Thermal System Design

Size: px
Start display at page:

Download "Thermal System Design"

Transcription

1 Thermal System Design Assignment - 1 Aravind Baskar 3/6/15 ME 5201 Matriculation No: A

2 INTRODUCTION/BACKGROUND Excessive on-chip temperature has become a top concern for high-performance microprocessor design as more devices are integrated on a chip. Thermal constraints are the major driving force for wide adoption of multi/many core architectures. Efficient thermal management is critical for many electronic applications, and is a standard part of the design for components such as power electronics modules, multichip modules (MCM) and systems-on-packages (SOP). Heat sinks serve to transfer the generated heat of an electronic system away from the active and passive electronic components and toward the ambient environment. LITERATURE REVIEW With the increase in heat dissipation from microelectronic devices and the reduction in overall form factors, it became an essential practice to optimize heat-sink designs with least trade-offs in material and manufacturing costs. Thermal Modelling is being done to analyse the scope for improving heat transfer and also for dissipating heat more effectively from the source. Chip-Level Thermal Analysis, Modelling, and Optimization Using Multilayer Green's Function by Baohua Wang describes the thermal analysis of chips. Design and Modeling for 3D ICs and Interposers by Madhavan Swaminathan and Ki Jin Han provides insights on cooling of electronic equipment. PROPOSED SOLUTION The proposed solution involves the design of heat sinks to ensure optimal performance of the microprocessor. The solution is detailed below Heat Sink Heat Source Thermal Interface Material Fig. (a) Overall View of Microprocessor Components Fig. (b) Thermal Components The basic methodology behind the solution involves the following assumptions. Heat losses to the surroundings is negligible. Heat transfer coefficient of the fins is uniform. Material costs is only considered for cost analysis.

3 The cooling system of the microprocessor consists of the following components Heat Source (Microprocessor) Heat Spreader Thermal Interface Material Heat Sink To decide on the lid / heat spreader material, the basic ideology was to select a material that has good thermal characteristics and cost effective. There are basically two options either copper / aluminium. Copper has better thermal characteristics than Aluminium but has certain limitations with its cost and manufacturability. So both options have been considered and results are as follows: Material Thermal Conductivity Cost/Kg Density (Wm -1 K -1 ) ($) (kg/m) Copper Aluminium To decide on the thermal interface material, the basic ideology was to select a material that has good thermal characteristics and cost effective. There are many commercially available TIM, selecting the effective TIM is based on the application. The TIM for the above application is thermal gels (GEL 8010/GEL30 from Parker Chromerics) as the thickness needs to be minimum for this application. Fig. (c) Thermal Interface Materials For the heat sink, the size, material and cost play a pivotal role in selection of the best design. The basic purpose of heat sink is to maximise the heat transfer and also maintain the optimal performance of the electronic equipment. For air cooling minimal no. of parts are used whereas in liquid cooling it involves a significant increase in the no. of parts.

4 Initially the air cooling option has been chosen to test whether the current system performance can be achieved. Natural convection cannot maintain the required temperature and has been rejected from the scope. Forced air convection has been taken as one of the methods. This method involves the selection of proper design of the heat sink and also the optimal fan performance. tf Hf b Wf Fig. (d) Heat sink Model Parameter Case Case Case Length of Fin, Lf 50mm 50mm 50mm Height of Fin, Hf 50mm 65mm 80mm Width of Heat Sink, Wf 80mm 80mm 80mm Base thickness, b 5mm 5mm 5mm Thickness of fin, tf 1.5mm 1.5mm 1.5mm Pitch, s 0.51mm 0.51mm 0.51mm No. of Fins, N Thermal Resistance, Rf C/W C/W C/W METHODOLOGY: Thermal Resistance Model: Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. Equivalent thermal resistance model of the problem is as follows: Fig. (e) Thermal Resistance Model

5 DISCUSSIONS: CASE : For qf = 0.93m 3 min -1, Aflow = 80*50*10-6 = 0.004m 2 V = qf/aflow = 3.875ms -1 Re = VL/ν= 3.875*0.05/16*10-6 = For flat plate, Nu = 0.664*(Re) 0.5 (Pr) 0.33 = Nu=hL/k, h=34.65w/m 2 K Af=40*(2*(50*45) +1.5*45+2*(1.5*45))*10-6 =0.188m 2 Ab=0.5128*50*39=0.01m 2 Atot= Af + Ab =0.198m 2 Rf = 1/hAtot=0.152 C/W Rtot=Rf+Rfb+Rb+Rtim Rfb=tfb/KfbAfb = 5*10-3 /(400*80*50*10-6 )=0.003 C/W for Cu and C/W for Al Rb =tb/kbab =5*10-3 /(400*80*50*10-6 )= =0.003 C/W for Cu and C/W for Al Rtim=ttim/ktimAtim =0.05*10-3 /(3*80*50*10-6 )= C/W Rtot=0.162 C/W for Cu & C/W for Al Q=T/Rtot = 500 = Ts-Tamb /Rtot TS = 111 C for Cu < 125 C & C for Al < 125 C Within Limit and acceptable Fin efficiency = tanh(ml)/ml=93% for Cu & 87% for Al Fin Effectiveness = 70% for Cu & 90% for Al Total Volume = 0.175*10-3 m 3 Total Raw Material Cost = Cost per kg * Volume * Density =5.9*0.175*10-3 *8900 =$ 9.18 for Cu & $ 2.7 for Al

