Alloys are widely used in industry because their physical and chemical properties can be easily varied to suit the exact individual requirement. One can achieve this by preparing alloys of different metals. The alloying elements are added to improve one or more of the following properties: (a) tensile strength, hardness and toughness (c) machinability, (e) hardenability (g) fatigue resistance, etc. (b) corrosive and oxidation resistance, (d) elasticity (f) creep strength and ALLOY SYSTEMS The improvement in the properties of an alloy system depends upon the following factors: (i) Manner in which the two or more metals are mixed with each other. (ii) The percentage of different alloying metals/or elements. (iii) Temperature at which these are cooled, etc. It is possible that two or more metals may be soluble in each other in liquid state but may or may not be soluble in each other in solid state. It is possible that they may retain their identity even if they are soluble in liquid state, e.g. cadmium and bismuth are soluble in each other in liquid state but insoluble in each other in the solid state. It is also possible that the two or more metals may be soluble in each other in liquid as well as solid state, e.g. copper and nickel are soluble in each other in the liquid as well as in solid state. Obviously, one cannot distinguish copper from nickel.

10 SOLID SOLUTIONS A solid solution forms when, as the solute atoms are added to the host material, the crystal structure is maintained, and no new structures are formed. In other words, when elements completely dissolve in each other in liquid and or solid state the resulting phase is called solid solution. Solid solutions form readily when solvent and solute atoms have similar sizes and electron structures, so that it is compositionally or chemically homogeneous and the component atoms of the elements cannot be distinguished physically or separated mechanically. There is a homogeneous distribution of the constituents in the solid state so as to form a single phase or solid solution. Basically, solid solutions are of two types: (a) Substitutional Solid Solution When the two metals in solid solution form a single face centred cubic lattice, i.e., in general solute or impurity atoms replace or substitute for the host atoms, is called as substitutional solid solution. (i) Random substitutional solid solutions and (ii) Ordered substitutional solid solutions. Fig. 1 (a) Solid solutions (b) substitutional solid solutions and (c) interstitial solid solution (b) Interstitial Solid Solutions These can form, for instance, on melting together transition metals and non-metals with a small atomic radius (H, N, C or B). The possibility of obtaining an interstitial solution is mainly determined by the size factor; i.e., the size of a solute atom must be equal to or slightly smaller than the size of an interstitial void. Alloy Steel An alloy steel may be defined as a steel to which elements other than carbon are added in sufficient amount to produce an improvement in properties. The alloying is done for specific purposes to increase wearing resistance, corrosion resistance and to improve electrical and magnetic properties, which cannot be obtained in plain carbon steels. The chief alloying elements used in steel are nickel, chromium, molybdenum, cobalt, vanadium, manganese, silicon and tungsten. Each of these elements confer certain qualities upon the steel to which it is added. These elements may be used separately or in combination to produce the desired characteristic in steel.

11 Following are the effects of alloying elements on steel: 1. Nickel. It increases the strength and toughness of the steel. These steels contain 2 to 5% nickel and from 0.1 to 0.5% carbon. In this range, nickel contributes great strength and hardness with high elastic limit, good ductility and good resistance to corrosion. An alloy containing 25% nickel possesses maximum toughness and offers the greatest resistance to rusting, corrosion and burning at high temperature. It has proved to be of advantage in the manufacture of boiler tubes, valves for use with superheated steam, valves for I.C. engines and spark plugs for petrol engines. A nickel steel alloy containing 36% of nickel is known as invar. It has nearly zero coefficient of expansion. So it is in great demand for measuring instruments and standards of lengths for everyday use. 2. Chromium. It is used in steels as an alloying element to combine hardness with high strength and high elastic limit. It also imparts corrosion-resisting properties to steel. The most common chrome steels contains from 0.5 to 2% chromium and 0.1 to 1.5% carbon. The chrome steel is used for balls, rollers and races for bearings. A nickel chrome steel containing 3.25% nickel, 1.5% chromium and 0.25% carbon is much used for armour plates. Chrome nickel steel is extensively used for motor car crankshafts, axles and gears requiring great strength and hardness. 3. Tungsten. It prohibits grain growth, increases the depth of hardening of quenched steel and confers the property of remaining hard even when heated to red colour. It is usually used in conjuction with other elements. Steel containing 3 to 18% tungsten and 0.2 to 1.5% carbon is used for cutting tools. The principal uses of tungsten steels are for cutting tools, dies, valves, taps and permanent magnets. 4. Vanadium. It aids in obtaining a fine grain structure in tool steel. The addition of a very small amount of vanadium (less than 0.2%) produces a marked increase in tensile strength and elastic limit in low and medium carbon steels without a loss of ductility. The chrome-vanadium steel containing about 0.5 to 1.5% chromium, 0.15 to 0.3% vanadium and 0.13 to 1.1% carbon have extremely good tensile strength, elastic limit, endurance limit and ductility. These steels are frequently used for parts such as springs, shafts, gears, pins and many drop forged parts. 5. Manganese. It improves the strength of the steel in both the hot rolled and heat treated condition. The manganese alloy steels containing over 1.5% manganese with a carbon range of 0.40 to 0.55% are used extensively in gears, axles, shafts and other parts where high strength combined with fair ductility is required. The principal uses of manganese steel is in machinery parts subjected to severe wear. These steels are all cast and ground to finish. 6. Silicon. The silicon steels behave like nickel steels. These steels have a high elastic limit as compared to ordinary carbon steel. Silicon steels containing from 1 to 2% silicon and 0.1 to 0.4% carbon and other alloying elements are used for electrical machinery, valves in I.C. engines, springs and corrosion resisting materials.

