MATERIALS I LECTURE COURSE 8 ANNEALINGS. HARDENING OF STEELS. HARDENABILITY. TEMPERING. THERMOCHEMICAL TREATMENTS. OTHER SURFACE TREATMENTS.

Size: px
Start display at page:

Download "MATERIALS I LECTURE COURSE 8 ANNEALINGS. HARDENING OF STEELS. HARDENABILITY. TEMPERING. THERMOCHEMICAL TREATMENTS. OTHER SURFACE TREATMENTS."

Transcription

1 MATERIALS I LECTURE COURSE 8 ANNEALINGS. HARDENING OF STEELS. HARDENABILITY. TEMPERING. THERMOCHEMICAL TREATMENTS. OTHER SURFACE TREATMENTS.

2 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Pearlite type structures = Ferrite + Fe 3 C 1. Coarse pearlite: lamellar (equilibrium), globular (globulization annealing) HB, A max.=12%, Rm = MPa; higher toughness for globular pearlite 2. Sorbitic pearlite: fine lamellar, obtained through the cooling of austenite max.280 HB, Rm over 800 Mpa Sorbite: oriented fine lamellar structure; obtained through the heating of martensite Rm over 850 MPa, optimum strength / toughness ratio 3. Troostite: very fine lamellar ~ 400 HB, highest strength for pearlite (Rm>900 MPa)

3 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Martensitic structures Martensite = oversaturated solid solution of C in Feα 1. Quenching martensite: white sheets (needles); Tetragonal structure, stressed; highest strength (Rm > 1100 MPa), lowest toughness 2. Tempered martensite: black sheets (needles) Smaller stresses, higher toughness; obtained through the heating of quenching (tempering)

4 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Bainitic structures (intermediate) Bainite = mechanical admixtures of oversaturated of C and carbides that did not reach the Fe 3 C stage 1. Upper bainite: resembling troostite; obtained isothermally at C; ~ 450 HB; 2. Lower bainite: resembling tempered martensite; obtained isothermally at C; ~550 HB

5 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Coarse lamellar pearlite Globular pearlite

6 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Troostite

7 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Martensites Quenching martensite in steel Tempered martensite in steel

8 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Globular pearlite Quenching martensite Troostite + Martensite Sorbite

9 STRUCTURES OBTAINED THROUGH HEAT TREATMENTS Lower bainite Upper bainite

10 ANNEALINGS

11 ANNEALINGS Annealings = HT characterized by slow cooling (most rapid in air) Stress relief annealing: for the relief of thermal stresses that resulted after hot processing (welding, casting etc.) C for steels, 2-6 hours, cooling in oven / sand Recrystallization annealing: for removing the cold hardened state C for steels Homogenization annealing: in order to remove dendritic segregation C for steels, oven cooling; generates overheated structures

12 ANNEALINGS Equilibrium annealing: in order to bring back the structure to the equilibrium state (in the diagram) For hyper-eutectoid steels: soft annealing Temperature: C over A3 / Acem; EXTREMELY SLOW COOLING Normalization annealing: in order to obtain a fine structure Temperature: not more than C over A3 / Acem; air cooling Spheroidize annealing: obtaining of globular pearlite (tougher and more machinable)

13 QUENCHING (HARDENING) Quenching = heating in order to produce the phase transformation ( P A for steels), followed by rapid cooling Steels: temperature with C over A3 (hypo-eutectoid) / A1 (hyper-eutectoid) Each cooling environment provides a cooling intensity - H H = 1 for water at 20 C; H < 1 for oil, Diesel oil,...; H > 1 for water with NaCl, water at 0 C,...

14 QUENCHING (HARDENING)

15 QUENCHING (HARDENING)

16 QUENCHING (HARDENING)

17 QUENCHING (HARDENING) Classical hardening: single environment Hardening temperatures Cooling rates for classical hardening Drawbacks: stresses thermal (between zones with different cross sections) structural (martensite displays the maximum volume)

18 QUENCHING (HARDENING) Special hardening methods: for removing the drawbacks of classical hardening (partially) Time quenching 2 environments: water oil Martempering maintaining for equalizing the temperature Austempering for obtaining a bainitic structure + cryogenic quenching for dimensional stabilization

19 QUENCHING (HARDENING) Case hardening (surface hardening): only at the exterior of parts, that becomes hard and strong, while the interior remains tough High Frequency Quenching: Foucault currents are induced in the outer layer of the part; heating is performed through the Joule effect; The depth of hardened layer can be adjusted through the current frequency and inductor speed. Heating by the means of high frequency currents; 1 inductor; 2 alternating magnetic field; 3 part; 4 generator.

20 HARDENABILITY Hardenability = steel property to be deep hardened; it is determined by the hardening depth depth of hardened layer Hardening capacity hardenability; Hardening capacity = hardness after quenching

21 HARDENABILITY Hardening depth in a cylindrical part; a. cooling rates; b. layers in the cross section after quenching; c. variation of hardness in the cross section.

