Superior Additive of Exfoliated RuO 2 Nanosheet. Oxide over Graphene

Size: px
Start display at page:

Download "Superior Additive of Exfoliated RuO 2 Nanosheet. Oxide over Graphene"

Transcription

1 Supporting Information Superior Additive of Exfoliated RuO 2 Nanosheet for Optimizing the Electrode Performance of Metal Oxide over Graphene Seul Lee, a, Xiaoyan Jin a, In Young Kim, a Tae-Ha Gu, a Ji-Won Choi, b Sahn Nahm, c and Seong-Ju Hwang*, a a Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea b Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea c Departments of Materials Science and Engineering, Korea University, Seoul 02841, Korea

2 Figure S1. Photoimage of the coated electrode. The slurry of active electrode material was pressed on a stainless steel substrate with the area of 1 1 cm 2. For the measurement of the electrode performance, the electrode was masked with an insulating tape. S1

3 Figure S2. (Left) X-ray photoelectron spectroscopy (XPS) survey spectra and (right) Ru 3p XPS spectra of (a) LMR0, (b) LMR1, (c) LMR2.5, and (d) LMR4. As shown in Figure S2, all the RuO 2 -incorporated nanocomposites exhibit notable spectral weight in the Ru 3p XPS region, confirming the incorporation of RuO 2 nanosheet into the present nanocomposite. S2

4 Figure S3. Transmission electron microscopy (TEM) images of (a) exfoliated MnO 2 nanosheet and (b) exfoliated RuO 2 nanosheet. As can be seen clearly from Figure S3, both the exfoliated MnO 2 and RuO 2 nanosheets commonly show 2D sheet-like morphology. S3

5 Figure S4. Energy dispersive X-ray spectrometry (EDS) elemental maps of the Li MnO 2 RuO 2 nanocomposites of (a) LMR1, (b) LMR2.5, and (c) LMR4. The elemental distributions of the LMR nanocomposites are probed with EDS elemental mapping analysis. As illustrated in Figure S4, all of the Mn, Ru, and O elements are uniformly distributed in the entire part of the LMR nanocomposites. This finding provides strong evidence for the homogeneous mixing of RuO 2 nanosheets with MnO 2 ones. S4

6 Figure S5. Galvanostatic charge discharge (CD) curves of initial few cycles at a constant current density of 1 A g 1 of the Li MnO 2 RuO 2 nanocomposites of (a) LMR0, (b) LMR1, (c) LMR2.5, and (d) LMR4. The capacitive behaviors of the LMR nanocomposites were examined by the galvanostatic CD cycling measurements at a constant current density of 1 A g 1. As plotted in Figure S5, all the materials commonly show a linear variation of potential with time, confirming the capacitive behavior of these materials. S5

7 Figure S6. (a) Cyclic voltammetry (CV) curves and (b) capacitance retention plots of the Li RuO 2 nanocomposite. As shown in Figure S6, the Li RuO 2 nanocomposite prepared by the restacking of RuO 2 nanosheets with Li + ions delivers a specific capacitances of 213 F g 1 for the maximum point and 176 F g 1 for the 5000th cycle, and is smaller than those of the RuO 2 -incorporated LMR nanocomposites with a smaller RuO 2 content. This finding strongly suggests that a small amount of RuO 2 nanosheet incorporated in the present Li MnO 2 RuO 2 nanocomposites induces synergistic effect on their electrode activity as a conductive additive. S6

8 Figure S7. (a) Powder X-ray diffraction (XRD) patterns, (b) field emission-scanning electron microscopy (FE-SEM) images, and (c) transmission electron microscopy (TEM) images of the Li MnO 2 rg-o nanocomposites of (i) LMG2.5, (ii) LMG5, and (iii) LMG10. The crystal structures and morphologies of rg-o-incorporated LMG nanocomposites were examined by powder XRD, FE-SEM, and TEM analyses. As illustrated in Figure S7a, the LMG nanocomposites display intense (00l) XRD peaks, indicating the formation of the layerby-layer-stacked structure of exfoliated MnO 2 and rg-o nanosheets. From the XRD result, the LMG10 with a high graphene content shows the impurity peak, because of the selfaggregating tendency of graphene nanosheets. The FE-SEM and TEM images in Figures S7b and S7c clearly demonstrate the mesoporous morphologies of the LMG nanocomposites formed by the house-of-cards-type stacking of MnO 2 and rg-o nanosheets. S7