12 7. Cobalt. It gives red hardness by retention of hard carbides at high temperatures. It tends to decarburize steel during heat-treatment. It increases hardness and strength and also residual magnetism and coercive magnetic force in steel for magnets. 8. Molybdenum. A very small quantity (0.15 to 0.30%) of molybdenum is generally used with chromium and manganese (0.5 to 0.8%) to make molybdenum steel. These steels possess extra tensile strength and are used for air-plane fuselage and automobile parts. It can replace tungsten in high speed steel Design considerations. Following are the general considerations in designing a machine component : 1. Type of load and stresses caused by the load. The load, on a machine component, may act in several ways due to which the internal stresses are set up. 2. Motion of the parts or kinematics of the machine. The successful operation of any machine depends largely upon the simplest arrangement of the parts which will give the motion required. The motion of the parts may be : (a) Rectilinear motion which includes unidirectional and reciprocating motions. (b) Curvilinear motion which includes rotary, oscillatory and simple harmonic. (c) Constant velocity. (d) Constant or variable acceleration. 3. Selection of materials. It is essential that a designer should have a thorough knowledge of the properties of the materials and their behaviour under working conditions. Some of the important characteristics of materials are : strength, durability, flexibility, weight, resistance to heat and corrosion, ability to cast, welded or hardened, machinability, electrical conductivity, etc. 4. Form and size of the parts. The form and size are based on judgment. The smallest practicable cross-section may be used, but it may be checked that the stresses induced in the designed cross-section are reasonably safe. In order to design any machine part for form and size, it is necessary to know the forces which the part must sustain. It is also important to anticipate any suddenly applied or impact load which may cause failure. 5. Frictional resistance and lubrication. There is always a loss of power due to frictional resistance and it should be noted that the friction of starting is higher than that of running friction. It is, therefore, essential that a careful attention must be given to the matter of lubrication of all surfaces which move in contact with others, whether in rotating, sliding, or rolling bearings.

13 6. Convenient and economical features. In designing, the operating features of the machine should be carefully studied. The starting, controlling and stopping levers should be located on the basis of convenient handling. The adjustment for wear must be provided employing the various take up devices and arranging them so that the alignment of parts is preserved. If parts are to be changed for different products or replaced on account of wear or breakage, easy access should be provided and the necessity of removing other parts to accomplish this should be avoided if possible. The economical operation of a machine which is to be used for production, or for the processing of material should be studied, in order to learn whether it has the maximum capacity consistent with the production of good work. 7. Use of standard parts. The use of standard parts is closely related to cost, because the cost of standard or stock parts is only a fraction of the cost of similar parts made to order. The standard or stock parts should be used whenever possible ; parts for which patterns are already in existence such as gears, pulleys and bearings and parts which may be selected from regular shop stock such as screws, nuts and pins. Bolts and studs should be as few as possible to avoid the delay caused by changing drills, reamers and taps and also to decrease the number of wrenches required. 8. Safety of operation. Some machines are dangerous to operate, especially those which are speeded up to insure production at a maximum rate. Therefore, any moving part of a machine which is within the zone of a worker is considered an accident hazard and may be the cause of an injury. It is, therefore, necessary that a designer should always provide safety devices for the safety of the operator. The safety appliances should in no way interfere with operation of the machine. 9. Workshop facilities. A design engineer should be familiar with the limitations of his employer s workshop, in order to avoid the necessity of having work done in some other workshop. It is sometimes necessary to plan and supervise the workshop operations and to draft methods for casting, handling and machining special parts. 10. Number of machines to be manufactured. The number of articles or machines to be manufactured affects the design in a number of ways. The engineering and shop costs which are called fixed charges or overhead expenses are distributed over the number of articles to be manufactured. If only a few articles are to be made, extra expenses are not justified unless the machine is large or of some special design. An order calling for small number of the product will not permit any undue expense in the workshop processes, so that the designer should restrict his specification to standard parts as much as possible. 11. Cost of construction. The cost of construction of an article is the most important consideration involved in design. In some cases, it is quite possible that the high cost of an article may immediately bar it from further considerations. If an article has been invented and tests of hand made samples have shown that it has commercial value, it is then possible to justify the expenditure of a considerable sum of money in the design and development of automatic machines to produce the article, especially if it can be sold in large numbers. The aim