22 HARDENABILITY Semimartensitic layer = layer that contains 50% martensite (determined by the hardness) Hardening depth: up to the semimartensitic layer Determining method: Jominy end quench test hardness = f(distance from the quenched end) Hardenability curve Band of hardenability Hardenability curve Band of hardenability

23 HARDENABILITY D 0 real critical diameter = largest diameter of a part that is completely hardened in a real quenching environment; D - ideal critical diameter = largest diameter of a part that is completely hardened in an ideal quenching environment (H )

24 TEMPERING Tempering = heat treatment performed after hardening (martensitic structure), in order to obtain a more stable and less brittle structure 1. Low tempering: C Tempered martensite (hard, strong); for hardly wearing loaded parts, tools, etc 2. Medium tempering: C Tempered troostite (high strength and elasticity); for springs; 3. High tempering: C Sorbite; for parts that are loaded in a dynamic regime (gears, shafts, etc.) [ CALIRE + REVENIRE INALTA = IMBUNATATIRE ]

25 THERMOCHEMICAL TREATMENTS Thermochemical treatments (case hardening by diffusion) = surface treatments for introducing of certain chemical elements in the outer layer of parts; the name is given by the element (carburizing, nitriding, silicizing,...). Process in 3 stages : 1. Dissociation of environment obtaining of active atoms that take part to the subsequent processes NH 3 3H 2 + 2N* 2 CO CO 2 + C* 2. Adsorption adhesion of active atoms on the parts surface 3. Diffusion

26 THERMOCHEMICAL TREATMENTS Carburizing For steels with carbon content < 0.2%; Environment: (solid, liquid), gas, plasma; Temperature: C; Layer thickness: mm; Not a final treatment

27 THERMOCHEMICAL TREATMENTS Nitriding: increasing the nitrogen content in the outer layer of parts Only for alloy steels with elements that form stable nitrides (Al, Mo, Cr, V, ); Environment: gas, plasma; Temperature: C; Layer thickness: mm (very hard, > 1000 HV); Final treatment

28 THERMOCHEMICAL TREATMENTS Nitrocarbiding: increasing simultaneously the C and N content in the outer layers of parts Advantages: unalloyed steels can be also treated; lower temperature than for carburizing; possibility of quenching directly after the treatment; higher layer thickness than for nitriding; higher hardness than for carburizing;

29 Other surface treatments - Shot peening - Ecruisare superficiala + schimbarea rugozitatii

30 Other surface treatments - Chemical vapour deposition -

31 Other surface treatments - Physical vapour deposition -

32 Other surface treatments - Ionic implantation -

33 Other surface treatments - Nanostructured layers - ZnO Aplicatii: Optoelectronica Celule solare Fibre optice ultrasensibile Senzori Diode laser UV Varistori SEM images of ZnO nanostructures annealed at different temperatures: (a) 450ºC; (b) 500ºC; (c) 550ºC; (d) 600ºC.

34 Glossary Martensita de calire / revenire = quenching / tempered martensite; Bainita superioara / inferioara = upper / lower bainite; Recoacere de detensionare = stress relief annealing; Recoacere de omogenizare = homogenization annealing; Recoacere de echilibru / înmuiere = equilibrium / soft annealing; Recoacere de globulizare a perlitei = spheroidize annealing; Călire întreruptă = time quenching; Călire în trepte = martempering; Călire izotermă = austempering; Călire criogenică = cryogenic quenching; Călire superficială = case hardening (surface hardening); Călibilitate = hardenability; Capacitate de călire = hardening capacity; Revenire (joasă, medie, înaltă) = (low, medium, high) tempering; Tratament termochimic = thermochemical treatment (diffusion case hardening);

35 Glossary Disocierea mediului = dissociation of environment; Adsorbţie = adsorption; Carburare = carburizing; Nitrurare = nitriding; Carbonitrurare = nitrocarbiding; Improscare cu alice = shot peening; Depunere chimica in vapori = chemical vapour deposition (CVD); Depunere fizica in vapori = physical vapour deposition (PVD); Implantare ionica = ionic implantation;

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability

HEAT TREATMENT. Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability Bulk and Surface Treatments Annealing, Normalizing, Hardening, Tempering Hardenability HEAT TREATMENT With focus on Steels Principles of Heat Treatment of Steels Romesh C Sharma New Age International (P)

More information

ME 216 Engineering Materials II

ME 216 Engineering Materials II ME 216 Engineering Materials II Chapter 12 Heat Treatment (Part II) Mechanical Engineering University of Gaziantep Dr. A. Tolga Bozdana Assistant Professor Hardenability It is the ability of steel to harden

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-4 THERMAL PROCESSING OF METALS-2 CONTINUOUS COOLING TRANSFORMATION (CCT) DIAGRAMS: In industrial heat-treating operations, in most cases a steel is not isothermally

More information

Engineering Materials

Engineering Materials Engineering Materials Heat Treatments of Ferrous Alloys Annealing Processes The term annealing refers to a heat treatment in which a material is exposed to an elevated temperature for an extended time

More information

Heat Treatment of Steels

Heat Treatment of Steels Heat Treatment of Steels Heat Treating is the process of heating and cooling a steel to obtain desired properties. Various types of heat treatment processes are used to change the following properties

More information

Heat Treatment of Steels : Metallurgical Principle

Heat Treatment of Steels : Metallurgical Principle Heat Treatment of Steels : Metallurgical Principle Outlines: Fe ad Fe-Fe 3 C system Phases and Microstructure Fe-Fe 3 C Phase Diaram General Physical and Mechanical Properties of each Microstructure Usanee

More information

HEAT TREATMENT. Chapter 6. Veljko Samardzic. ME-215 Engineering Materials and Processes

HEAT TREATMENT. Chapter 6. Veljko Samardzic. ME-215 Engineering Materials and Processes HEAT TREATMENT Chapter 6 Materials Properties STRUCTURE PERFORMANCE PROCESSING PROPERTIES 6.1 Structure Property Relationships Properties and structure can be manipulated and controlled Interactive relation

More information

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11)

Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Chapter 9 Heat treatment (This chapter covers selective sections in Callister Chap. 9, 10 &11) Study theme outcomes: After studying this chapter, students should or should be able to: - know and understand

More information

Heat Treating Basics-Steels

Heat Treating Basics-Steels Heat Treating Basics-Steels Semih Genculu, P.E. Steel is the most important engineering material as it combines strength, ease of fabrication, and a wide range of properties along with relatively low cost.