6 CASE : For qf = 0.93m 3 min -1, Aflow = 80*50*10-6 = 0.004m 2 V = qf/aflow = 3.875ms -1 Re = VL/ν= 3.875*0.065/16*10-6 = For flat plate, Nu = 0.664*(Re) 0.5 (Pr) 0.33 = Nu=hL/k, h=30.39w/m 2 K Af=40*(2*(50*60) +1.5*50+2*(1.5*60))*10-6 =0.250m 2 Ab=0.5128*50*39=0.01m 2 Atot= Af + Ab =0.252m 2 Rf = 1/hAtot=0.130 C/W Rtot=Rf+Rfb+Rb+Rtim Rfb=tfb/KfbAfb = 5*10-3 /(400*80*50*10-6 )=0.003 C/W for Cu and C/W for Al Rb =tb/kbab =5*10-3 /(400*80*50*10-6 )= =0.003 C/W for Cu and C/W for Al Rtim=ttim/ktimAtim =0.05*10-3 /(3*80*50*10-6 )= C/W Rtot=0.14 C/W for Cu & C/W for Al Q=T/Rtot = 500 = Ts-Tamb /Rtot TS = 100 C for Cu < 125 C & C for Al < 125 C Fin Efficiency = tanh(ml)/(ml) = 89% for Cu & 81% for Al Fin Effectiveness = 83% for Cu & 105% for Al Within Limit and acceptable Total Volume = 0.22*10-3 m 3 Total Raw Material Cost = Cost per kg * Volume * Density =5.9*0.19*10-3 *8900 =$ for Cu and $ 3 for Al CASE : For qf = 0.93m 3 min -1, Aflow = 80*50*10-6 = 0.004m 2 V = qf/aflow = 3.875ms -1 Re = VL/ν= 3.875*0.080/16*10-6 = 19375

7 For flat plate, Nu = 0.664*(Re) 0.5 (Pr) 0.33 = Nu=hL/k, h=27.4w/m 2 K Af=40*(2*(50*75) +1.5*50+2*(1.5*75))*10-6 =0.313m 2 Ab=0.5128*50*39=0.01m 2 Atot= Af + Ab =0.32m 2 Rf = 1/hAtot=0.11 C/W Rtot=Rf+Rfb+Rb+Rtim Rfb=tfb/KfbAfb = 5*10-3 /(400*80*50*10-6 )=0.003 C/W for Cu and C/W for Al Rb =tb/kbab =5*10-3 /(400*80*50*10-6 )= =0.003 C/W for Cu and C/W for Al Rtim=ttim/ktimAtim =0.05*10-3 /(3*80*50*10-6 )= C/W Rtot=0.12 C/W for Cu & C/W for Al Q=T/Rtot = 500 = Ts-Tamb /Rtot TS = 90 C for Cu < 125 C & C for Al < 125 C Within Limit and acceptable Fin Efficiency = tanh(ml)/(ml) = 86% for Cu & 76% for Al Fin Effectiveness = 94% for Cu & 116% for Al Total Volume = 0.25*10-3 m 3 Total Raw Material Cost = Cost per kg * Volume * Density =5.9*0.25*10-3 *8900 =$ for Cu and $ 4 for Al FAN SELECTION: 3115FS (80 X 38L) is chosen as the fan for providing the required air flow and the power consumption is around 10W. CONCLUSION: Based on the of design cases it is found that the design with 65 mm fin height is the best option. Aluminium is chosen as the material as it has good thermal properties and better cost effectiveness. The use of heat pipe will further enhance the heat transfer and is proposed as the alternative in case of higher heat dissipation requirements.

8 REFERENCES: 1. Advanced Materials for Thermal Management of Electronic Packaging by Xingcun Colin Tong ISBN Fundamentals of Microsystem Packaging by Prof. Rao R. Tummala Georgia Institute of Technology Tata McGraw-Hill E-resource Manufacturer of fans Manufacturer of thermal interface materials Chip-Level Thermal Analysis, Modelling, and Optimization Using Multilayer Green's Function by Baohua Wang. 7. Design and Modeling for 3D ICs and Interposers by Madhavan Swaminathan and Ki Jin Han 8. Energy reduction and performance maximization through improved cooling by David Copeland Oracle 9. Analytical Forced Convection Modeling of Plate Fin Heat Sinks by P. Teertstra, M.M. Yovanovich and J.R. Culham 10. OPTIMUM DESIGN AND SELECTION OF HEAT SINKS by Seri Lee of Aavid Engineering Inc. 11. CPU Thermal Management from AMD 12.

Fluid Flow and Heat Transfer Analysis in AaParallel Plate Heat Sink Using a Commercial CFD Software

Fluid Flow and Heat Transfer Analysis in AaParallel Plate Heat Sink Using a Commercial CFD Software International Journal of Pure and Applied Physics ISSN 0973-1776 Volume 4, Number 2 (2008), pp. 97 104 Research India Publications http://www.ripublication.com/ijpap.htm Fluid Flow and Heat Transfer Analysis

More information

Abstract. 1. Introduction

Abstract. 1. Introduction CFD Analysis of Splayed Pin Fin Heat Sink for Electronic Cooling Agnihothra Sarma O 1, A Ramakrishna 2 PG Student 1, Professor 2 Department of Mechanical Engineering, BVC Engineering College, Odalarevu

More information

Heat Optimisation of Processor Cooling by Varying casing Material

Heat Optimisation of Processor Cooling by Varying casing Material e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 702-706(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 4, April ISSN

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 4, April ISSN Analysis of Hyoid Structured And Perforated Pinfin Heat Sink In Inline And Staggered Flow T.Therisa 1,B.Srinivas 2, A.Ramakrishna 3 1 M.Tech Scholar, Dept. of Mechanical Engineering, B.V.C. Engineering