14 of design engineer under all conditions, should be to reduce the manufacturing cost to the minimum. 12. Assembling. Every machine or structure must be assembled as a unit before it can function. Large units must often be assembled in the shop, tested and then taken to be transported to their place of service. The final location of any machine is important and the design engineer must anticipate the exact location and the local facilities for erection. Creep Materials are often placed in service at elevated temperatures and exposed to static mechanical stresses (e.g., turbine rotors in jet engines and steam generators that experience centrifugal stresses, and high-pressure steam lines). Deformation under such circumstances is termed creep. Defined as the time-dependent and permanent deformation of materials when subjected to a constant load or stress, creep is normally an undesirable phenomenon and is often the limiting factor in the lifetime of a part. It is observed in all materials types; for metals it becomes important only for temperatures greater than about 0.4 Tm (Tm absolute melting temperature). GENERALIZED CREEP BEHAVIOR A typical creep test consists of subjecting a specimen to a constant load or stress while maintaining the temperature constant; deformation or strain is measured and plotted as a function of elapsed time. Figure 28 is a schematic representation of the typical constant load creep behavior of metals. Upon application of the load there is an instantaneous deformation, as indicated in the figure, which is mostly elastic. The resulting creep curve consists of three regions, each of which has its own distinctive strain time feature. Primary or transient creep occurs first, typified by a continuously decreasing creep rate; that is, the slope of the curve diminishes with time. This suggests that the material is experiencing an increase in creep resistance or strain hardening, deformation becomes more difficult as the material is strained. For secondary creep, sometimes termed steady-state creep, the rate is constant; that is, the plot becomes linear. This is often the stage of creep that is of the longest duration. The constancy of creep rate is explained on the basis of a balance between the competing processes of strain hardening and recovery, recovery being the process whereby a material becomes softer and retains its ability to experience deformation. Finally, for tertiary creep, there is an acceleration of the rate and ultimate failure. This failure is frequently termed rupture

15 Figure 28 Typical creep curve of strain versus time at constant stress and constant elevated temperature. The minimum creep rate ε/ t is the slope of the linear segment in the secondary region. Rupture lifetime tr is the total time to rupture. Uni axial compression tests are more appropriate for brittle materials; these provide a better measure of the intrinsic creep properties in as much as there is no stress amplification and crack propagation, as with tensile loads. Compressive test specimens are usually right cylinders or parallelepipeds having length-to-diameter ratios ranging from about 2 to 4. For most materials creep properties are virtually independent of loading direction. Possibly the most important parameter from a creep test is the slope of the secondaryportion of the creep curve ( ε t in Figure 28); this is often called the minimum or steady-state creep rate εs. It is the engineering design parameter that is considered for long-life applications, such as a nuclear power plant component that is scheduled to operate for several decades, and when failure or too much strain are not options. On the other hand, for many relatively shortlife creep situations (e.g., turbine blades in military aircraft and rocket motor nozzles), time to rupture, or the rupture lifetime, is the dominant design consideration; it is also indicated in Figure 28. Of course, for its determination, creep tests must be conducted to the point of failure; these are termed creep rupture tests. Thus, a knowledge of these creep characteristics of a material allows the design engineer to ascertain its suitability for a specific application. STRESS AND TEMPERATURE EFFECTS Both temperature and the level of the applied stress influence the creep characteristics (Figure 29). At a temperature substantially below 0.4Tm and after the initial deformation, the strain is virtually independent of time.with either increasing stress or temperature, the following will be noted: (1) The instantaneous strain at the time of stress application increases, (2) The steady-state creep rate is increased, and (3) The rupture lifetime is diminished.

16 Figure 29 Influence of stress σ and temperature T on creep behavior. ALLOYS FOR HIGH-TEMPERATURE USE There are several factors that affect the creep characteristics of metals. These include melting temperature, elastic modulus, and grain size. In general, the higher the melting temperature, the greater the elastic modulus, and the larger the grain size, the better is a material s resistance to creep. Relative to grain size, smaller grains permit more grain-boundary sliding, which results in higher creep rates. This effect may be contrasted to the influence of grain size on the mechanical behavior at low temperatures [i.e., increase in both strength and toughness. Stainless steels, the refractory metals, and the super alloys are especially resilient to creep and are commonly employed in high temperature service applications. The creep resistance of the cobalt and nickel super alloys is enhanced by solid-solution alloying, and also by the addition of a dispersed phase that is virtually insoluble in the matrix. In addition, advanced processing techniques have been utilized; one such technique is directional solidification, which produces either highly elongated grains or single-crystal components. Another is the controlled unidirectional solidification of alloys having specially designed compositions wherein two-phase composites result.

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

1) Fracture, ductile and brittle fracture 2) Fracture mechanics

1) Fracture, ductile and brittle fracture 2) Fracture mechanics Module-08 Failure 1) Fracture, ductile and brittle fracture 2) Fracture mechanics Contents 3) Impact fracture, ductile-to-brittle transition 4) Fatigue, crack initiation and propagation, crack propagation

More information

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys Fatigue and Creep of Materials Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Fatigue failure Laboratory fatigue test The S-N Ncurve Fractography of fractured surface Factors improving fatigue life

More information

Chapter Outline: Failure

Chapter Outline: Failure Chapter Outline: Failure How do Materials Break? Ductile vs. brittle fracture Principles of fracture mechanics Stress concentration Impact fracture testing Fatigue (cyclic stresses) Cyclic stresses, the

More information

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture.