More information

EXPERIMENT 6 HEAT TREATMENT OF STEEL

EXPERIMENT 6 HEAT TREATMENT OF STEEL EXPERIMENT 6 HEAT TREATMENT OF STEEL Purpose The purposes of this experiment are to: Investigate the processes of heat treating of steel Study hardness testing and its limits Examine microstructures of

More information

Heat Treatment of Steel Lab Report. Justin Lance 11/16/2011 Engineering 45 Lab Section 3 Troy Topping

Heat Treatment of Steel Lab Report. Justin Lance 11/16/2011 Engineering 45 Lab Section 3 Troy Topping Heat Treatment of Steel Lab Report Justin Lance justalance@gmail.com 11/16/2011 Engineering 45 Lab Section 3 Troy Topping troytopping@gmail.com ABSTRACT We observed how the properties of 4140 steel vary

More information

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening

Precipitation Hardening. Outline. Precipitation Hardening. Precipitation Hardening Outline Dispersion Strengthening Mechanical Properties of Steel Effect of Pearlite Particles impede dislocations. Things that slow down/hinder/impede dislocation movement will increase, y and TS And also

More information

APPLICATIONS OF Fe-C PHASE DIAGRAM

APPLICATIONS OF Fe-C PHASE DIAGRAM APPLICATIONS OF Fe-C PHASE DIAGRAM KEY POINTS OF Fe-C Diagram Phases: Liquid Fe-Tmin=1148C @ 4.3%C 1394 C

More information

Master examination. Metallic Materials

Master examination. Metallic Materials Master examination Metallic Materials 01.03.2016 Name: Matriculation number: Signature: Task Points: Points achieved: 1 13 2 4 3 3 4 6 5 6 6 3 7 4 8 9 9 6 10 9.5 11 8 12 8 13 10.5 14 4 15 6 Sum 100 Points

More information

DAYE JINGCHENG MOULD CO., LTD TOOL STEEL PRODUCT

DAYE JINGCHENG MOULD CO., LTD TOOL STEEL PRODUCT 1.2343 Hot Work Tool Steel Identification Designation by Standards Mat. No. DIN EN AISI 1.2343 X38CrMoV51 X38CrMoV51 H11 Chemical Composition C Si Mn Cr Mo V P S 0.36 0.90 0.30 4.80 1.10 0.25 0.030 0.030

More information

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING Course Guidelines: 1. Introduction to Engineering Materials 2. Bonding and Properties 3. Crystal Structures & Properties

More information

MME 291: Lecture 13. Today s Topics. Heat treatment fundamentals Classification of heat treatment Annealing of steels Normalising of steels

MME 291: Lecture 13. Today s Topics. Heat treatment fundamentals Classification of heat treatment Annealing of steels Normalising of steels MME 291: Lecture 13 Heat Treatment of Steels #1: Annealing and Normalising Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Heat treatment fundamentals Classification of heat treatment

More information

special hot work tool steel CR7V-L

special hot work tool steel CR7V-L special hot work tool steel CR7V-L T h e p r e m i u m s t e e l w i t h m a x i m u m h i g h t e m p e r at u r e w e a r r e s i s ta n c e 2 From the casting of steel to finished die... LONG-STANDING

More information

UDDEHOLM VIDAR 1 ESR

UDDEHOLM VIDAR 1 ESR UDDEHOLM VIDAR 1 ESR This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

PRELIMINARY BROCHURE. Uddeholm Caldie

PRELIMINARY BROCHURE. Uddeholm Caldie PRELIMINARY BROCHURE Uddeholm Caldie UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based

More information

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds. 11-2 11.2 (a) Ferrous alloys are used extensively because: (1) Iron ores exist in abundant quantities. (2) Economical extraction, refining, and fabrication techniques are available. (3) The alloys may

More information

AISI A2 Cold work tool steel

AISI A2 Cold work tool steel T OOL STEEL FACTS AISI A2 Cold work tool steel Great Tooling Starts Here! General AISI A2 is an air- or oil hardening chromiummolybdenum-vanadium alloyed tool steel characterized by: Good machinability

More information

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1

Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Ferrite - BCC Martensite - BCT Fe 3 C (cementite)- orthorhombic Austenite - FCC Chapter 10 Phase Transformations in Metals Tuesday, December 24, 2013 Dr. Mohammad Suliman Abuhaiba, PE 1 Why do we study

More information

QRO 90 SUPREME Hot work tool steel

QRO 90 SUPREME Hot work tool steel T O O L S T E E L F A C T S QRO 90 Hot work tool steel Great Tooling Starts Here! Cover photo: Bo Dahlgren This information is based on our present state of knowledge and is intended to provide general