More information

ACTIVE COOLING METHOD FOR CHIP-ON-BOARD LEDS

ACTIVE COOLING METHOD FOR CHIP-ON-BOARD LEDS U.P.B. Sci. Bull., Series C, Vol. 80, Iss. 2, 2018 ISSN 2286-3540 ACTIVE COOLING METHOD FOR CHIP-ON-BOARD LEDS Niculina BĂDĂLAN (DRĂGHICI) 1, Paul SVASTA 2, Cristina MARGHESCU 3 LEDs are the most efficient

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 12, December -2017 e-issn (O): 2348-4470 p-issn (P): 2348-6406 Performance

More information

Electronics Cooling Products

Electronics Cooling Products Advanced Cooling Technologies, Inc. Electronics Cooling Products Military Electronics Power Electronics Industrial Electronics Products Services Technologies Electronics Cooling Products Heat Pipe Assemblies

More information

Cooligy. The Heat Problem. Why Keep CPUs Cool? Active Micro-Channel Cooling. Peak Power Density (Watts/cm 2 ) Total Power (Watts)

Cooligy. The Heat Problem. Why Keep CPUs Cool? Active Micro-Channel Cooling. Peak Power Density (Watts/cm 2 ) Total Power (Watts) Active MicroChannel Cooling The Heat Problem 140 120 100 80 60 40 20 0 486 Total Power (Watts) RISC Pentium Pentium 4 Pentium III Next Generation 600 400 300 200 100 Why Keep CPUs Cool? Greater Performance

More information

Thermal Management and Packaging Challenges of High Power Devices

Thermal Management and Packaging Challenges of High Power Devices Volume 1 Issue 4 MAY 2007 The newsletter for the thermal management of electronics 1 In this issue: Future Cooling FUTURE COOLING Thermal Management and Packaging Challenges of High Power Devices 5 8 11

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 13 CHAPTER 2 LITERATURE REVIEW 2.1 INTRODUCTION The performance of heat sinks has been the focus of many investigations in recent years and the subject has been treated analytically, numerically and experimentally.

More information

Heatsink Optimization Nathan Blattau

Heatsink Optimization Nathan Blattau Heatsink Optimization Nathan Blattau Introduction Optimal design of a heatsink, meeting program targets for cost, weight, size, and performance, is one of the more challenging activities within most electronics

More information

Thermal Performance of Thermoelectric Cooler (TEC) Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption

Thermal Performance of Thermoelectric Cooler (TEC) Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption Thermal Performance of Thermoelectric Cooler () Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption Masami Ikeda, Toshiaki Nakamura, Yuichi Kimura, Hajime Noda The

More information

Download this article in.pdf format This file type includes high resolution graphics and schematics when applicable.

Download this article in.pdf format This file type includes high resolution graphics and schematics when applicable. 1 of 5 7/15/2015 3:06 PM print close Electronic Design Terry Luxmore, Kent Roff and Leon Lu, CTS Corp. Wed, 2015-06-17 15:02 Lighting products based on light-emitting diodes (LEDs) are gaining a stronger

More information

CHAPTER-1 INTRODUCTION

CHAPTER-1 INTRODUCTION CHAPTER-1 INTRODUCTION 1.1 COOLING OF ELECTRONIC EQUIPMENTS: In general, the sole objective of improving the cooling of electronic systems is to increase cooling capacity. The failure rate of electronic

More information

ATS WHITE PAPER. Experimental Study on a Hybrid Liquid/Air Cooling System

ATS WHITE PAPER. Experimental Study on a Hybrid Liquid/Air Cooling System ATS WHITE PAPER Experimental Study on a Hybrid Liquid/Air Cooling System Volume 1 Issue 6 JULY 2007 The newsletter for the thermal management of electronics FUTURE COOLING In this issue: 1 Future Cooling

More information

THERMOELECTRIC EFFECTS OF SIZE OF MICROCHANNELS ON AN INTERNALLY COOLED LI-ION BATTERY CELL

THERMOELECTRIC EFFECTS OF SIZE OF MICROCHANNELS ON AN INTERNALLY COOLED LI-ION BATTERY CELL Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition IMECE2016 November 11-17, 2016, Phoenix, Arizona, USA IMECE2016-65729 THERMOELECTRIC EFFECTS OF SIZE OF MICROCHANNELS

More information

Performance Improvement on Water-cooled Cold-Plate

Performance Improvement on Water-cooled Cold-Plate Proceedings of the 4th WSEAS International Conference on Heat and Mass Transfer, Gold Coast, Queensland, Australia, January 17-19, 2007 104 Performance Improvement on Water-cooled Cold-Plate SHYAN-FU CHOU,

More information

Study of High Power COB LED Modules with Respect to Topology of Chips

Study of High Power COB LED Modules with Respect to Topology of Chips Study of High Power COB LED Modules with Respect to Topology of Chips Nikolay Vakrilov 1), Anna Andonova 1), and Nadejda Kafadarova 2) 1) FEET, Technical University of Sofia, Sofia, Bulgaria 2) Faculty

More information

Advanced Materials for Thermal Management of Electronic Packaging

Advanced Materials for Thermal Management of Electronic Packaging Xingcun Colin Tong Advanced Materials for Thermal Management of Electronic Packaging Sprin ger Contents 1 Thermal Management Fundamentals and Design Guides in Electronic Packaging 1 Rationale of Thermal

More information

Figure 1: Uncovered and covered PVT collectors

Figure 1: Uncovered and covered PVT collectors Low energy cooling of buildings with radiative cooling using hybrid PVT collectors Ursula Eicker, Antoine Dalibard, Simon Büttgenbach, Sebastian Fiedler, Jan Cremers University of Applied Sciences HFT

More information

Characterization of Mixed Metals Swaged Heat Sinks for Concentrated Heat Source

Characterization of Mixed Metals Swaged Heat Sinks for Concentrated Heat Source Proceedings of InterPACK 03 : International Electronic Packaging Technical Conference and Exhibition July 6 11, 2003 - Maui, Hawaii, UA Paper Number: InterPack2003-35315 Characterization of Mixed Metals