Fracture. Brittle vs. Ductile Fracture Ductile materials more plastic deformation and energy absorption (toughness) before fracture. 1- Fracture Fracture: Separation of a body into pieces due to stress, at temperatures below the melting point. Steps in fracture: 1-Crack formation 2-Crack propagation There are two modes of fracture depending

More information

Electronics materials - Stress and its effect on materials

Electronics materials - Stress and its effect on materials Electronics materials - Stress and its effect on materials Introduction You will have already seen in Mechanical properties of metals that stress on materials results in strain first elastic strain and

More information

Introduction to Materials Science, Chapter 8, Failure. Failure. Ship-cyclic loading from waves.

Introduction to Materials Science, Chapter 8, Failure. Failure. Ship-cyclic loading from waves. Failure Ship-cyclic loading from waves. Computer chip-cyclic thermal loading. University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Failure How do Materials Break? Ductile

More information

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 8: Failure. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 8: Failure Dr. Coates Canopy fracture related to corrosion of the Al alloy used as a skin material. 8.2 Fundamentals of Fracture Fracture is the separation

More information

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN 1 SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL C O N T E N T 2 1. MACHINE DESIGN 03-21 2. FLEXIBLE MECHANICAL ELEMENTS. 22-34 3. JOURNAL BEARINGS... 35-65 4. CLUTCH AND BRAKES.

More information

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS

ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS ENGR 151: Materials of Engineering LECTURE #12-13: DISLOCATIONS AND STRENGTHENING MECHANISMS RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH Plastically deforming metal at low temperatures affects physical

More information

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion

Tutorial 2 : Crystalline Solid, Solidification, Crystal Defect and Diffusion Tutorial 1 : Introduction and Atomic Bonding 1. Explain the difference between ionic and metallic bonding between atoms in engineering materials. 2. Show that the atomic packing factor for Face Centred

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

MSE200 Lecture 9 (CH ) Mechanical Properties II Instructor: Yuntian Zhu

MSE200 Lecture 9 (CH ) Mechanical Properties II Instructor: Yuntian Zhu MSE200 Lecture 9 (CH. 7.1-7.2) Mechanical Properties II Instructor: Yuntian Zhu Objectives/outcomes: You will learn the following: Fracture of metals. Ductile and brittle fracture. Toughness and impact

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Instructional Objectives At the end of this lesson, the students should be able to understand Mean and variable stresses and endurance limit S-N plots for metals and non-metals and relation between endurance

More information

CH 6: Fatigue Failure Resulting from Variable Loading

CH 6: Fatigue Failure Resulting from Variable Loading CH 6: Fatigue Failure Resulting from Variable Loading Some machine elements are subjected to statics loads and for such elements, statics failure theories are used to predict failure (yielding or fracture).

More information

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore

Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Steel Haseeb Ullah Khan Jatoi Department of Chemical Engineering UET Lahore Recap Eutectic phase diagram Eutectic phase diagram Eutectic isotherm Invariant point Eutectic Reaction Compositions of components

More information

Engineering Materials

Engineering Materials Engineering Materials Learning Outcome When you complete this module you will be able to: Describe the mechanical properties of ferrous and non-ferrous engineering materials, plus the effects and purposes

More information

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline Creep and High Temperature Failure Outline Creep and high temperature failure Creep testing Factors affecting creep Stress rupture life time behaviour Creep mechanisms Example Materials for high creep

More information

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR

Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Phase change processes for material property manipulation BY PROF.A.CHANDRASHEKHAR Introduction The phase of a material is defined as a chemically and structurally homogeneous state of material. Any material

More information

SMM 3622 Materials Technology 3.1 Fatigue

SMM 3622 Materials Technology 3.1 Fatigue SMM 3622 Materials Technology 3.1 Fatigue ISSUES TO ADDRESS... MECHANICAL FAILURE FATIGUE What is fatigue? Types of fatigue loading? Empirical data Estimating endurance/fatigue strength Strategies for

More information

Properties of Metals

Properties of Metals Properties of Metals Alessandro Anzalone, Ph.D. Hillsborough Community College Brandon Campus 1. Mechanical Properties 2. Physical Properties 3. Metallurgical Microscopy 4. Nondestructive Testing 5. References

More information

THE MECHANICAL PROPERTIES OF STAINLESS STEEL

THE MECHANICAL PROPERTIES OF STAINLESS STEEL THE MECHANICAL PROPERTIES OF STAINLESS STEEL Stainless steel is primarily utilised on account of its corrosion resistance. However, the scope of excellent mechanical properties the within the family of

More information

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour

Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour Mechanical behavior of crystalline materials - Stress Types and Tensile Behaviour 3.1 Introduction Engineering materials are often found to posses good mechanical properties so then they are suitable for