9 Figure S8. N 2 adsorption desorption isotherms of the Li MnO 2 rg-o nanocomposites of (a) LMG2.5, (b) LMG5, and (c) LMG10. The open and close symbols represent the adsorption and desorption data, respectively. Figure S8 represents the N 2 adsorption desorption isotherms of the LMG nanocomposites. According to the fitting analysis based on the Brunauer Emmett Teller (BET) equation, the surface areas of the LMG nanocomposites are estimated to be 136, 118, and 111 m 2 g 1 for LMG2.5, LMG5, and LMG10, respectively, which are notably smaller than that of the LMR2.5 nanocomposite (156 m 2 g 1 ). This result strongly suggests that the incorporation of RuO 2 nanosheet is more effective in increasing the porosity of restacked Li MnO 2 nanocomposite than that of rg-o nanosheet. This result is ascribable to the weak selfaggregating tendency of exfoliated RuO 2 nanosheet. S8

10 Figure S9. CV curves of the Li MnO 2 rg-o nanocomposites of (a) LMG2.5, (b) LMG5, and (c) LMG10, and (d) capacitance retention plots of these nanocomposites. As plotted in Figure S9, the rg-o-incorporated nanocomposites of LMG2.5, LMG5, and LMG10 deliver the specific capacitances of 240, 258, and 231 F g 1 for the maximum point and 210, 251, and 211 F g 1 for the 5000th cycle, respectively, which are smaller than that of RuO 2 -incorporated LMR2.5 nanocomposite with a smaller RuO 2 content. This result provides strong evidence for a better role of RuO 2 nanosheet in improving the electrode performance of the Li MnO 2 nanocomposite compared to the rg-o nanosheet. S9

11 Figure S10. Contact angles of the exfoliated nanosheets of (a) MnO 2, (b) RuO 2, and (c) rg-o. The surface natures of the exfoliated MnO 2, RuO 2, and rg-o nanosheets are examined by measuring the contact angles of restacked membranes of these nanosheets. As illustrated in Figure S10, the contact angles of these nanosheets are estimated to be 19.9, 26.5, and 83.3 for the MnO 2 nanosheet, RuO 2 nanosheet, and rg-o nanosheet, respectively. Both the freestanding membranes of RuO 2 and MnO 2 nanosheets show much smaller contact angles than does the rg-o nanosheet. This result clearly demonstrates the hydrophilic surface characteristics of the RuO 2 and MnO 2 nanosheets and the hydrophobic surface nature of the rg-o nanosheet. The present finding provides strong evidence for more efficient chemical interaction between the RuO 2 and MnO 2 nanosheets than between rg-o and MnO 2 nanosheets. The resulting efficient improvement of electron conduction upon the RuO 2 incorporation contributes to the better electrode performances of the LMR nanocomposites than those of the LMG nanocomposites. S10

12 Table S1. Electrical resistivities of the present electrode materials. Sample LMR0 LMR1 LMR2.5 LMR4 LMG2.5 LMG5 LMG10 Li rg-o Li RuO 2 Resistivity (Ω cm 1 ) To verify the superior role of RuO 2 nanosheet over the rg-o nanosheet, the electrical conductivities of these materials were measured using a four-point probe method. As listed in Table S1, the resistivity of exfoliated RuO 2 nanosheet is smaller than that of rg-o nanosheet, confirming a promising role of the exfoliated RuO 2 nanosheet as efficient conductive additive in enhancing the electrical conductivity of MnO 2 material. S11

13 Figure S11. Plots of the real part of impedance as a function of the inverse square root of angular frequency in Warburg region for the Li MnO 2 RuO 2 nanocomposites of LMR0 (circles), LMR1 (triangles), LMR2.5 (squares), and LMR4 (diamonds), and the Li MnO 2 rg-o nanocomposites of LMG2.5 (inverse triangles), LMG5 (hexagons), and LMG10 (close circles). As shown in Figure S11, the slope of Z re vs. ω 0.5 plot in the Warburg region provides the Warburg coefficient (σ w ). Among the present RuO 2 -incorporated nanocomposites, the LMR2.5 nanocomposite shows the highest Na + ion diffusivity with the smallest value of σ w (LMR0: σ w = Ω s 0.5 ; LMR1: σ w = Ω s 0.5 ; LMR2.5: σ w = Ω s 0.5 ; LMR4: σ w = Ω s 0.5 ). The lowering of Warburg coefficient in the LMR nanocomposites indicates that the polarizability of these electrode materials is improved by the incorporation of the RuO 2 nanosheet. The Warburg coefficients of all the present LMG nanocomposites are 26.39, 25.22, and Ωs 0.5 for LMG2.5, LMG5, and LMG10, S12

14 respectively. This result demonstrates that the incorporation of the rg-o nanosheet is also effective in improving the Na + ion diffusivity of the Li MnO 2 nanocomposite but the beneficial effect of rg-o incorporation is weaker than that of RuO 2 addition. S13