More information

Calculating interface resistance

Calculating interface resistance Page 1 of 9 Calculating interface resistance M. M. Yovanovich, J. R. Culham and P. Teertstra, Microelectronics Heat Transfer Laboratory Department of Mechanical Engineering University of Waterloo Introduction

More information

Opportunities in the Mechanical Parts of the System. Dr. Thomas Kenny DARPA/MTO

Opportunities in the Mechanical Parts of the System. Dr. Thomas Kenny DARPA/MTO Opportunities in the Mechanical Parts of the System Dr. Thomas Kenny DARPA/MTO Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated

More information

Thermal Analysis of Aluminum-Acetone Flat Plate Heat Pipe Application in Heat Dissipation of High Power LEDs

Thermal Analysis of Aluminum-Acetone Flat Plate Heat Pipe Application in Heat Dissipation of High Power LEDs 2015 4th International Conference on Informatics, Environment, Energy and Applications Volume 82 of IPCBEE (2015) DOI: 10.7763/IPCBEE. 2015.V82. 8 Thermal Analysis of Aluminum-Acetone Flat Plate Heat Pipe

More information

Heat Dissipation Capability of a Package-on- Package Embedded Wafer-Level Package

Heat Dissipation Capability of a Package-on- Package Embedded Wafer-Level Package 1 Heat Dissipation Capability of a Package-on- Package Embedded Wafer-Level Package Yong Han, Boon Long Lau, Boo Yang Jung, Xiaowu Zhang, Senior Member, IEEE Abstract As the embedded wafer-level packaging

More information

Experimental Study of Air-Cooled Parallel Plate Fin Heat Sinks with and without Circular Pin Fins between the Plate Fins

Experimental Study of Air-Cooled Parallel Plate Fin Heat Sinks with and without Circular Pin Fins between the Plate Fins Journal of Applied Fluid Mechanics, Vol. 8, No. 3, pp. 515-520, 2015. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. Experimental Study of Air-Cooled Parallel Plate Fin Heat Sinks

More information

EXPERIMENTAL STUDY OF HIGH HEAT REMOVAL BY ALUMINUM PIN FIN HEAT SINK USING MULTI-JET AIR IMPINGEMENT

EXPERIMENTAL STUDY OF HIGH HEAT REMOVAL BY ALUMINUM PIN FIN HEAT SINK USING MULTI-JET AIR IMPINGEMENT International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN(P): 2249-6890; ISSN(E): 2249-8001 Vol. 4, Issue 5, Oct 2014, 13-20 TJPRC Pvt. Ltd. EXPERIMENTAL STUDY

More information

COOLING SOURCE - THE DIFFERENCE

COOLING SOURCE - THE DIFFERENCE COOLING SOURCE - THE DIFFERENCE MISSION STATEMENT Cooling Source aims to deliver the highest value of services and products in a timely manner to our customers as the premier thermal solutions manufacturer,

More information

Optimization of Heat Sink Embedded with Heat Pipes Design Parameters using Design of Experiments Technique by Taguchi Method

Optimization of Heat Sink Embedded with Heat Pipes Design Parameters using Design of Experiments Technique by Taguchi Method Optimization of Heat Sink Embedded with Heat Pipes Design Parameters using Design of Experiments Technique by Taguchi Method Dr. Prabhu Thangavel Department of Mechanical Engineering PSG College of Technology

More information

Research Article Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes

Research Article Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip Light-Emitting Diodes e Scientific World Journal, Article ID 563805, 7 pages http://dx.doi.org/10.1155/14/563805 Research Article Experimental Study on Active Cooling Systems Used for Thermal Management of High-Power Multichip

More information

Closed Loop Liquid Cooling for High Power Electronics

Closed Loop Liquid Cooling for High Power Electronics Volume 1 Issue 9 October 2007 The newsletter for the thermal management of electronics 1 In this issue: Future Cooling FUTURE COOLING Closed Loop Liquid Cooling for High Power Electronics 6 Thermal Minutes

More information

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment

AURANGABADKAR. Table 1. Table showing HTC for different notches at base temp of 60 0 C. Table 2: Comparison of HTC by CFD and HTC by experiment HEAT TRANSFER ANALYSIS AND OPTIMIZATION OF FINS BY VARIATION IN GEOMETRY 1 MAYANK JAIN, 2 MAHENDRA SANKHALA, 3 KANHAIYA PATIDAR, 4 LOKESH AURANGABADKAR 1,2,3 Student, Medicaps University, Indore (M.P.)

More information

Thermally Functionalized Structural Materials for Consumer Devices Aaron Vodnick

Thermally Functionalized Structural Materials for Consumer Devices Aaron Vodnick Thermally Functionalized Structural Materials for Consumer Devices Aaron Vodnick IMAPS NE May 2015 Overview Our focus is a material to more effectively dissipate heat TIMs Chip Substrate Heat Sink Heat

More information

Cu electroplating in advanced packaging

Cu electroplating in advanced packaging Cu electroplating in advanced packaging March 12 2019 Richard Hollman PhD Principal Process Engineer Internal Use Only Advancements in package technology The role of electroplating Examples: 4 challenging

More information

Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink

Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink Experimental Research on the Heat Transfer and Flow Performance of a Composite Heat Sink Yu Xiaoling, Wang Qianlong, Feng Quanke School of Energy and Power Engineering, Xi an Jiaotong University, Xi an

More information

STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER

STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER Journal of Engineering Science and Technology Vol. 10, No.12 (2015) 1575-1588 School of Engineering, Taylor s University STUDY ON THE OPTIMIZATION OF IGBT THERMAL MANAGEMENT FOR PTC HEATER J. W. JEONG,