More information

ME -215 ENGINEERING MATERIALS AND PROCESES

ME -215 ENGINEERING MATERIALS AND PROCESES ME -215 ENGINEERING MATERIALS AND PROCESES Instructor: Office: MEC325, Tel.: 973-642-7455 E-mail: samardzi@njit.edu PROPERTIES OF MATERIALS Chapter 3 Materials Properties STRUCTURE PERFORMANCE PROCESSING

More information

Workshop Practice TA 102

Workshop Practice TA 102 Workshop Practice TA 102 Lec 2 & 3 :Engineering Materials By Prof.A.Chandrashekhar Engineering Materials Materials play an important role in the construction and manufacturing of equipment/tools. Right

More information

Steel Properties. History of Steel

Steel Properties. History of Steel History of Steel Steel Properties Cast Iron Cast iron preceded wrought iron. It is brittle, has high carbon content with low tensile strength. It has excellent casting properties. It was mainly used to

More information

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 7: Dislocations and Strengthening Mechanisms Dr. Coates An edge dislocation moves in response to an applied shear stress dislocation motion 7.1 Introduction

More information

Glossary of Steel Terms

Glossary of Steel Terms Glossary of Steel Terms Steel Terms Explained. Below we list some of the most common steel terms and explain what they mean. AISI Alloy Alloy Steel Annealing ASTM Austenitic Bar Brinell (HB) Bright Drawn

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction

Chapter Outline Dislocations and Strengthening Mechanisms. Introduction Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

The designs, depending upon the methods used, may be classified as follows:

The designs, depending upon the methods used, may be classified as follows: Definition Machine Design is the creation of new and better machines and improving the existing ones. A new or better machine is one which is more economical in the overall cost of production and operation.

More information

Deformation, plastic instability

Deformation, plastic instability Deformation, plastic instability and yield-limited design Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Material

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working Forging & Rolling Mechanical Working of Metals In this method no machining process is carried out, but it is used to achieve optimum mechanical properties

More information

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior -1-2 -3-4 ( ) -5 ( ) -6-7 -8-9 -10-11 -12 ( ) Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior 6- Plastic behavior 7- Uniaxial tensile load 8- Bi-axial tensile

More information

Their widespread use is accounted for by three factors:

Their widespread use is accounted for by three factors: TYPES OF METAL ALLOYS Metal alloys, by virtue of composition, are often grouped into two classes ferrous and nonferrous. Ferrous alloys, those in which iron is the principal constituent, include steels

More information

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..) Processing of Metals - Casting CHAPTER 4 Mechanical Properties of Metals - I Most metals are first melted in a furnace. Alloying is done if required. Large ingots are then cast. Sheets and plates are then

More information

Fatigue failure & Fatigue mechanisms. Engineering Materials Chedtha Puncreobutr.

Fatigue failure & Fatigue mechanisms. Engineering Materials Chedtha Puncreobutr. Fatigue failure & Fatigue mechanisms Engineering Materials 2189101 Department of Metallurgical Engineering Chulalongkorn University http://pioneer.netserv.chula.ac.th/~pchedtha/ Fracture Mechanism Ductile

More information

Types of Fatigue. Crack Initiation and Propagation. Variability in Fatigue Data. Outline

Types of Fatigue. Crack Initiation and Propagation. Variability in Fatigue Data. Outline Types of Fatigue Outline Fatigue - Review Fatigue crack initiation and propagation Fatigue fracture mechanics Fatigue fractography Crack propagation rate Example Factors affecting fatigue - Design factors

More information

Stress cycles: Dr.Haydar Al-Ethari

Stress cycles: Dr.Haydar Al-Ethari Dr.Haydar Al-Ethari Lecture #17/ Fatigue in metals: Fatigue is a degradation of mechanical properties leading to failure of a material or a component under cyclic loading. (This definition excludes the

More information

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES

ATI 332 ATI 332. Technical Data Sheet. Stainless Steel: Austenitic GENERAL PROPERTIES TYPICAL ANALYSIS PHYSICAL PROPERTIES ATI 332 Stainless Steel: Austenitic (UNS N08800) GENERAL PROPERTIES ATI 332 alloy is a nickel and chromium austenitic stainless steel designed to resist oxidation and carburization at elevated temperatures.

More information

Structure-Property Correlation [9] Failure of Materials In Services

Structure-Property Correlation [9] Failure of Materials In Services MME 297: Lecture 12 Structure-Property Correlation [9] Failure of Materials In Services Dr. A. K. M. Bazlur Rashid Professor, Department of MME BUET, Dhaka Topics to discuss today... Failure: An Introduction

More information

Materials and their structures

Materials and their structures Materials and their structures 2.1 Introduction: The ability of materials to undergo forming by different techniques is dependent on their structure and properties. Behavior of materials depends on their

More information

Engineering Materials

Engineering Materials Engineering Materials Lecture 2 MEL120: Manufacturing Practices 1 Selection of Material A particular material is selected is on the basis of following considerations 1. Properties of material 1. Properties

More information

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels These steels contain a high percentage of chromium and sometimes other alloys and have been designed to prevent different types of corrosion. There are two kinds of corrosion: dry corrosion (often named