More information

Lecture 31-36: Questions:

Lecture 31-36: Questions: Lecture 31-36: Heat treatment of steel: T-T-T diagram, Pearlitic, Martensitic & Bainitic transformation, effect of alloy elements on phase diagram & TTT diagram, CCT diagram, Annealing, normalizing, hardening

More information

Surface Hardening. Faculty of Mechanical Engineering

Surface Hardening. Faculty of Mechanical Engineering 10 Surface Hardening Surface Hardening Many engineering must be very hard to resist surface indentation or wear and yet posses adequate toughness to resist impact damage Surface Hardening is a process

More information

J = D C A C B x A x B + D C A C. = x A kg /m 2

J = D C A C B x A x B + D C A C. = x A kg /m 2 1. (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. (a) With vacancy diffusion, atomic

More information

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance.

Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. UDDEHOLM DIEVAR Uddeholm Dievar is a specially developed steel grade by Uddeholm, which provides the best possible performance. The chemical composition and the very latest in production technique make

More information

QRO 90 SUPREME. Hot work tool steel

QRO 90 SUPREME. Hot work tool steel QRO 90 SUPREME Hot work tool steel This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed

More information

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress?

MATERIALS SCIENCE-44 Which point on the stress-strain curve shown gives the ultimate stress? MATERIALS SCIENCE 43 Which of the following statements is FALSE? (A) The surface energy of a liquid tends toward a minimum. (B) The surface energy is the work required to create a unit area of additional

More information

VANADIS 10 SuperClean High performance powder metallurgical cold work tool steel

VANADIS 10 SuperClean High performance powder metallurgical cold work tool steel SuperClean High performance powder metallurgical cold work tool steel Critical tool steel properties for GOOD TOOL PERFORMANCE Correct hardness for the application Very high wear resistance Sufficient

More information

EFFECT OF ACCELERATED SPHEROIDISATION AND LONG ANNEALING OF 100CRMNSI6-4 STEEL ON STRUCTURE AND PROPERTIES AFTER HARDENING

EFFECT OF ACCELERATED SPHEROIDISATION AND LONG ANNEALING OF 100CRMNSI6-4 STEEL ON STRUCTURE AND PROPERTIES AFTER HARDENING EFFECT OF ACCELERATED SPHEROIDISATION AND LONG ANNEALING OF 100CRMNSI6-4 STEEL ON STRUCTURE AND PROPERTIES AFTER HARDENING Daniela Hauserova, Jaromir Dlouhy, Zbysek Novy COMTES FHT a.s., Prumyslova 995,

More information

Types of stainless steel

Types of stainless steel Types of stainless steel Composition (wt%) Applications Types C Ni Cr Mo Ferritic 0.06-0.2-11-30 - Household utensils; Automotive Exhaust Components Heat exchanger Austenitic

More information

Experiment E: Martensitic Transformations

Experiment E: Martensitic Transformations Experiment E: Martensitic Transformations Introduction: The purpose of this experiment is to introduce students to a family of phase transformations which occur by shear rather than diffusion. In metals,

More information

SURFACE VEHICLE INFORMATION REPORT

SURFACE VEHICLE INFORMATION REPORT 400 Commonwealth Drive, Warrendale, PA 15096-0001 SURFACE VEHICLE INFORMATION REPORT Submitted for recognition as an American National Standard J415 Issued 1911-06 Revised 1995-07 Superseding J415 JUN83

More information

1. Dimensions, Tolerance and Related Attributes DIMENSIONS, TOLERANCES AND SURFACE. 2. Surface. Surface Technology.

1. Dimensions, Tolerance and Related Attributes DIMENSIONS, TOLERANCES AND SURFACE. 2. Surface. Surface Technology. DIMENSIONS, TOLERANCES AND SURFACE 1. Dimension, Tolerances and Related Attributes 2. Surfaces 3. Effect of Manufacturing Processes 1. Dimensions, Tolerance and Related Attributes Dimensions a numerical

More information

EFFECT OF MOLYBDENUM CONTENT IN PM STEELS

EFFECT OF MOLYBDENUM CONTENT IN PM STEELS EFFECT OF MOLYBDENUM CONTENT IN PM STEELS Bruce Lindsley and Howard Rutz Hoeganaes Corporation Cinnaminson, NJ 08077, USA ABSTRACT Molybdenum (Mo) is a highly effective alloying element in ferrous powder

More information

MTLS 4L04 Steel Section. Lecture 6

MTLS 4L04 Steel Section. Lecture 6 MTLS 4L04 Steel Section Lecture 6 Tempering of Martensite To get around the problem of the brittleness of the Martensite, Martensite is heat treated at elevated temperatures (200-700 C) to precipitate

More information

Uddeholm Formvar. FORMVAR is a trade mark registered in the European Union

Uddeholm Formvar. FORMVAR is a trade mark registered in the European Union Uddeholm Formvar FORMVAR is a trade mark registered in the European Union UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright

More information

Copyright 1999 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Heat Treating NARRATION (VO): RESISTANCE OF METALS AND ALLOYS.