More information

Multiple-Layer Heat Dissipation Module for LED Streetlamps

Multiple-Layer Heat Dissipation Module for LED Streetlamps Journal of Applied Science and Engineering, Vol. 15, No. 2, pp. 97 104 (2012) 97 Multiple-Layer Heat Dissipation Module for LED Streetlamps Shung-Wen Kang*, Kun-Cheng Chien and Wei-Chung Lin Department

More information

System Cooling of Outdoor Wi-Fi Antenna

System Cooling of Outdoor Wi-Fi Antenna System Cooling of Outdoor Wi-Fi Antenna Robert Raos, Solectron Corporation MEPTEC Thermal Symposium February 16, 2005 Topics Requirements and Constraints Cooling Methods and Trade off Analysis System Cooling

More information

# 31. Mounting Considerations for High Power Laser Diodes

# 31. Mounting Considerations for High Power Laser Diodes # 31 Mounting Considerations for High Power Laser Diodes Mounting Considerations for High Power Laser Diodes By: Patrick Gale and Andrew Shull Introduction As the optical power of laser diodes increases

More information

Closed Loop Liquid Cooling for High Power Electronics

Closed Loop Liquid Cooling for High Power Electronics VOLUME 1 ISSUE 9 OCTOBER 2007 THE NEWSLETTER FOR THE THERMAL MANAGEMENT OF ELECTRONICS 1 In this issue: Future Cooling FUTURE COOLING Closed Loop Liquid Cooling for High Power Electronics 6 Thermal Minutes

More information

Thermal Management of Electronics Devices with PCMs filled Pin-fin Heat Sinks

Thermal Management of Electronics Devices with PCMs filled Pin-fin Heat Sinks Thermal Management of Electronics Devices with PCMs filled Pin-fin Heat Sinks 35 TH HEXAG MEETING, 15 MAY 2018 THE BEEHIVE, NEWCASTLE UNIVERSITY Adeel Arshad adeel.arshad@nottingham.ac.uk Supervisors:

More information

nc. Junction to ambient thermal resistance, (RqJA), was also measured with four different heat sinks. To properly evaluate the effect of the heat sink

nc. Junction to ambient thermal resistance, (RqJA), was also measured with four different heat sinks. To properly evaluate the effect of the heat sink nc. Thermal Measurement Report DATE: 7/10/1998 Revised 7/31/98 Package Description: Package: 480 37.5x37.5 mm TBGA 29 x 29 Array Case: 1152-01 Frame: ASAT Drawing Nbr. E04480002-0-50 (DCDA37480-M014-001)

More information

The Future of Lighting Fixture Design LED Thermal Management

The Future of Lighting Fixture Design LED Thermal Management Welcome to The Future of Lighting Fixture Design LED Thermal Management Cavendish Conference Centre, London 29.5.2012 30.5.2012 Dr Song Lin 30. May 2012 Copyright 2012 FrigoDynamics 1 Abstract The majority

More information

Spray cooling of IGBT electronic power modules

Spray cooling of IGBT electronic power modules Thermal Challenges in Next Generation Electronic Systems, Joshi & Garimella (eds) 2002 Millpress, Rotterdam, ISBN 90-77017-03-8 G. Mitic, W. Kiffe, G. Lefranc, S. Ramminger Siemens AG, Corporate Technology

More information

Thermal Management

Thermal Management your REACH OUT TO US Thermal Management www.richardsonrfpd.com THERMAL MANAGEMENT Richardson RFPD offers a wide range of thermal management products and services from Wakefield-Vette for applications utilizing

More information

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT

Ceramic Microchannel Devices for Thermal Management. C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT Ceramic Microchannel Devices for Thermal Management C. Lewinsohn, J. Fellows, and H. Anderson Ceramatec, Inc. Salt Lake City, UT The Right Size for The Right Physics centi milli micro 2 Multiscale Structure

More information

Thermal Analysis of a Mobile Hot Cell Cask

Thermal Analysis of a Mobile Hot Cell Cask Thermal Analysis of a Mobile Hot Cell Cask Jay Kalinani 1, Arvind Kumar R 2 P.G. Student, Department of Physics, MS Ramaiah University of Applied Sciences, Bangalore, Karnataka, India 1 U.G. Student, Department

More information

Aluminum Silicon Carbide (AlSiC) for Advanced Microelectronic Packages

Aluminum Silicon Carbide (AlSiC) for Advanced Microelectronic Packages Aluminum Silicon Carbide (AlSiC) for Advanced Microelectronic Packages Mark Occhionero, Richard Adams, Kevin Fennessy, and Robert A. Hay Ceramics Process Systems, Corp. Chartley, MA 02712 Abstract Aluminum

More information

Thermal Management Roadmap Avram Bar-Cohen Department of Mechanical Engineering University of Maryland

Thermal Management Roadmap Avram Bar-Cohen Department of Mechanical Engineering University of Maryland Thermal Management Roadmap Avram Bar-Cohen Department of Mechanical Engineering University of Maryland UEF THERMES 2002 Santa Fe, NM January 13-17, 2002 Electronic Industry Business Trends Packaging driven

More information

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer

Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Electrical and Fluidic Microbumps and Interconnects for 3D-IC and Silicon Interposer Li Zheng, Student Member, IEEE, and Muhannad S. Bakir, Senior Member, IEEE Georgia Institute of Technology Atlanta,

More information

SynJet Augmented Cooling for Cloud Computing. Raghav Mahalingam

SynJet Augmented Cooling for Cloud Computing. Raghav Mahalingam SynJet Augmented Cooling for Cloud Computing Raghav Mahalingam The Evolution of Computing Cloud computers Client computers Computing systems are moving in two opposing directions Cloud computing that handles

