BEHAVIOUR OF AN OLD EPS LIGHT-WEIGHT FILL AT VAMMALA, FINLAND. Seppo Saarelainen 1 and Heikki Kangas 2

Size: px
Start display at page:

Download "BEHAVIOUR OF AN OLD EPS LIGHT-WEIGHT FILL AT VAMMALA, FINLAND. Seppo Saarelainen 1 and Heikki Kangas 2"

Transcription

1 BEHAVIOUR OF AN OLD EPS LIGHT-WEIGHT FILL AT VAMMALA, FINLAND Seppo Saarelainen 1 and Heikki Kangas 2 ABSTRACT Characteristics of a pavement and its EPS compensation fill were investigated in the fall of The pavement had been constructed in 1987, and no visible defects were found. The pavement was on a main street leading to an industrial area. The pavement was underlain by peat, soft clay and silt. To prevent excessive settlements within the peat deposit, the pavement loading was compensated applying a mm thick layer of EPS. The overlay consisted of about 600mm thick layer of crusher-run base/subbase that was separated from EPS with geotextile. The surface layers consisted of bitumen-bound base of 100mm and asphalt surface, about 50mm thick. To monitor the actual condition of the pavement, Falling Weight Deflectometer (FWD) tests were carried out to measure the surface modulus. The pavement surface was monitored using Finnish road surface monitoring system for longitudinal roughness (IRI) measurements, and transverse rutting was measured, too. To investigate the conditions in EPS-fill, the fill was opened in a test pit, excavated across the other half of the street. Ground water level was during excavation at the top of EPS. The exposed surface of EPS was intact and undamaged. Large samples of fill blocks were taken for further laboratory testing. They were later tested in the laboratory using the standard testing and applying for creep testing and for cyclic triaxial testing large uniaxial specimens. Thus, it will be possible in later phase to compare the characteristics obtained in standard testing and advanced testing to the back-calculated and estimated characteristics in full scale. This site investigation was a part of the research program EPStress 2001, started in the year of The main focus of this program was to develop criteria and design models for the mechanical design of thick EPS-fills in pavement construction. Keywords: EPS light-weight fill, non-reinforced, old EPS 1 Technical Research Centre of Finland (VTT),P.O.Box 1800, VTT, Finland 2 Technical Research Centre of Finland (VTT), P.O.Box 1800, VTT, Finland

2 INTRODUCTION Within the Finnish "EPStress" research program, it was decided to carry out site investigations on an older road to study the long-term behaviour of EPS light-weight fill in pavements. In Finland, documented data on the behaviour of geofoam fills under traffic loading, has been scarcely available. The street, named Pesurinkatu was located in the town of Vammala in western Finland. The pavement had been constructed in It was a main street connected to an industrial area. The aim of the study was to investigate the mechanical behaviour of EPS and deterioration in the pavement to get data for further development of the mechanical design of pavements containing thick EPS-layers. The EPS fill consisted of low density EPS (17kg/m 3 ) without strengthening (concrete slab, steel mesh reinforcement etc.). The investigation was carried out by Technical Research Centre of Finland (VTT) together with the town of Vammala and ThermiSol Finland Oy (VTT 1999). In the EPStress program, the mechanical behaviour of EPS materials were studied, and the mechanical design concepts of pavements containing EPS fill were developed and tested. The research program was sponsored by the Finnish EPS industry. PAVEMENT STRUCTURE Pavement The street had been constructed in 1987 by the town of Vammala. The pavement was underlain by peat and soft clay and silt. To prevent excessive settlements, the pavement was compensated using mm thick layer of EPS. The overlay consisted of about 600mm thick layer of crusher-run base/subbase that was separated from EPS with a geotextile. The maximum grain size of subbase was 70mm, that means the base material was quite coarse. The surface layers consisted of bitumen-bound base (bitumen gravel) of 80mm and asphalt surface, about 50mm thick (Fig. 1). The total length of EPS-fill was about 440 meters and the thickness was from 400 to 600mm. The street was about 1,6km long. Since the construction of EPS-fill in 1987, a vehicle weight limit of 48 tons had been in force. AC /B mm Bitumen Gravel 100mm Crushed rock 450mm geotextile plastic foil 0.2mm EPS fill mm sand mm geotextile TOTAL mm Figure 1. The design of EPS-filled street section of Pesurinkatu-street in Vammala (1986).