Terephthalonitrile-derived nitrogen-rich networks for high

Terephthalonitrile-derived nitrogen-rich networks for high Electronic Supplementary Information Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors Long Hao, a Bin Luo, a Xianglong Li, a Meihua Jin, a Yan Fang, a Zhihong Tang,

More information

Morphology controlled synthesis of monodispersed manganese. sulfide nanocrystals and their primary application for supercapacitor

Morphology controlled synthesis of monodispersed manganese. sulfide nanocrystals and their primary application for supercapacitor Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals

More information

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive

Three-dimensional graphene-based hierarchically porous carbon. composites prepared by a dual-template strategy for capacitive Electronic Supplementary Information (ESI) Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization Xiaoru Wen, a Dengsong

More information

Supporting Information for

Supporting Information for Supporting Information for 3D Nitrogen-Doped Graphene Aerogel-Supported Fe 3 O 4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction Zhong-Shuai Wu, Shubin Yang, Yi Sun, Khaled

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Characterization of precursor coated on salt template. (a) SEM image of Mo precursor coated on NaCl. Scale bar, 50 μm. (b) EDS of Mo precursor coated on

More information

Supporting Information

Supporting Information Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2013. Supporting Information for Adv. Energy Mater., DOI: 10.1002/aenm.201300184 Screen-Printable Thin Film Supercapacitor Device Utilizing

More information

Transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties

Transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) for Transformative route to

More information

Bi-functional RuO 2 /Co 3 O 4 Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst

Bi-functional RuO 2 /Co 3 O 4 Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst This journal is The Royal Society of Chemistry 0 7 8 9 0 7 8 9 0 7 Supporting Information Bi-functional RuO /Co O Core/Shell Nanofibers as a Multi-component One-Dimensional Water Oxidation Catalyst Jong

More information

Enhanced supercapacitor performance of 3D architecture tailored using atomically thin rgo-mos 2 2D sheets

Enhanced supercapacitor performance of 3D architecture tailored using atomically thin rgo-mos 2 2D sheets Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Enhanced supercapacitor performance of 3D architecture

More information

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors

MXene-Bonded Activated Carbon as a Flexible. Electrode for High-Performance Supercapacitors Supporting information MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors Lanyong Yu, Longfeng Hu, Babak Anasori, Yi-Tao Liu, Qizhen Zhu, Peng Zhang, Yury Gogotsi,

More information

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup.

De-ionized water. Nickel target. Supplementary Figure S1. A schematic illustration of the experimental setup. Graphite Electrode Graphite Electrode De-ionized water Nickel target Supplementary Figure S1. A schematic illustration of the experimental setup. Intensity ( a.u.) Ni(OH) 2 deposited on the graphite blank

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information High-Performance Supercapacitors Based on MnO 2

More information

Supporting Information

Supporting Information Supporting Information Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries Xuanpeng Wang, Xiaoming Xu, Chaojiang Niu*, Jiashen Meng, Meng Huang, Xiong Liu,

More information

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries

Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries /8 SUPPORTING INFORMATION Single-crystalline LiFePO 4 Nanosheets for High-rate Li-ion Batteries Yu Zhao, Lele Peng, Borui Liu, Guihua Yu* Materials Science and Engineering Program and Department of Mechanical

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information An amorphous material with sponge-like structure as anode for Liion and

More information

School of Materials Science and Engineering, South China University of Technology,

School of Materials Science and Engineering, South China University of Technology, Supporting information Zn/MnO 2 Battery Chemistry With H + and Zn 2+ Co-Insertion Wei Sun, Fei Wang, Singyuk Hou, Chongyin Yang, Xiulin Fan, Zhaohui Ma, Tao Gao, Fudong Han, Renzong Hu, Min Zhu *, Chunsheng

More information

The electrodeposition of Zn-Mo and Zn-Sn-Mo alloys from citrate electrolytes

The electrodeposition of Zn-Mo and Zn-Sn-Mo alloys from citrate electrolytes Honorata Kazimierczak The electrodeposition of Zn-Mo and Zn-Sn-Mo alloys from citrate electrolytes Supervisor: Assoc. Prof. Piotr Ozga The electrodeposition of Zn-Mo and Zn-Sn-Mo alloys from citrate electrolytes

More information

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery

Unlocking the Potential of Amorphous Red Phosphorus Films as Long-term Stable. Negative Electrode for the Lithium Battery Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Unlocking the Potential of Amorphous Red Phosphorus

More information

Supporting information

Supporting information Supporting information Cu 2 O-Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media Han Xu, Jin-Xian Feng, Ye-Xiang Tong, and Gao-Ren Li* MOE Laboratory of