More information

HEAT TRANSFER STUDY OF 3-D PRINTED AIR-COOLED HEAT SINKS

HEAT TRANSFER STUDY OF 3-D PRINTED AIR-COOLED HEAT SINKS HEAT TRANSFER STUDY OF 3-D PRINTED AIR-COOLED HEAT SINKS Y.S. See* and K.C. Leong *Author for correspondence Singapore Centre for 3D Printing School of Mechanical and Aerospace Engineering, Nanyang Technological

More information

Design Considerations for Flat Plate Solar Water Heater System

Design Considerations for Flat Plate Solar Water Heater System Design Considerations for Flat Plate Solar Water Heater System 1* P. P.Patil, 2 Dr.D.S.Deshmukh. 1* Assi. Prof., Mech. Engg. Department, SGDCOE Jalgaon.MS India 2 Professor, Mech. Engg. Department, SSBT

More information

USING INTEGRATED PLANAR THERMOSYPHON PCBs TO ENHANCE COOLING OF HIGH BRIGHTNESS LEDs

USING INTEGRATED PLANAR THERMOSYPHON PCBs TO ENHANCE COOLING OF HIGH BRIGHTNESS LEDs USING INTEGRATED PLANAR THERMOSYPHON PCBs TO ENHANCE COOLING OF HIGH BRIGHTNESS LEDs High power LED lighting systems bring with them a lot of promise and numerous challenges. The advantages of LED lamps

More information

5. Packaging Technologies Trends

5. Packaging Technologies Trends 5. Packaging Technologies Trends Electronic products and microsystems continue to find new applications in personal, healthcare, home, automotive, environmental and security systems. Advancements in packaging

More information

Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System

Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System Processor Performance, Packaging and Reliability Utilizing a Phase Change Metallic Alloy Thermal Interface System Chris G. Macris, Thomas R. Sanderson, Robert G. Ebel, Christopher B. Leyerle Enerdyne Solutions,

More information

Maximization of the heat sink performance used in the arm solar converter

Maximization of the heat sink performance used in the arm solar converter Maximization of the heat sink performance used in the arm solar converter Fadwa HARAKA 1, Ahmed EL OUATOUATI 1, Mourad TAHA JANAN 1. 1 Laboratoire de Mécaniques Procédés et Process Industriels, Université

More information

Thermal analysis and optimization of heat sink

Thermal analysis and optimization of heat sink IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 17-21 www.iosrjournals.org Shashidhar N S 1, Balaji D Tandle 2 1 (Department of Mechanical, Sr. Application

More information

CFD ANALYSIS OF HEAT SINK FOR PCM

CFD ANALYSIS OF HEAT SINK FOR PCM Vol-2 Issue-6 2016 IJARIIE-ISSN(O)-2395-4396 CFD ANALYSIS OF HEAT SINK FOR PCM Balamurali.S 1, Arunkumar.K 2 1 Professor, Mechanical engineering, Vidyaa Vikas College of Engineering and Technology, Tamilnadu,

More information

Comments: Select "Approximate Analysis" Diagnostic results from source areas are as follows:

Comments: Select Approximate Analysis Diagnostic results from source areas are as follows: FIN TEST PROBLEMS The non-proprietary test problems that have been used to validate fin analysis in INSTED are discussed in this section. You might need to consult the original sources of the various test

More information

Thermal Management for FPGAs

Thermal Management for FPGAs Thermal Management for FPGAs February 2007, v1.1 Application Note 358 Introduction As IC process geometries shrink and FPGA densities increase, managing power becomes increasingly difficult. The dilemma

More information

CFD Modelling and Analysis of Different Plate Heat Exchangers

CFD Modelling and Analysis of Different Plate Heat Exchangers CFD Modelling and Analysis of Different Plate Heat Exchangers Ahmed Y Taha Al-Zubaydi a *, Guang Hong b and W. John Dartnall c Faculty of Engineering and Information Technology, UTS, Sydney, Australia

More information

ON THE HEAT TRANSFER CHARACTERISTICS OF HIGHLY COMPACT HEAT SINKS

ON THE HEAT TRANSFER CHARACTERISTICS OF HIGHLY COMPACT HEAT SINKS Keynote presented at the 8 th International Conference on Nanochannels, Microchannels and Minichannels, August 1-5, 2010, Montreal, Canada FEDSM-ICNMM2010-30179 ON THE HEAT TRANSFER CHARACTERISTICS OF

More information

Optimal design of a beam stop for Indus-2 using finite element heat transfer studies

Optimal design of a beam stop for Indus-2 using finite element heat transfer studies Sādhan ā Vol. 26, Part 6, December 2001, pp. 591 602. Printed in India Optimal design of a beam stop for Indus-2 using finite element heat transfer studies A K SINHA, KJSSAWHNEY andrvnandedkar Synchrotron

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 05 Issue: 02 Feb p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 05 Issue: 02 Feb p-issn: Investigation of Heat Insulation Performance of Aluminium Honeycomb Sandwich Panel With and Without Material for and Shape with Different ness Mangesh M. Kakade 1, N. C. Ghuge 2, V. S. Daund 3 1M.E. Student,

More information

Embedded Passives..con0nued

Embedded Passives..con0nued Embedded Passives..con0nued Why Embedded Passives? Improves the packaging efficiency System-on-Package (SOP); SLIM integration Reducing size Eliminating substrate assembly Minimizing solder joint failure

More information

Photovoltaic Module Performance Analysis of Aluminum and Zinc Thin Metal Sheet Attached With Direct Current Brushless Fans Cooling System