Copyright 1999 Society of Manufacturing Engineers. FUNDAMENTAL MANUFACTURING PROCESSES Heat Treating NARRATION (VO): RESISTANCE OF METALS AND ALLOYS. FUNDAMENTAL MANUFACTURING PROCESSES Heat Treating SCENE 1. CG: Through Hardening Processes white text centered on black SCENE 2. tape 501, 12:10:03-12:10:20 parts going in for heat treating HARDENING PROCESSES

More information

MME 291: Lecture 15. Surface Hardening of Steels. Today s Topics

MME 291: Lecture 15. Surface Hardening of Steels. Today s Topics MME 291: Lecture 15 Surface Hardening of Steels Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Surface hardening fundamental Carburising Nitriding Cyaniding and carbonitriding Induction

More information

MATERIALIZING VISIONS. Bohler-Uddeholm M42 HIGH SPEED STEEL

MATERIALIZING VISIONS. Bohler-Uddeholm M42 HIGH SPEED STEEL MATERIALIZING VISIONS Bohler-Uddeholm M42 HIGH SPEED STEEL General Cobalt-alloyed, molybdenum high speed steel possessing high hardness, excellent cutting properties, exceptional compressive strength,

More information

MODULUS OF RUPTURE EVALUATION ON P/M COLD WORK TOOL STEEL SUBMITTED TO GAS NITRIDING.

MODULUS OF RUPTURE EVALUATION ON P/M COLD WORK TOOL STEEL SUBMITTED TO GAS NITRIDING. MODULUS OF RUPTURE EVALUATION ON P/M COLD WORK TOOL STEEL SUBMITTED TO GAS NITRIDING. Adayr Bôrro Jr (1,2), Waldemar Alfredo Monteiro (1,2), Jan Vatavuk (1, 2), Sergio G. Cardoso (3), Américo de Almeida

More information

Properties of Carbon Steel Shot

Properties of Carbon Steel Shot Academic Study by Dr. David Kirk Properties of Carbon Steel Shot Dr. David Kirk is a regular contributor to The Shot Peener. Since his retirement, Dr. Kirk has been an Honorary Research Fellow at Coventry

More information

MATERIALIZING VISIONS. Bohler-Uddeholm H13 TOOL STEEL

MATERIALIZING VISIONS. Bohler-Uddeholm H13 TOOL STEEL MATERIALIZING VISIONS Bohler-Uddeholm H13 TOOL STEEL Bohler-Uddeholm H13 General Bohler-Uddeholm H13 is a chromium-molybdenumvanadium alloyed steel which is characterized by: Good resistance to abrasion

More information

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram

The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram Steels: alloys of Iron (Fe) and Carbon (C). Fe-C phase diagram is complex. Will only consider the steel part of the diagram, up to around 7% Carbon. University

More information

Surface treatments fundamental Carburising Nitriding Cyaniding and carbonitriding Induction and flame hardening

Surface treatments fundamental Carburising Nitriding Cyaniding and carbonitriding Induction and flame hardening Surface Treatments t of Steels Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Today s Topics Surface treatments fundamental Cyaniding and carbonitriding Induction and flame hardening Reference: 1.

More information

International Welding Engineer (IWE) Module 2: Materials and Their Behavior During Welding 2.6 Heat Treatment of Base Materials and Welded Joints

International Welding Engineer (IWE) Module 2: Materials and Their Behavior During Welding 2.6 Heat Treatment of Base Materials and Welded Joints International Welding Engineer (IWE) Module 2: Materials and Their Behavior During Welding 2.6 Heat Treatment of Base Materials and Welded Joints by: Kamran Khodaparasti 2.6 Heat Treatment of Base Materials

More information

Surface treatment evaluation of induction hardened and tempered 1045 steel

Surface treatment evaluation of induction hardened and tempered 1045 steel University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2014 Surface treatment evaluation of induction

More information

Chapter 10: Phase Transformations

Chapter 10: Phase Transformations Chapter 10: Phase Transformations ISSUES TO ADDRESS... Transforming one phase into another takes time. Fe C FCC g (Austenite) Eutectoid transformation Fe 3 C (cementite) + a (ferrite) (BCC) How does the

More information

MH 1151-ENGINEERING MATERIALS AND METALLURGY S4 MECHANICAL 1. Define Solid solution. Two metals combined together to form a single structure

MH 1151-ENGINEERING MATERIALS AND METALLURGY S4 MECHANICAL 1. Define Solid solution. Two metals combined together to form a single structure MH 1151-ENGINEERING MATERIALS AND METALLURGY S4 MECHANICAL 1. Define Solid solution. Two metals combined together to form a single structure 2. Name the two kinds of Solid Solutions Substitutional Interstitial

More information

The Concept Of Weldability Of Metals

The Concept Of Weldability Of Metals The Concept Of Weldability Of Metals This chapter presents the concept of weldability of metals and factors affecting the same. Different parameters that are used as a measure of weldability have been

More information

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels

STAINLESS STEELS. Chromium and nickel content in the various groups of stainless steels These steels contain a high percentage of chromium and sometimes other alloys and have been designed to prevent different types of corrosion. There are two kinds of corrosion: dry corrosion (often named

More information

Titanium and titanium alloys. Josef Stráský

Titanium and titanium alloys. Josef Stráský Titanium and titanium alloys Josef Stráský Lecture 3: Technological aspects of Ti alloys Pure Ti metallurgy, properties and applications α+β alloys microstructures, metallurgy, heat treatment Ti-6Al-4V

More information

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I

Module 31. Heat treatment of steel I. Lecture 31. Heat treatment of steel I Module 31 Heat treatment of steel I Lecture 31 Heat treatment of steel I 1 Keywords : Transformation characteristics of eutectoid steel, isothermal diagram, microstructures of pearlite, bainite and martensite,

More information

Lecture 11: Metallic Alloys

Lecture 11: Metallic Alloys Part IB Materials Science & Metallurgy H. K. D. H. Bhadeshia Course A, Metals and Alloys Lecture 11: Metallic Alloys TRIP Steels A phase change can do work; a good example of this is how viruses infect

More information

MATERIALS INFORMATION SERVICE

MATERIALS INFORMATION SERVICE MATERIALS INFORMATION SERVICE The Materials Information Service helps those interested in improving their knowledge of engineering materials and highlights the national network of materials expertise.