3 Surface monitoring To monitor the actual condition of the pavement, Falling Weight Deflectometer tests were carried out to measure the surface modulus. The measurements were carried out along the whole street with an interval of 20m and in both directions. The measurements were carried out along the outer wheel path, nearer shoulders. The pavement surface was monitored using longitudinal roughness (IRI International Roughness Index) measurements, and transverse rutting was measured, too. Measurements were carried out with the Finnish road surface monitoring vehicle (PTM). Layer thicknesses and properties To investigate the conditions in EPS-fill, the fill was opened in a test pit. Large samples of fill blocks were taken for further laboratory testing. They will be tested using the standard testing, and applying for creep testing and for cyclic triaxial testing large uniaxial specimens. The pit was excavated across the other half of the pavement. According to the measurements, the total thickness of top layer (bituminous, base/subbase) was on the average 210mm thicker than designed. At the surface, bituminous layers had a thickness of 170mm (the design thickness of 150mm). The thickness of the crusher-run base/subbase was about 640mm thick (design 45mm). During the excavation, the ground water level was at near the top of EPS. The pit was excavated early in autumn, when the water table was relatively low. The exposed surface of EPS was visually intact and undamaged. Some local dents were detected, caused by crusher-run stones (Figs 2, 3a and 3b). Large samples of fill blocks were taken for further laboratory testing. (shoulder side) 3 m centre-line 190 mm 175 mm 175 mm AC + BitGr 580 mm 605 mm 625 mm Crusher-run base/subbase geotextile Water table was about mm below the EPS surface EPS Figure 2. The measured thickness of layers in the trial pit. EPS properties Properties of the sampled EPS were investigated in the laboratory. The wet density of EPS was kg/m 3 in surface block and kg/m 3 in deeper-lain blocks. Dry density was 17kg/m 3. Moisture content was 11-18vol.%, which was a considerably high value for EPS. The high moisture content indicated that EPS-layer had been under water for long periods.

4 Fig. 3a. The test site. Figures 3b. Exposed EPS-surface in the test pit on Pesurinkatu.

5 SITE TESTING AND MEASUREMENTS Surface modulus The variation of surface modulus was measured using Falling Weight Deflectometer (Dynatest M8000) along the street. The measurements were carried out along the centreline of the outer (shoulder side) wheel paths. Deflections were measured at 20m intervals. The measured surface modulus for the different points are illustrated in Fig. 4. The modulus can be seen to decrease in EPS filled area. 350 Bridge (?) Surface modulus (MPa) EPS fill southern lane northern lane Station pole (m) Figure 4. Measured surface modulus on Pesurinkatu in 28 October the 28 th, According to the measurements, the surface modulus within the EPS-fill stretch was as great as or smaller than the surface modulus on the surrounding pavement on the soft ground. The surface modulus on EPS fill was at the lowest about 50 MPa. It could be considered as a low value for an industrial street. In spite of low surface modulus, rutting measurements did not indicate any clearly higher deformations within the EPS-filled area compared to the adjoining street sections. Roughness and rutting Measured values of the longitudinal roughness IRI (mm/m) are illustrated in Figs. 5 and 6. Both 5-meter and 100- meter roughness indices are presented. With the exception of some local, higher IRI values, the roughness differed only slightly between the EPS filled area and the surrounding street. Measured rutting (roughness in transverse profile) is illustrated in Fig. 7.

6 30 IRI -100m, direction 1 IRI-5m, direction IRI 15 EPS fill Station pole (m) Figure 5. Measured IRI-100m and IRI-5m values, direction 1 (Northern lane). 25 IRI-100m, direction 2 IRI-5m, direction IRI EPS fill Station pole (m) Figure 6. Measured IRI-100m and IRI-5m values, direction 2 (southern lane). RESILIENT ANALYSIS OF THE PAVEMENT STRUCTURE Calculation model and layer moduli The modelling of pavement was based on in-situ measurement results. The measured FWD deflection bowl was modelled with the Modcomp3 computer program, Modcomp3 (1994). The thickness of pavement layers was determined from test pit measurements. A linear elastic model was applied for all the layers. The FWD deflection bowl, applied in the analysis, was measured at the pit location. The program back-calculated corresponding elastic material moduli for different layers. Back-calculated moduli are presented in Table 1.