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION 1 CHAPTER-1 1.0 INTRODUCTION Contents 1.0 Introduction 1 1.1 Aluminium alloys 2 1.2 Aluminium alloy classification 2 1.2.1 Aluminium alloys (Wrought) 3 1.2.2 Heat treatable alloys (Wrought). 3 1.2.3 Aluminum

More information

DESIGN OF MACHINE ELEMENTS UNIT-1

DESIGN OF MACHINE ELEMENTS UNIT-1 DESIGN OF MACHINE ELEMENTS UNIT-1 PART-1 DEPARTMENT OF MECHANICAL ENGINEERING K.L.UNIVERSITY GUNTUR DESIGN: It is essentially decision making process. If we have the problem we will find the solution.

More information

Structures should be designed in such a way that they do not fail during their expected / predicted safe-life

Structures should be designed in such a way that they do not fail during their expected / predicted safe-life Structures Any structure is built for a particular purpose Aircraft, Ship, Bus, Train Oil Platforms Bridgesand Buildings Towers for Wind energy, Electricaltransmission etc. Structures and Materials Structuresare

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Outline Tension and compression

More information

The strength of a material depends on its ability to sustain a load without undue deformation or failure.

The strength of a material depends on its ability to sustain a load without undue deformation or failure. TENSION TEST The strength of a material depends on its ability to sustain a load without undue deformation or failure. This strength is inherent in the material itself and must be determined by experiment.

More information

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties.

Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. Welcome to ENR116 Engineering Materials. This lecture summary is part of module 2, Material Properties. 1 2 Mechanical properties. 3 The intended learning outcomes from this lecture summary are that you

More information

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr)

ME 254 MATERIALS ENGINEERING 1 st Semester 1431/ rd Mid-Term Exam (1 hr) 1 st Semester 1431/1432 3 rd Mid-Term Exam (1 hr) Question 1 a) Answer the following: 1. Do all metals have the same slip system? Why or why not? 2. For each of edge, screw and mixed dislocations, cite

More information

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1 CHAPTER 3 PROPERTIES OF MATERIALS PART 1 30 July 2007 1 OUTLINE 3.1 Mechanical Properties 3.1.1 Definition 3.1.2 Factors Affecting Mechanical Properties 3.1.3 Kinds of Mechanical Properties 3.1.4 Stress

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

SAMPLE. MEM05051A Select welding processes. MEM05 Metal and Engineering Training Package. Learner guide Version 1

SAMPLE. MEM05051A Select welding processes. MEM05 Metal and Engineering Training Package. Learner guide Version 1 MEM05 Metal and Engineering Training Package MEM05051A Select welding processes Learner guide Version 1 Training and Education Support Industry Skills Unit Meadowbank Product Code: 5721 Acknowledgments

More information

Failure Analysis and Prevention: Fundamental causes of failure

Failure Analysis and Prevention: Fundamental causes of failure Failure Analysis and Prevention: Fundamental causes of failure This chapter defines the failure and elaborates the conditions for failure of mechanical components. Further, the fundamental causes of failure

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988)

CREEP CREEP. Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) CREEP CREEP Mechanical Metallurgy George E Dieter McGraw-Hill Book Company, London (1988) Review If failure is considered as change in desired performance*- which could involve changes in properties and/or

More information

Dislocations and Plastic Deformation

Dislocations and Plastic Deformation Dislocations and Plastic Deformation Edge and screw are the two fundamental dislocation types. In an edge dislocation, localized lattice distortion exists along the end of an extra half-plane of atoms,

More information

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Slip Systems 8.3 (a) Compare planar densities (Section 3.15 and Problem W3.46 [which appears on the book s Web site]) for the (100),

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

STRENGTHENING MECHANISM IN METALS

STRENGTHENING MECHANISM IN METALS Background Knowledge Yield Strength STRENGTHENING MECHANISM IN METALS Metals yield when dislocations start to move (slip). Yield means permanently change shape. Slip Systems Slip plane: the plane on which

More information

MECHANICAL PROPERTIES AND TESTS. Materials Science

MECHANICAL PROPERTIES AND TESTS. Materials Science MECHANICAL PROPERTIES AND TESTS Materials Science Stress Stress is a measure of the intensity of the internal forces acting within a deformable body. Mathematically, it is a measure of the average force

More information

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige

Chapter 7 Dislocations and Strengthening Mechanisms. Dr. Feras Fraige Chapter 7 Dislocations and Strengthening Mechanisms Dr. Feras Fraige Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and

More information

Fundamentals of Plastic Deformation of Metals

Fundamentals of Plastic Deformation of Metals We have finished chapters 1 5 of Callister s book. Now we will discuss chapter 10 of Callister s book Fundamentals of Plastic Deformation of Metals Chapter 10 of Callister s book 1 Elastic Deformation

More information

MECHANICAL PROPERTIES

MECHANICAL PROPERTIES MECHANICAL PROPERTIES Mechanical Properties: In the course of operation or use, all the articles and structures are subjected to the action of external forces, which create stresses that inevitably cause