More information

EFFECT OF POST SINTERING THERMAL TREATMENTS ON DIMENSIONAL PRECISION AND MECHANICAL PROPERTIES IN SINTER-HARDENING PM STEELS

EFFECT OF POST SINTERING THERMAL TREATMENTS ON DIMENSIONAL PRECISION AND MECHANICAL PROPERTIES IN SINTER-HARDENING PM STEELS EFFECT OF POST SINTERING THERMAL TREATMENTS ON DIMENSIONAL PRECISION AND MECHANICAL PROPERTIES IN SINTER-HARDENING PM STEELS Bruce Lindsley and Thomas Murphy Hoeganaes Corporation Cinnaminson, NJ 08077

More information

Comparison between SKS 3 and SCM 440 Steel Materials for the Location PIN of Welding JIG

Comparison between SKS 3 and SCM 440 Steel Materials for the Location PIN of Welding JIG Comparison between SKS 3 and SCM 440 Steel Materials for the Location PIN of Welding JIG Risman Pandapotan Simarmata 1, Isdaryanto Iskandar 2 and Hadi Sutanto 3(*) (1)(2)(3) Departement of Mechanical Engineering,

More information

RAMAX 2. Prehardened stainless holder steel

RAMAX 2. Prehardened stainless holder steel RAMAX 2 Prehardened stainless holder steel This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be

More information

Challenges in Processing of P/M Chromium Manganese Low-Alloy Steels

Challenges in Processing of P/M Chromium Manganese Low-Alloy Steels Challenges in Processing of P/M Chromium Manganese Low-Alloy Steels Robert J. Causton 1 and Bruce A. Lindsley 2 1 Hoeganaes Corporation, Buzau, Romania 2 Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

More information

C β = W β = = = C β' W γ = = 0.22

C β = W β = = = C β' W γ = = 0.22 9-15 9.13 This problem asks us to determine the phases present and their concentrations at several temperatures, as an alloy of composition 52 wt% Zn-48 wt% Cu is cooled. From Figure 9.19: At 1000 C, a

More information

Edition 9, The latest revised edition of this brochure is the English version, which is always published on our web site

Edition 9, The latest revised edition of this brochure is the English version, which is always published on our web site UDDEHOLM SLEIPNER This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

AISI D2 Cold work tool steel

AISI D2 Cold work tool steel T OOL STEEL FACTS AISI D2 Cold work tool steel Great Tooling Starts Here! This information is based on our present state of knowledge and is intended to provide general notes on our products and their

More information

Ferrous Alloys. Metal Alloys. Ferrous. Non ferrous. Grey iron. Carbon Low Alloy High Alloy. Nodular iron White iron Malleable iron Alloy cast irons

Ferrous Alloys. Metal Alloys. Ferrous. Non ferrous. Grey iron. Carbon Low Alloy High Alloy. Nodular iron White iron Malleable iron Alloy cast irons Metal Alloys Most engineering metallic materials are alloys. Metals are alloyed to enhance their properties, such as strength, hardness or corrosion resistance, and to create new properties, such as shape

More information

Mat E 272 Lecture 19: Cast Irons

Mat E 272 Lecture 19: Cast Irons Mat E 272 Lecture 19: Cast Irons November 8, 2001 Introduction: One reason steels and cast iron alloys find such wide-ranging applications and dominate industrial metal production is because of how they

More information

PRELIMINARY BROCHURE. Uddeholm Vanadis 8 SuperClean

PRELIMINARY BROCHURE. Uddeholm Vanadis 8 SuperClean PRELIMINARY BROCHURE Uddeholm Vanadis 8 SuperClean UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information

More information

UDDEHOLM ORVAR SUPREME

UDDEHOLM ORVAR SUPREME UDDEHOLM ORVAR SUPREME Uddeholm Orvar Supreme can be regarded as an all-round steel used in several application areas. Except for hot work application areas the steel is also used in moulds for plastics

More information

Special Steel Wire Rods for Cold Forging with High Property

Special Steel Wire Rods for Cold Forging with High Property UDC 699. 14-426. 2 : 621. 735 Special Steel Wire Rods for Cold Forging with High Property Kiichiro TSUCHIDA* 1 Yasuhiro SHINBO* 1 Abstract The final uses of special steel bars and wire rods are mainly

More information

Inductive Hardening. W.Lindert

Inductive Hardening. W.Lindert Inductive Hardening W.Lindert Introduction / The Company Sauer-Danfoss is a worldwide leader in the design, manufacture and sale of engineered hydraulic, electric and electronic systems and components,

More information

Seam Welded Air-Hardenable Corrosion Resistant Steel Tubing: Automotive Applications Overview