Photovoltaic Module Performance Analysis of Aluminum and Zinc Thin Metal Sheet Attached With Direct Current Brushless Fans Cooling System Photovoltaic Module Performance Analysis of Aluminum and Zinc Thin Metal Sheet Attached With Direct Current Brushless Fans Cooling System M.Irwanto 1,2, W.Z.Leow 2, Y.M.Irwan,3, A.R.Amelia 2 and I.Safwati

More information

System-in-Package Research within the IeMRC

System-in-Package Research within the IeMRC LANCASTER U N I V E R S I T Y Centre for Microsystems Engineering Faculty of Applied Sciences System-in-Package Research within the IeMRC Prof. Andrew Richardson (Lancaster University) Prof. Chris Bailey

More information

Experimental Analysis of Inclined orientation Plate Fin Heat Sinks

Experimental Analysis of Inclined orientation Plate Fin Heat Sinks e-issn 2455 1392 Volume 2 Issue 5, May 216 pp. 35 31 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Experimental Analysis of Inclined orientation Plate Fin Heat Sinks D.D.Palande 1, Dr.

More information

Thermal Management. Innovative Solutions Provider for cooling Power Electronics applications

Thermal Management. Innovative Solutions Provider for cooling Power Electronics applications Thermal Management Innovative Solutions Provider for cooling Power Electronics applications Manufacturing plant Thermal and hydraulic design capability FERRAZ-SHAWMUT Thermal Management has been located

More information

Key words: microprocessor integrated heat sink Electronic Packaging Material, Thermal Management, Thermal Conductivity, CTE, Lightweight

Key words: microprocessor integrated heat sink Electronic Packaging Material, Thermal Management, Thermal Conductivity, CTE, Lightweight Aluminum Silicon Carbide (AlSiC) Microprocessor Lids and Heat Sinks for Integrated Thermal Management Solutions Mark A. Occhionero, Robert A. Hay, Richard W. Adams, Kevin P. Fennessy, and Glenn Sundberg

More information

Review of Convective Heat Transfer from Plate Fins Under Natural and Mixed Convection at Different Inclination Angle

Review of Convective Heat Transfer from Plate Fins Under Natural and Mixed Convection at Different Inclination Angle International Research Journal of Engineering and Technology (IRJET) eissn: 2395 0056 Volume: 03 Issue: 02 Feb206 www.irjet.net pissn: 23950072 Review of Convective Heat Transfer from Plate s Under Natural

More information

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS

NOVEL MATERIALS FOR IMPROVED QUALITY OF RF-PA IN BASE-STATION APPLICATIONS Novel Material for Improved Quality of RF-PA in Base-Station Applications Co-Authored by Nokia Research Center and Freescale Semiconductor Presented at 10 th International Workshop on THERMal INvestigations

More information

2015 COMSOL CONFERENCE

2015 COMSOL CONFERENCE 2015 COMSOL CONFERENCE A strategy to simulate radio frequency heating under mixing conditions Long Chen, Shaojin Wang College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling,

More information

2ND LEVEL INTERCONNECT RELIABILITY OF CERAMIC AREA ARRAY PACKAGES

2ND LEVEL INTERCONNECT RELIABILITY OF CERAMIC AREA ARRAY PACKAGES 2ND LEVEL INTERCONNECT RELIABILITY OF CERAMIC AREA ARRAY PACKAGES Shingo Sato, Noriyuki Shimizu*, Shin Matsuda, Shoji Uegaki and Sachio Ninomiya Kyocera Corporation Kyoto, Japan Biography Noriyuki Shimizu

More information

Heat Sink Manufacturing

Heat Sink Manufacturing Heat Sink Manufacturing Using Metal Injection Molding Rapid developments in microprocessor technology have led to a need for the efficient high-volume production of advanced heat sink devices. The metal

More information

Thermal Challenges for SPARC Based Microprocessors

Thermal Challenges for SPARC Based Microprocessors MEPTEC Thermal Management Symposium, February, 2006 Thermal Challenges for SPARC Based Microprocessors SP Bidyut Sen & Jim Jones Semiconductor Packaging Sun Microsystems Make Money Grow Re-enlist Champions

More information

Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe

Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe Design and Analysis of Hydraulic Oil Cooler by Application of Heat Pipe Abstract Heat pipe is an essentially passive heat transfer device having high thermal conductivity. In hydraulic power pack use of

More information

DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD

DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD DESIGN OF LIQUID COOLING FOR HIGH HEAT DISSIPATION ELECTRONIC BOARDS USING CFD PANKAJ JIVAN PATEL 1, KAILAS TUKARAM PATIL 2, MANKALAL HIRAJI PATIL 3 1 Student, Department of Mechanical Engineering, P.S.G.V.P.

More information

Graphite Foam for Cooling of Automotive Power Electronics

Graphite Foam for Cooling of Automotive Power Electronics Graphite Foam for Cooling of Automotive Power Electronics Nidia C. Gallego 1, Steve B. White 2, Daniel Johnson 2, Kevin Pipe 2 Albert J. Shih 2, David P. Stinton 1, Edward Jih 3 1 Metals and Ceramics Division,

More information

Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator

Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator Journal of ELECTRONIC MATERIALS, Vol. 41, No. 6, 2012 DOI: 10.1007/s11664-012-2009-6 Ó 2012 TMS Waste Heat Recovery from a Marine Waste Incinerator Using a Thermoelectric Generator N.R. KRISTIANSEN, 1,3,4,5,6

More information

Temperature Rise in LCLS-II Cavity Bellows

Temperature Rise in LCLS-II Cavity Bellows Temperature Rise in LCLS-II Cavity Bellows LCLS-II TN-15-06-9-015 Arun Saini, Nikolay Solyak, V. Yakovlev, A. Sukhanov, A. Lunin July 30, 015 LCLSII-TN-XXXX Abstract Studies are performed to evaluate temperature