More information

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design Lecture 5 Fatigue. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Lecture 5 Fatigue Dr. Hodge Jenkins Mercer University Introduction to Fatigue in Metals Cyclic loading produces stresses that are variable, repeated, alternating, or fluctuating

More information

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties

Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties Stainless Steel & Stainless Steel Fasteners Chemical, Physical and Mechanical Properties Stainless steel describes a family of steels highly resistant to tarnishing and rusting that contain at least two

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS Stress-Strain Relationships Hardness Effect of Temperature on Properties Fluid Properties Viscoelastic Behavior of Polymers Mechanical Properties in Design and Manufacturing

More information

3. A copper-nickel diffusion couple similar to that shown in Figure 5.1a is fashioned. After a 700-h heat treatment at 1100 C (1373 K) the

3. A copper-nickel diffusion couple similar to that shown in Figure 5.1a is fashioned. After a 700-h heat treatment at 1100 C (1373 K) the ENT 145 Tutorial 3 1. A sheet of steel 1.8 mm thick has nitrogen atmospheres on both sides at 1200 C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen

More information

Mechanical Properties of Metals. Goals of this unit

Mechanical Properties of Metals. Goals of this unit Mechanical Properties of Metals Instructor: Joshua U. Otaigbe Iowa State University Goals of this unit Quick survey of important metal systems Detailed coverage of basic mechanical properties, especially

More information

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface

IMPERFECTIONSFOR BENEFIT. Sub-topics. Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IMPERFECTIONSFOR BENEFIT Sub-topics 1 Point defects Linear defects dislocations Plastic deformation through dislocations motion Surface IDEAL STRENGTH Ideally, the strength of a material is the force necessary

More information

MANUFACTURING TECHNOLOGY

MANUFACTURING TECHNOLOGY MANUFACTURING TECHNOLOGY UNIT II Hot & Cold Working - Drawing & Extrusion Drawing Drawing is an operation in which the cross-section of solid rod, wire or tubing is reduced or changed in shape by pulling

More information

PARAMETERS AFFECTING MECHANICAL WORKING PROCESSES The following parameters influence the Mechanical Working Process:

PARAMETERS AFFECTING MECHANICAL WORKING PROCESSES The following parameters influence the Mechanical Working Process: PARAMETERS AFFECTING MECHANICAL WORKING PROCESSES The following parameters influence the Mechanical Working Process: i) Temperature of Metal ii) Strain Rate iii) Friction iv) Nature of Forces v) Metal

More information

Fundamentals p. 1 Mechanical Engineering Design in Broad Perspective p. 3 An Overview of the Subject p. 3 Safety Considerations p.

Fundamentals p. 1 Mechanical Engineering Design in Broad Perspective p. 3 An Overview of the Subject p. 3 Safety Considerations p. Fundamentals p. 1 Mechanical Engineering Design in Broad Perspective p. 3 An Overview of the Subject p. 3 Safety Considerations p. 5 Ecological Considerations p. 9 Societal Considerations p. 11 Overall

More information

Manufacturing Process - I

Manufacturing Process - I Manufacturing Process - I UNIT II Metal Forming Processes Prepared By Prof. Shinde Vishal Vasant Assistant Professor Dept. of Mechanical Engg. NDMVP S Karmaveer Baburao Thakare College of Engg. Nashik

More information

Tensile Testing. Objectives

Tensile Testing. Objectives Laboratory 3 Tensile Testing Objectives Students are required to understand the principle of a uniaxial tensile testing and gain their practices on operating the tensile testing machine to achieve the

More information

Movement of edge and screw dislocations

Movement of edge and screw dislocations Movement of edge and screw dislocations Formation of a step on the surface of a crystal by motion of (a) n edge dislocation: the dislocation line moves in the direction of the applied shear stress τ. (b)

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

Fractography: The Way Things Fracture

Fractography: The Way Things Fracture Fractography: The Way Things Fracture S.K. Bhaumik Materials Science Division Council of Scientific & Industrial Research (CSIR) Bangalore 560 017 Outline Introduction Classification of fracture Fracture

More information

MANUFACTURING PROCESSES

MANUFACTURING PROCESSES 1 MANUFACTURING PROCESSES - AMEM 201 Lecture 8: Forming Processes (Rolling, Extrusion, Forging, Drawing) DR. SOTIRIS L. OMIROU Forming Processes - Definition & Types - Forming processes are those in which

More information

Design for Forging. Forging processes. Typical characteristics and applications

Design for Forging. Forging processes. Typical characteristics and applications Design for Forging Forging processes Forging is a controlled plastic deformation process in which the work material is compressed between two dies using either impact or gradual pressure to form the part.