More information

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte

A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme electrolyte Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 A novel rechargeable battery with magnesium anode, titanium dioxide cathode, and magnesim borohydride/tetraglyme

More information

Flexible Zn 2 SnO 4 /MnO 2 Core/shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes

Flexible Zn 2 SnO 4 /MnO 2 Core/shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes Supporting Information Flexible Zn 2 SnO 4 /MnO 2 Core/shell Nanocable - Carbon Microfiber Hybrid Composites for High Performance Supercapacitor Electrodes Lihong Bao, Jianfeng Zang, Xiaodong Li Department

More information

Supporting Information. enhanced electrochemical performance for energy storage

Supporting Information. enhanced electrochemical performance for energy storage Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information Facile fabrication of hierarchical porous rose-like

More information

Bioinspired Cocatalysts Decorated WO 3 Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor

Bioinspired Cocatalysts Decorated WO 3 Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor Supporting Information Bioinspired Cocatalysts Decorated WO 3 Nanotube Toward Unparalleled Hydrogen Sulfide Chemiresistor Dong-Ha Kim, Ji-Soo Jang, Won-Tae Koo, Seon-Jin Choi, Hee-Jin Cho, Min-Hyeok Kim,

More information

Carbon Nanotube-Based Supercapacitors with Excellent AC-Line

Carbon Nanotube-Based Supercapacitors with Excellent AC-Line SUPPORTING INFORMATION FOR: Carbon Nanotube-Based Supercapacitors with Excellent AC-Line Filtering and Rate Capability via Improved Interfacial Impedance Yverick Rangom, Xiaowu (Shirley) Tang*, and Linda

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information In situ electrochemical activation of Ni-based colloids from NiCl 2 electrode

More information

Supporting Information for

Supporting Information for Supporting Information for Improved Sodium-Ion Storage Performance of Ultrasmall Iron Selenide Nanoparticles Feipeng Zhao, 1 Sida Shen, 1 Liang Cheng, 1 Lu Ma, 2 Junhua Zhou, 1 Hualin Ye, 1 Na Han, 1 Tianpin

More information

Optimization of Nanostructured hydrous RuO 2. /carbon composite supercapacitor using colloidal method

Optimization of Nanostructured hydrous RuO 2. /carbon composite supercapacitor using colloidal method Optimization of Nanostructured hydrous RuO 2 /carbon composite supercapacitor using colloidal method by Hansung Kim and Branko N. Popov Center for Electrochemical Engineering Supercapacitors for a high

More information

Supporting Information. Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production

Supporting Information. Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production Supporting Information Oxygen Intercalated CuFeO 2 Photocathode Fabricated by Hybrid Microwave Annealing for Efficient Solar Hydrogen Production Youn Jeong Jang, Yoon Bin Park, Hyo Eun Kim, Yo Han Choi,

More information

Supporting Information. Kirkendall Diffusion, and their Electrochemical Properties for use in Lithium-ion

Supporting Information. Kirkendall Diffusion, and their Electrochemical Properties for use in Lithium-ion Supporting Information Preparation of Hollow Fe 2 O 3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and their Electrochemical Properties for use in Lithium-ion Batteries Jung Sang Cho 1,2,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information High performance All-Solid-State Li-Se Batteries induced

More information

Supplementary. N. Akhtar a,b, M.Y. Emran a, M. A. Shenashen a,, T. Osaka b, A. Faheem c, T. Homma b, H. Kawarada. , S. A.

Supplementary. N. Akhtar a,b, M.Y. Emran a, M. A. Shenashen a,, T. Osaka b, A. Faheem c, T. Homma b, H. Kawarada. , S. A. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is The Royal Society of Chemistry 2017 Supplementary Fabrication of Photo-electrochemical biosensor for ultrasensitive

More information

Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly

Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly Supplementary Figure 1. SEM and TEM images of CoO/CNF before and after galvanostatic cycles. (a) SEM image of CNF. (b) SEM image of CoO NPs uniformly distributed on CNF. (c) SEM image of 2-cycle CoO/CNF.

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2015 Supporting information A Low Temperature Molten Salt Process for Aluminothermic

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 10, No. 1, pp. 90~94 (2009) J O U R N A L O F Ceramic Processing Research An investigation into multi-layered coatings on bipolar plates for a PEM (proton exchange

More information

Structural Characterization of Nano-porous Materials

Structural Characterization of Nano-porous Materials Structural Characterization of Nano-porous Materials Techniques for characterization of nano-porous materials Crystalline structure - Single crystal & Powder X-ray diffraction (XRD) - Electron crystallography

More information

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4

Electronic supplementary information. Efficient energy storage capabilities promoted by hierarchically MnCo 2 O 4 Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Efficient energy storage capabilities promoted by hierarchically

More information

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Supporting Information LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries Xiaolong Zhang, Fangyi Cheng, Jingang Yang, Jun Chen* Key Laboratory of Advanced Energy

More information

Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount.

Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount. Supplementary Figure S1 TEM images. TEM images of mesoporous polymer nanospheres (MPNs-n) synthesized with different ethanol amount. S1 Supplementary Figure S2 Photography. Photography illustration of

More information

Stackable, Three Dimensional Carbon-Metal Oxide. Composite for High Performance Supercapacitors

Stackable, Three Dimensional Carbon-Metal Oxide. Composite for High Performance Supercapacitors Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 215 Supplementary Information Stackable, Three Dimensional Carbon-Metal Oxide

More information

The critical role of point defects in improving the specific capacitance of δ-mno2 nanosheets

The critical role of point defects in improving the specific capacitance of δ-mno2 nanosheets Reviewers' comments: Reviewer #1 (Remarks to the Author): The critical role of point defects in improving the specific capacitance of δ-mno2 nanosheets This paper reports industrially scalable synthesis

More information

Preparation and Properties of Supercapacitor with Composite Electrodes

Preparation and Properties of Supercapacitor with Composite Electrodes Preparation and Properties of Supercapacitor with Composite Electrodes Chih-Ming Wang a,*, Chih-Yu Wen b, Ying-Chung Chen b, Jui-Yang Chang b, Jian-Zhen Huang b and Chien-Chung Hsu b a Department of Electrical

More information

Supporting Information

Supporting Information Supporting Information Intercalation Synthesis of Prussian Blue Analog Nanocone and Their Conversion into Fe Doped Co x P Nanocone for Enhanced Hydrogen Evolution Xiaosong Guo, Xiaoguang Yu, Zijia Feng,

More information

Electronic Supplementary Information. High Surface Area Sulfur-Doped Microporous Carbons from Inverse Vulcanized Polymers

Electronic Supplementary Information. High Surface Area Sulfur-Doped Microporous Carbons from Inverse Vulcanized Polymers Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information High Surface Area Sulfur-Doped Microporous

More information

Supporting Information. Ultrathin and Large-Sized Vanadium Oxide Nanosheets Mildly. Prepared at Room Temperature for High Performance Fiber-Based

Supporting Information. Ultrathin and Large-Sized Vanadium Oxide Nanosheets Mildly. Prepared at Room Temperature for High Performance Fiber-Based Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Ultrathin and Large-Sized Vanadium Oxide Nanosheets

More information

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage.

Supporting Information. Amorphous Red Phosphorus Embedded in Highly Ordered. Mesoporous Carbon with Superior Lithium and Sodium Storage. Supporting Information Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity Weihan Li, Zhenzhong Yang, Minsi Li, Yu Jiang, Xiang Wei,

More information

Supplementary Figure 1. SEM images of LiCoO 2 before (a) and after (b) electrochemical tuning. The size and morphology of synthesized LiCoO 2 and

Supplementary Figure 1. SEM images of LiCoO 2 before (a) and after (b) electrochemical tuning. The size and morphology of synthesized LiCoO 2 and Supplementary Figure 1. SEM images of LiCoO 2 before (a) and after (b) electrochemical tuning. The size and morphology of synthesized LiCoO 2 and De-LiCoO 2 particles were almost the same, indicating that

More information

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy

Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy Ž. Surface and Coatings Technology 131 000 465 469 Pre-treatment of low temperature GaN buffer layer deposited on AlN Si substrate by hydride vapor phase epitaxy Ha Jin Kim, Ho-Sun Paek, Ji-Beom Yoo Department

More information

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Supporting Information: In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries Yi Zhao, Jiaxin Li, Ning Wang, Chuxin Wu, Yunhai Ding, Lunhui Guan*

More information

Fabrication of 1D Nickel Sulfide Nanocrystals with High

Fabrication of 1D Nickel Sulfide Nanocrystals with High Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Fabrication of 1D Nickel Sulfide Nanocrystals with High Capacitances and Remarkable Durability

More information

Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries

Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2017 Unlocking the potential of amorphous red phosphorus films

More information

Hydrothermal Synthesis of CoWO4 as Active Material for Supercapacitor Electrode

Hydrothermal Synthesis of CoWO4 as Active Material for Supercapacitor Electrode , pp.409-413 http://dx.doi.org/10.14257/astl.2016.139.81 Hydrothermal Synthesis of CoWO4 as Active Material for Supercapacitor Electrode Vaibhav Lokhande 1, Taeksoo Ji 1 * 1 Department of Electronics and