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector 1 OBJECTIVE: Performance Study of Solar Flat Plate Thermal Collector Operation with Variation in Mass Flow Rate and Level of Radiation INTRODUCTION: Solar water heater

More information

Experimental Study the Performance of Aluminum Foams Condensers in the Vapor Compression Cycle

Experimental Study the Performance of Aluminum Foams Condensers in the Vapor Compression Cycle International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Experimental

More information

Supporting Information

Supporting Information Supporting Information Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation Haoran Li,, Yurong He *,,, Yanwei Hu,, Xinzhi Wang,, School of Energy Science and Engineering,

More information

Mechanical Design and Cooling Techniques

Mechanical Design and Cooling Techniques Lecture Power Electronics Mechanical Design and Cooling Techniques Prof. Dr. Ing. Ralph Kennel (ralph.kennel@tum.de) Technische Universität München Arcisstraße 21 80333 München Power Module and Disc Design

More information

Using the latest advancements in injection molded thermally conductive plastics

Using the latest advancements in injection molded thermally conductive plastics September the 12 th, 2018 Using the latest advancements in injection molded thermally conductive plastics LATI Compounding solutions LATI is a family-owned independent compounder based in Italy. In thermoplastics

More information

Basic Properties and Application Examples of

Basic Properties and Application Examples of Basic Properties and Application Examples of 1. Basic properties of PGS 2. Functions of PGS 3. Application Examples Presentation [Sales Liaison] Panasonic Electronic Devices Co., Ltd. Capacitor Business

More information

THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD

THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD THERMAL ANALYSIS OF CPU WITH VARIABLE BASEPLATE HEAT- SINK USING CFD Channamallikarjun Department of Mechanical Engineering, BKIT-Bhalki-585328 Abstract The computational fluid dynamics is concentrated

More information

Trends and Challenges in the Thermal Management Field

Trends and Challenges in the Thermal Management Field Trends and Challenges in the Thermal Management Field Challenges in thermal management are not new and they are not going to be going away anytime soon. Patent search shows patents addressing thermal issues

More information

DEVELOPMENT OF NANO-TUNGSTEN-COPPER POWDER AND PM PROCESSES. 1 Agency for Defense Development Yuseong, P.O.Box 35-5, Daejon , Korea

DEVELOPMENT OF NANO-TUNGSTEN-COPPER POWDER AND PM PROCESSES. 1 Agency for Defense Development Yuseong, P.O.Box 35-5, Daejon , Korea DEVELOPMENT OF NANO-TUNGSTEN-COPPER POWDER AND PM PROCESSES 1 Seong Lee, 1 Joon-Woong Noh, 2 Young-Sam Kwon, 2 Seong Taek Chung, 3 John L. Johnson, 4 Seong Jin Park and 4 Randall M. German 1 Agency for

More information

Thermal Management of Die Stacking Architecture That Includes Memory and Logic Processor

Thermal Management of Die Stacking Architecture That Includes Memory and Logic Processor Thermal Management of Die Stacking Architecture That Includes Memory and Logic Processor Bhavani P. Dewan-Sandur, Abhijit Kaisare and Dereje Agonafer The University of Texas at Arlington, Box 19018, TX

More information

Thermoelectricity: From Atoms to Systems

Thermoelectricity: From Atoms to Systems Thermoelectricity: From Atoms to Systems Week 4: Thermoelectric Systems Lecture 4.2: Thermoelectric cost/efficiency Trade off By Ali Shakouri Professor of Electrical and Computer Engineering Birck Nanotechnology

More information

Exergy analysis of a flat plate solar collector

Exergy analysis of a flat plate solar collector Exergy analysis of a flat plate solar collector Sunil Chamoli GRDIMT Dehradun, Uttarakhand, India Abstract In this study, exergetic performance analysis of flat plate solar collector has been carried out

More information

BLDC Motor for Automotive Cooling Fan Assembly: Heat Sink Optimization

BLDC Motor for Automotive Cooling Fan Assembly: Heat Sink Optimization BLDC Motor for Automotive Cooling Fan Assembly: Heat Sink Optimization Davide Parodi Fluid Dynamic and Aeroacoustic Engineer, Automotive Product Group, Johnson Electric Asti S.r.l. Asti, Italy Email: davide.parodi@johnsonelectric.com

More information

Heat Transfer Simulation of Impinging Jet with Finned Heat Sink

Heat Transfer Simulation of Impinging Jet with Finned Heat Sink Heat Transfer Simulation of Impinging Jet with Finned Heat Sink Shivakumar H 1, Krishnamurthy K N 2, Akashdeep B.N 3 Department of Thermal power Engineering, M.Tech student 1, Assistant professor 2, VTU

More information

A CFD Analysis of an electronics cooling enclosure for application in telecommunication systems

A CFD Analysis of an electronics cooling enclosure for application in telecommunication systems A CFD Analysis of an electronics cooling enclosure for application in telecommunication systems R. Boukhanouf, A. Haddad To cite this version: R. Boukhanouf, A. Haddad. A CFD Analysis of an electronics

More information

AlSiC for Optoelectronic Thermal Management and Packaging Designs

AlSiC for Optoelectronic Thermal Management and Packaging Designs for Optoelectronic Thermal Management and Packaging Designs Mark A. Occhionero, Richard W. Adams, Dave Saums Ceramics Process Systems Chartley, MA 02712-0338 Abstract Aluminum silicon carbide () metal

More information

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14

Keeping Cool!: selecting high performance thermal materials for LED Lighting applications. Ian Loader 25/03/14 Keeping Cool!: selecting high performance thermal materials for LED Lighting applications Ian Loader 25/03/14 1 Target Points to cover Basics of Thermal Management Considerations for thermal materials

More information