More information

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals

Learning Objectives. Chapter Outline. Solidification of Metals. Solidification of Metals Learning Objectives Study the principles of solidification as they apply to pure metals. Examine the mechanisms by which solidification occurs. - Chapter Outline Importance of Solidification Nucleation

More information

Laboratory 3 Impact Testing of Metals

Laboratory 3 Impact Testing of Metals Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional 1.50 Credits Laboratory 3 Impact Testing of Metals 1. Objective

More information

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden )

High Temperature Materials. By Docent. N. Menad. Luleå University of Technology ( Sweden ) of Materials Course KGP003 Ch. 6 High Temperature Materials By Docent. N. Menad Dept. of Chemical Engineering and Geosciences Div. Of process metallurgy Luleå University of Technology ( Sweden ) Mohs scale

More information

Strengthening Mechanisms

Strengthening Mechanisms ME 254: Materials Engineering Chapter 7: Dislocations and Strengthening Mechanisms 1 st Semester 1435-1436 (Fall 2014) Dr. Hamad F. Alharbi, harbihf@ksu.edu.sa November 18, 2014 Outline DISLOCATIONS AND

More information

Ferrous Alloys. Steels

Ferrous Alloys. Steels Ferrous Alloys Ferrous alloys those of which iron is the prime constituent are produced in larger quantities than any other metal type. They are especially important as engineering construction materials.

More information

Materials for Civil and Construction Engineers. Steel. Introduction Steel

Materials for Civil and Construction Engineers. Steel. Introduction Steel 1 Materials for Civil and Construction Engineers Steel Introduction Steel 3rd most used construction material after concrete and asphalt Iron ore 1500 B.C. primitive furnace: iron 18 th century blast furnace:

More information

Metallurgy 101 (by popular request)

Metallurgy 101 (by popular request) Metallurgy 101 (by popular request) Metals are crystalline materials Although electrons are not shared between neighboring atoms in the lattice, the atoms of a metal are effectively covalently bonded.

More information

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2 AERO 214 Introduction to Aerospace Mechanics of Materials Lecture 2 Materials for Aerospace Structures Aluminum Titanium Composites: Ceramic Fiber-Reinforced Polymer Matrix Composites High Temperature

More information

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414

FME201 Solid & Structural Mechanics I Dr.Hussein Jama Office 414 FME201 Solid & Structural Mechanics I Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 11am -1pm (CELT) Tutorial Tue 12-1pm (E207) 10/1/2013 1 CHAPTER OBJECTIVES Show relationship of stress

More information

Imperfections in the Atomic and Ionic Arrangements

Imperfections in the Atomic and Ionic Arrangements Objectives Introduce the three basic types of imperfections: point defects, line defects (or dislocations), and surface defects. Explore the nature and effects of different types of defects. Outline Point

More information

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister

Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister Quiz 1 - Mechanical Properties and Testing Chapters 6 and 8 Callister You need to be able to: Name the properties determined in a tensile test including UTS,.2% offset yield strength, Elastic Modulus,

More information

High temperature applications

High temperature applications 3. CREEP OF METALS Lecturer: Norhayati Ahmad High temperature applications -Steel power plants -Oil refineries -Chemical plants High operating temperatures Engine jet ----1400 o C Steam turbine power plants:

More information

CLASSIFICATION OF STEELS

CLASSIFICATION OF STEELS 7 Alloy Steels CLASSIFICATION OF STEELS low carbon

More information

Metal Forming Process. Prof.A.Chandrashekhar

Metal Forming Process. Prof.A.Chandrashekhar Metal Forming Process Prof.A.Chandrashekhar Introduction Shaping of a component by the application of external forces is known as the metal forming. Metal forming can be described as a process in which

More information

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion.

is detrimental to hot workability and subsequent surface quality. It is used in certain steels to improve resistance to atmospheric corrosion. Glossary of Terms Alloying Elements ALUMINIUM - Al is used to deoxidise steel and control grain size. Grain size control is effected by forming a fine dispersion with nitrogen and oxygen which restricts

More information

Metals are used by industry for either one or combination of the following properties

Metals are used by industry for either one or combination of the following properties Basic Metallurgy Metals are the backbone of the engineering industry being the most important Engineering Materials. In comparison to other engineering materials such as wood, ceramics, fabric and plastics,

More information

Fundamentals of Machine Component Design

Fundamentals of Machine Component Design FOURTH E D I T I O N Fundamentals of Machine Component Design ROBERT C. JUVINALL Professor of Mechanical Engineering University of Michigan KURT M. MARSHEK Professor of Mechanical Engineering University

More information

Copyright 1999 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Heat Treating NARRATION (VO): HEATING..., AND COOLING CYCLES.

Copyright 1999 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Heat Treating NARRATION (VO): HEATING..., AND COOLING CYCLES. FUNDAMENTAL MANUFACTURING PROCESSES Heat Treating SCENE 1. tape 506, 19:07:04-19:07:24 parts pulled from heat, glowing, and transferred to quench for cooling HEAT TREATING PROCESSES ARE USED TO ALTER THE

More information

Metals Ferrous and Non - Ferrous Icons key:

Metals Ferrous and Non - Ferrous Icons key: 1 of 9 Metals Ferrous and Non - Ferrous Icons key: Flash activity. These activities are not editable. Accompanying worksheet. Teacher s notes included in the Notes Page. Useful websites for further information.

More information