More information

Candle Soot as Supercapacitor Electrode Material

Candle Soot as Supercapacitor Electrode Material Supporting information Candle Soot as Supercapacitor Electrode Material Bowen Zhang, Daoai Wang, Bo Yu, Feng Zhou and Weimin Liu State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical

More information

Spray Drying Method for Large-Scale and High. Performance Silicon Negative Electrodes in Li-ion. Batteries

Spray Drying Method for Large-Scale and High. Performance Silicon Negative Electrodes in Li-ion. Batteries SUPPORTING INFORMATION Spray Drying Method for Large-Scale and High Performance Silicon Negative Electrodes in Li-ion Batteries Dae Soo Jung, Tae Hoon Hwang, Seung Bin Park, and Jang Wook Choi,,* Graduate

More information

Supporting Information

Supporting Information Supporting Information Bi-functional MnO 2 coated Co 3 O 4 Hetero-structured Catalysts for Reversible Li-O 2 Batteries Young Joo Lee,, Do Hyung Kim,, Tae-Geun Kang, Youngmin Ko, Kisuk Kang*,, and Yun Jung

More information

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1

SUPPORTING INFORMATION. Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology, 373-1 SUPPORTING INFORMATION Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle Based Lithium Ion Battery Anodes Tae Hoon Hwang, Yong Min Lee, Byung Seon Kong, Jin-Seok Seo, and Jang Wook Choi,,*

More information

Wire-shaped Supercapacitor with Organic. Electrolyte Fabricated via Layer-by-Layer Assembly

Wire-shaped Supercapacitor with Organic. Electrolyte Fabricated via Layer-by-Layer Assembly Supporting information Wire-shaped Supercapacitor with Organic Electrolyte Fabricated via Layer-by-Layer Assembly Kayeon Keum, a Geumbee Lee, b Hanchan Lee, a Junyeong Yun, a Heun Park, a Soo Yeong Hong,

More information

Electronic Supplementary Information (ESI) Molecular force transfer mechanisms in graphene. oxide paper evaluated using atomic force

Electronic Supplementary Information (ESI) Molecular force transfer mechanisms in graphene. oxide paper evaluated using atomic force Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Molecular force transfer mechanisms in graphene oxide

More information

Supporting Information for Layered Assembly of Graphene Oxide and Layered Double Hydroxide Nanosheets as Electrode Materials for Supercapacitor

Supporting Information for Layered Assembly of Graphene Oxide and Layered Double Hydroxide Nanosheets as Electrode Materials for Supercapacitor - 1 - Supporting Information for Layered Assembly of Graphene Oxide and Layered Double Hydroxide Nanosheets as Electrode Materials for Supercapacitor Lei Wang, Dong Wang, Xin Yi Dong, Zhi Jun Zhang, Xian

More information

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects

A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects Supporting Information A design of Solid-State Li-S cell with evaporated Lithium anode to eliminate shuttle effects Yujie Hao, a Sheng Wang, a Feng Xu, a Yijie Liu, a Ningning Feng, a Ping He, *a Haoshen

More information

Linlin Xin a and Xuefeng Liu b. School of Chemical and Material Engineering, Jiangnan University, Wuxi, , PR China.

Linlin Xin a and Xuefeng Liu b. School of Chemical and Material Engineering, Jiangnan University, Wuxi, , PR China. Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Electronic Supplementary Information Black TiO 2 Inverse Opals for Visible-Light Photocatalysis

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supporting Information High-rate in-plane micro-supercapacitors scribed onto

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/9/e1701069/dc1 Supplementary Materials for Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide Lei Dai, Qing Qin, Pei

More information

Supporting Information

Supporting Information Supporting Information Hydrogenation Driven Conductive Na 2 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries Shidong Fu, Jiangfeng Ni, Yong Xu, Qiao Zhang*, and Liang Li*, College of Physics,

More information

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset

Supporting Information. Hematite photoanode with gradient structure shows an unprecedentedly low onset Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information Hematite photoanode with gradient structure shows an unprecedentedly

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Ultrathin Membranes of Single-Layered MoS 2 Nanosheets for

More information

Applied Surface Science

Applied Surface Science Applied Surface Science 255 (2009) 4192 4196 Contents lists available at ScienceDirect Applied Surface Science journal homepage: www.elsevier.com/locate/apsusc Electrodeposited ruthenium oxide thin films

More information

Supplementary Information

Supplementary Information Supplementary Information Efficient microalgae harvesting by organo-building blocks of nanoclays Wasif Farooq, a Young-Chul Lee,* b Jong-In Han, b Cornelius Hanung Darpito, a Minkee Choi a and Ji-Won Yang*

More information

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction

Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Cu(I)-Mediating Pt Reduction to Form Pt-Nanoparticle-Embedded Nafion Composites and Their Electrocatalytic O 2 Reduction Jing-Fang Huang,* a and Wen-Rhone Chang a Supporting information Experimental Section