Seam Welded Air-Hardenable Corrosion Resistant Steel Tubing: Automotive Applications Overview KVA, Inc. / 124 S. Market Place, Suite 200 / Escondido, CA. 92029 U.S.A. (760) 489-5821 phone (760) 489-5823 fax 1-888-410-WELD www.kvastainless.com Seam Welded Air-Hardenable Corrosion Resistant Steel

More information

MSE-226 Engineering Materials

MSE-226 Engineering Materials MSE-226 Engineering Materials Lecture-7 ALLOY STEELS Tool Steels TYPES of FERROUS ALLOYS FERROUS ALLOYS Plain Carbon Steels Alloy Steels Cast Irons - Low carbon Steel - Medium carbon steel - High carbon

More information

STANDARD STEELS STANDARD STEELS 403

STANDARD STEELS STANDARD STEELS 403 STANDARD STEELS 403 STANDARD STEELS Standard Steels Compositions, Applications, and Heat Treatments Steel is the generic term for a large family of iron carbon alloys, which are malleable, within some

More information

Fe-Fe 3 C phase diagram is given on the last page of the exam. Multiple choices (2.5 points each):

Fe-Fe 3 C phase diagram is given on the last page of the exam. Multiple choices (2.5 points each): Materials Science and Engineering Department MSE 200, Exam #3 ID number First letter of your last name: Name: No notes, books, or information stored in calculator memories may be used. Cheating will be

More information

Introduction: Ferrous alloys - Review. Outline. Introduction: Ferrous alloys

Introduction: Ferrous alloys - Review. Outline. Introduction: Ferrous alloys Introduction: Ferrous alloys - Review Outline Introduction - Review - Ferritic SS - Austinitic SS - Matensitic SS - Precipitation Hardenable SS Cast Irons - Gray CI - Ductile CI - White CI - Malleable

More information

Alloys & Their Phase Diagrams. مرجع علمى مهندسى مواد

Alloys & Their Phase Diagrams.  مرجع علمى مهندسى مواد Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Gibbs phase rule

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 India Chapter 9. Applications and Processing of Metals and Alloys

More information

30ChGSA Included in 13 standards (CIS Countries)

30ChGSA Included in 13 standards (CIS Countries) Standards GOST 10702-78 GOST 11268-76 GOST 12132-66 GOST 21729-76 GOST 23270-89 GOST 4543-71 GOST 8731-74 GOST 8733-87 GOST R 54159-10 TU 14-1-1213-75 TU 14-1-1409-75 TU 14-1-4118-76 TU 14-4-385-73 Steel

More information

Chapter 11: Applications and Processing of Metal Alloys

Chapter 11: Applications and Processing of Metal Alloys Chapter 11: Applications and Processing of Metal Alloys ISSUES TO ADDRESS... What are some of the common fabrication techniques for metals? What heat treatment procedures are used to improve the mechanical

More information

UDDEHOLM QRO 90 SUPREME

UDDEHOLM QRO 90 SUPREME UDDEHOLM QRO 90 SUPREME This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty

More information

Heat treatment of long term serviced Cr Mo cast steel

Heat treatment of long term serviced Cr Mo cast steel ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Issue 1/2010 45 50 9/1 Heat treatment of long term

More information

Steel Sheets for Highly Productive Hot Stamping

Steel Sheets for Highly Productive Hot Stamping Steel Sheets for Highly Productive Hot Stamping Sae HAMAMOTO *1, Hiroyuki OMORI *1, Tatsuya ASAI *1, Naoki MIZUTA *2, Noriyuki JIMBO *2, Takayuki YAMANO *2 *1 Sheet Products Development Dept., Research

More information

Heat Treating Distortion and Residual Stresses

Heat Treating Distortion and Residual Stresses Heat Treating Distortion and Residual Stresses Explanation of their Generation Mechanism Using Computer Simulation Kyozo Arimoto Arimotech Ltd. Table of Contents Part 1 Chapter 1 Heat treating distortion

More information

Induction surface hardening of hard coated steels

Induction surface hardening of hard coated steels Induction surface hardening of hard coated steels Abstract The properties of hard coatings deposited using CVD processes are usually excellent. However, high deposition temperatures negatively influence

More information

Spoilt for choice: what grade selection means for fabrication parameters

Spoilt for choice: what grade selection means for fabrication parameters Spoilt for choice: what grade selection means for fabrication parameters Alenka Kosmač Euro Inox European Stainless Steel Association Brussels, Belgium SSN Seminarium 5 th June 2013, Poznan Scope of the

More information

Microstructures of Mild Steel Spring after Heat Treatment.