More information

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics, Electronic Supplementary Information Highly efficient core shell CuInS 2 /Mn doped CdS quantum dots sensitized solar cells Jianheng Luo, a Huiyun Wei, a Qingli Huang, a Xing Hu, a Haofei Zhao, b Richeng

More information

One-Pot Surface Engineering of Battery Electrode. Materials with Metallic SWCNT-Enriched, Ivy-

One-Pot Surface Engineering of Battery Electrode. Materials with Metallic SWCNT-Enriched, Ivy- Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information One-Pot Surface Engineering of Battery

More information

(b) Intensity (A.U.) (d) st discharge th discharge th discharge

(b) Intensity (A.U.) (d) st discharge th discharge th discharge (a) E (V vs. Na/Na + ) (c) E (V vs. Na/Na + ) 4.2 3.8 3.6 3.4 3.2 2.8 2.6 2.4 2.2 1.8 1.6 1.4 50 th 40 th 30 th 20 th 10 th 5 th 2 nd 1 st 0 20 40 60 80 100 120 140 160 180 200 D-Na 2 RuO 3 O-Na 2 RuO

More information

Electronic Supplementary Information (ESI) Self-assembly of Polyoxometalate / Reduced Graphene Oxide

Electronic Supplementary Information (ESI) Self-assembly of Polyoxometalate / Reduced Graphene Oxide Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information (ESI) Self-assembly of Polyoxometalate

More information

Supplementary Information

Supplementary Information Supplementary Information Sulphonated Polyimide/Acid Functionalized Graphene Oxide Composite Polymer Electrolyte Membranes with Improved Proton Conductivity and Water Retention Properties Ravi P. Pandey,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION SUPPLEMENTARY DISCUSSION AND FIGURES 1. Chemical and Structural Characterization (a) Grazing-incidence small-angle X-ray scattering (GISAXS) The structural evolution of the mesoporous

More information

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4 Supporting information: Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4 Kyeongse Song, Eunbi Cho and Yong-Mook

More information

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral

Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral Supplementary Figure 1. Crystal structures of conventional layered and Li-rich layered manganese oxides. a, The crystal structure of rhombohedral LiMO 2 (M = Ni, Co, Mn) with the space group R3m. b, The

More information

Supporting Information. Peanut Shell Hybrid Sodium Ion Capacitor with Extreme. Energy - Power Rivals Lithium Ion Capacitors

Supporting Information. Peanut Shell Hybrid Sodium Ion Capacitor with Extreme. Energy - Power Rivals Lithium Ion Capacitors Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 214 Supporting Information Peanut Shell Hybrid Sodium Ion Capacitor with Extreme

More information

Supplementary Information for Hard Templating Ultrathin Polycrystalline Hematite Nanosheets and the Effect of Nanodimension

Supplementary Information for Hard Templating Ultrathin Polycrystalline Hematite Nanosheets and the Effect of Nanodimension Page 18 of 30 Supplementary Information for Hard Templating Ultrathin Polycrystalline Hematite Nanosheets and the Effect of Nanodimension on CO 2 to CO Conversion via the Reverse Water Shift Reaction Zachary

More information

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets

Supplimentary Information. Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride. Nanosheets Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplimentary Information Large-Scale Synthesis and Functionalization of Hexagonal Boron Nitride

More information

Double-Network Nanostructured Hydrogel-Derived. Ultrafine Sn Fe Alloy in 3D Carbon Framework for

Double-Network Nanostructured Hydrogel-Derived. Ultrafine Sn Fe Alloy in 3D Carbon Framework for Supporting Information Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn Fe Alloy in 3D Carbon Framework for Enhanced Lithium Storage Hongxia Shi,, Zhiwei Fang,, Xiao Zhang, Feng Li, Yawen Tang,

More information

Supporting Information. Selective Metallization Induced by Laser Activation: Fabricating

Supporting Information. Selective Metallization Induced by Laser Activation: Fabricating Supporting Information Selective Metallization Induced by Laser Activation: Fabricating Metallized Patterns on Polymer via Metal Oxide Composite Jihai Zhang, Tao Zhou,* and Liang Wen State Key Laboratory

More information

Supporting Information. Christina W. Li and Matthew W. Kanan* *To whom correspondence should be addressed.

Supporting Information. Christina W. Li and Matthew W. Kanan* *To whom correspondence should be addressed. Supporting Information CO 2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu 2 O Films Christina W. Li and Matthew W. Kanan* *To whom correspondence should be addressed.

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2017 Supplementary Information Self-Standing Bi 2 O 3 Nanoparticles/Carbon Nanofiber

More information

Supporting Information

Supporting Information Supporting Information One-pot Synthesis of Fe 3 O 4 Nanoprisms with Controlled Electrochemical Properties Yao Zeng, a Rui Hao, a Bengang Xing, b Yanglong Hou,* a and Zhichuan Xu* c a Department of Advanced

More information

Metallic 1T phase MoS 2 nanosheets as supercapacitor electrode materials

Metallic 1T phase MoS 2 nanosheets as supercapacitor electrode materials SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.215.4 Metallic 1T phase MoS 2 nanosheets as supercapacitor electrode materials Muharrem Acerce, Damien Voiry and Manish Chhowalla* Materials Science and Engineering,

More information

Supporting Information

Supporting Information Supporting Information Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction Zhaoyang Wang, Jiantao Li, Xiaocong Tian, Xuanpeng Wang, Yang Yu, Kwadwo

More information

Effect of Manganese on the Corrosion Behavior of Low Carbon Steel in 10 wt.% Sulfuric Acid

Effect of Manganese on the Corrosion Behavior of Low Carbon Steel in 10 wt.% Sulfuric Acid Int. J. Electrochem. Sci., 10 (2015) 6872-6885 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Effect of Manganese on the Corrosion Behavior of Low Carbon Steel in 10 wt.% Sulfuric

More information

Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S.

Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S. 1 2 3 4 5 6 7 Supplementary Figure 1. Photographs of the Suaeda glauca (S. glauca) Bunge at different stages of metal ion absorption. (a) Photographs of S. glauca after absorption of tin salt. (b) Photographs

More information

Carbon Nanotube Material Quality Assessment

Carbon Nanotube Material Quality Assessment Carbon Nanotube Material Quality Assessment Sivaram Arepalli 1, Edward Sosa 1, Pasha Nikolaev 1, William Holmes 1, Olga Gorelik 1, and Leonard Yowell 2 1 ERC Inc. / NASA - Johnson Space Center, Houston,

More information

Supporting Information. Multivalent Electrochemistry of Spinel Mg x Mn 3-x O 4 Nanocrystals

Supporting Information. Multivalent Electrochemistry of Spinel Mg x Mn 3-x O 4 Nanocrystals Supporting Information Multivalent Electrochemistry of Spinel Mg x Mn 3-x O 4 Nanocrystals Chunjoong Kim,,, Abdullah A. Adil,, Ryan D. Bayliss,, Tiffany L. Kinnibrugh #, Saul H. Lapidus #, Gene M. Nolis,,

More information

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin

Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supporting Information Improving cyclic performance of Si anode for lithium-ion batteries by

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronic Supplementary Information Novel solid metal-organic self-propagation combustion for controllable synthesis of hierarchically

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Improving the Photocatalytic and Photoelectrochemical Activities of Mesoporous Single Crystal Rutile TiO 2 for Water Splitting Wei Jiao, Ying Peng Xie, Run Ze Chen,

More information

One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anode for sodium-ion batteries

One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anode for sodium-ion batteries Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 One-pot synthesis of ultra-small magnetite nanoparticles on the surface

More information

Formation mechanism of new corrosion resistance magnesium thin films by PVD method

Formation mechanism of new corrosion resistance magnesium thin films by PVD method Surface and Coatings Technology 169 170 (2003) 670 674 Formation mechanism of new corrosion resistance magnesium thin films by PVD method a, a a a b M.H. Lee *, I.Y. Bae, K.J. Kim, K.M. Moon, T. Oki a

More information

Supporting information. batteries

Supporting information. batteries Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting information Exploration of VPO 4 as a new anode material for sodium-ion batteries Xinghui

More information

Dynamic and Galvanic Stability of Stretchable Supercapacitors

Dynamic and Galvanic Stability of Stretchable Supercapacitors Supporting Information for Dynamic and Galvanic Stability of Stretchable Supercapacitors By Xin Li, Taoli Gu and Bingqing Wei* Department of Mechanical Engineering, University of Delaware, Newark, DE 19716

More information

Supporting Information

Supporting Information Supporting Information Large-Area, Transfer-Free, Oxide-Assisted Synthesis of Hexagonal Boron Nitride Films and Their Heterostructures with MoS2 and WS2 Sanjay Behura, Phong Nguyen, Songwei Che, Rousan

More information

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information for Large-Scale Freestanding Nanometer-thick Graphite Pellicle for Mass

More information

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract

Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells. Abstract Influence of Acetic Acid on the Photovoltaic Performance of Ru(II) Dye Sensitized Nanocrystalline TiO 2 Solar Cells Kyung Hee Park, Chonnam National University, Electric Eng., Gwangju, Kr Kyung Jun Hwang,

More information