Microstructures of Mild Steel Spring after Heat Treatment. Microstructures of Mild Steel Spring after Heat Treatment. O.R. Adetunji, Ph.D.*; S.I. Kuye, Ph.D.; and M.J. Alao, B.Eng. Mechanical Engineering Department, College of Engineering, Federal University of

More information

Comparison of Austempering and Quench-and- Tempering Processes for Carburized Automotive Steels

Comparison of Austempering and Quench-and- Tempering Processes for Carburized Automotive Steels University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2013 Comparison of Austempering and Quench-and- Tempering Processes for Carburized Automotive Steels Andrew Clark Universty

More information

ISO INTERNATIONAL STANDARD. Heat-treated steels, alloy steels and free-cutting steels Part 17: Ball and roller bearing steels

ISO INTERNATIONAL STANDARD. Heat-treated steels, alloy steels and free-cutting steels Part 17: Ball and roller bearing steels INTERNATIONAL STANDARD ISO 683-17 Second edition 1999-10-15 Heat-treated steels, alloy steels and free-cutting steels Part 17: Ball and roller bearing steels Aciers pour traitement thermique, aciers alliés

More information

Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium Carbon Steel

Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium Carbon Steel International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 2, Issue 1 (July 2012), PP. 07-13 www.ijerd.com Effect of Heat Treatment on Microstructure and Mechanical Properties

More information

Transactions on Engineering Sciences vol 17, 1997 WIT Press, ISSN

Transactions on Engineering Sciences vol 17, 1997 WIT Press,  ISSN Heat treatment and properties of high performance hot working tool steel M. Rosso", A. Bennani^ * Department of Engineering Materials, Politecnico di Torino, C.so *Duca degli Abruzzi, 24. 10129 Torino.

More information

THE ROLE OF NIOBIUM IN LOW CARBON BAINITIC HSLA STEEL. Klaus Hulka Niobium Products Company GmbH, Düsseldorf, Germany

THE ROLE OF NIOBIUM IN LOW CARBON BAINITIC HSLA STEEL. Klaus Hulka Niobium Products Company GmbH, Düsseldorf, Germany THE ROLE OF NIOBIUM IN LOW CARBON BAINITIC HSLA STEEL Klaus Hulka Niobium Products Company GmbH, Düsseldorf, Germany ABSTRACT With higher strength, weight reduction can be achieved. Besides the required

More information

Two Bainitic Pre-Tempered Steel Grades for Similar Spring Applications: A New Concept. Session Title

Two Bainitic Pre-Tempered Steel Grades for Similar Spring Applications: A New Concept. Session Title Session Title Two Bainitic Pre-Tempered Steel Grades for Similar Spring Applications: A New Concept Presented by: (First and Last name of presenter(s) H O S T E D B Y : CO- H O S T E D B Y : 1 Authors

More information

STUDY OF THE HARDNESS & THE MICROSTRUCTURE OF AISI 1050 MEDIUM CARBON STEEL AFTER HEAT TREATMENT PROCESSES. Table 1

STUDY OF THE HARDNESS & THE MICROSTRUCTURE OF AISI 1050 MEDIUM CARBON STEEL AFTER HEAT TREATMENT PROCESSES. Table 1 STUDY OF THE HARDNESS & THE MICROSTRUCTURE OF AISI 1050 MEDIUM CARBON STEEL AFTER HEAT TREATMENT PROCESSES Sanjeev Kumar Jaiswal Department of Mechanical Engineering, School of Engineering & Technology,

More information

ENGINEERING MATERIALS AND METALLURGY UNIT I TWO MARKS QUESTIONS

ENGINEERING MATERIALS AND METALLURGY UNIT I TWO MARKS QUESTIONS ENGINEERING MATERIALS AND METALLURGY UNIT I TWO MARKS QUESTIONS 1. Define an alloy. 2. What is a solid solution? 3. Differentiate substitutional and interstitial solid solution with examples? 4. What are

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 434 EFFECT OF WALL THICKNESS AND HEAT TREATMENT VARIABLES ON STRUCTURAL PROPERTIE OF AUSTEMPERED DUCTILE IRONS

More information

AUTOMOTIVE AND LARGE BORE ENGINE APPLICATIONS. Piston Rings and Piston Ring Elements Cast Iron Materials

AUTOMOTIVE AND LARGE BORE ENGINE APPLICATIONS. Piston Rings and Piston Ring Elements Cast Iron Materials UTOMOTIVE ND LRGE BORE ENGINE PPLICTIONS Issue date: 03.01 and Piston Ring Elements Cast Iron Materials Designation Reference Grade Hardness KS MED E DIN GOE 12 K 1 47 210 6621-3 unalloyed, non heat-treated

More information

HEAT TREATING - PROCESS OVERVIEW

HEAT TREATING - PROCESS OVERVIEW . I...,.....,. I..( i i G - i Published by the EPRl Center for Materials Fabrication Vol. 2, No. 2, 1985 Reprinted March, 199 Using Induction Heat Treatment to Obtain Special Properties Cost Effectively

More information

Universe of heat treatment. Hardening. Consulting. Contracting. HARD-INOX. For higher demands on wear and corrosion resistance.

Universe of heat treatment. Hardening. Consulting. Contracting. HARD-INOX. For higher demands on wear and corrosion resistance. Universe of heat treatment. Hardening. Consulting. Contracting. HARD-INOX. For higher demands on wear and corrosion resistance. 1 The HARD-INOX program. Hardness OK but corrosion resistance too low? Corrosion

More information

1 Cutting Tool Materials of common use

1 Cutting Tool Materials of common use 1 Cutting Tool Materials of common use Instructional Objectives At the end of this lesson, the students will be able to (i) Identify the needs and cite the chronological development of cutting tool materials.

More information

Carbidic Austempered Ductile Iron (CADI)

Carbidic Austempered Ductile Iron (CADI) 28 November 2000 (Rev. 13 Feb 01) Carbidic Austempered Ductile Iron (CADI) John R. Keough, PE Kathy L. Hayrynen, PhD Applied Process Inc. Technologies Div.- Livonia, Michigan, USA ABSTRACT Carbidic Austempered

More information