7 80 70 Rut Peak Level from road edge (mm) EPS fill Station pole (m) Figure 7. Rut and peak values on Pesurinkatu. Values were measured with the Finnish road surface monitoring system (PTM). The differences between measured peak and rut describe transverse unevenness of road profile. The linear-elastic model seemed to work quite well in this case, although the program was based on the conventional multi-layered elastic theory, which may not be so realistic for this kind of a structure. Back-calculation resulted in a low material modulus of the unbound base layer. It is evident, that the crusher-run aggregate could not be so well compacted on the soft EPS layer than on a stiffer underlay. In the computer analysis, a modulus value of 6,9 MPa was determined for the EPS-layer. The result was quite comparable to the values presented in the literature. Table 1. Back-calculated layer moduli of the pavement with EPS-fill on Pesurinkatu. Layer Thickness 1 Modulus 2 Poisson ratio 3 [mm] [MPa] AC+Bit. Gravel (temp. +5 o C) Crushed rock EPS subgrade ) Measured from test pit 2) Back-calculated using the Modcomp3 program. The FWD deflection bowl was measured at the test pit location 3) Values taken from literature Stresses and resilient strains in pavement layers Resilient deformations under applied load were modelled with Bisar computer program, Bisar (1998). The applied layer characteristics were the same as determined in the FWD analysis. The strains and pressures under overburden load and with a 50kN circle-shaped surface load (diameter 0.3m) are presented in Table 2. The wheel-type can vary in normal traffic, but if the aim was to investigate the response of EPS, the shape and size of the loaded surface do not have so much of an effect. A vehicle weight limit of 48 (metric) tons had been applied on Pesurinkatu since the construction, and no information about the annual traffic was available. Thus, it was not possible to estimate the equivalent number of standard axles.

8 Table 2. Computed stresses and strains at the surface of the EPS layer. Vertical stress Vertical elastic strain kn/m 2 % Pavement surcharge Surface (wheel) load, 50kN Total Permanent deformations in EPS EPS is deformed elastically if the compression deformation is less than 0,4 a' 0,5% (Duškov 1997). According to the modelling, the strains in EPS due to overburden pressure were below the elastic limit of the EPS material. Creep might also have been a risk, if the overburden stresses from the pavement overlay had been higher than 20-25% of the nominal strength of the actual EPS-product (corresponding to the 10% strain). In this case, the load should have been lower than 20kN/m 2. The estimated development of creep strains in EPS at Pesurinkatu is illustrated in Table 3. The applied creep equation was for an EPS-geofoam with a density of 20kg/m 3, Horvath (1998). Table 3. Estimated creep in EPS layer in Pesurinkatu (static load effect). Level of total (resilient+creep) strain % time to reach the creep level (years) DISCUSSION AND CONCLUSIONS The wet density of the investigated EPS varied between kg/m 3. Dry density was 17kg/m 3. The observed moisture content, 11.18vol-%, could be considered as high value for an EPS-material. The high moisture content indicated that the EPS fill had been under water for long periods. Despite the high moisture content, the mechanical properties of EPS did not seem to differ from those typical for dry conditions. According to the road surface monitoring, the roughness was slightly higher in EPS filled area in comparison with the surrounding pavement. Anyhow, the condition of the pavement varied greatly along the investigated street line, and the roughness of the pavement containing EPS fill was not significantly different. The surface modulus was lower in EPS filled area than in other street sections. The lowest value was about 50MPa. This must not be interpreted in a wrong way. Although the modulus of EPS was low, the deformations can stayed at the elastic range, resulting minor plastic deformations. EPS materials can not be compared to natural soft soils or subgrades, although the resilient modulus is the same. Possible rutting and fatigue damage may also result from the layers of unbound crusher-run aggregates or bitumenbound materials. Within a pavement containing EPS, the critical layers may be the unbound base and bitumen-bound layers. If the resilient deformations of EPS are below the maximum elastic deformation (less than 0.4 a' 0.5%), EPS behaves as an elastic material, without excess accumulation of creep and cyclic strains.

9 REFERENCES BISAR, Shell bitumen, Shell international oil products. Computer program. Duškov, M., EPS as a light-weight sub-base material in pavement structures. TU Delft, Dr. Thesis, 251 p. Horvath J.S., 1998, Mathematical modelling of the stress-strain-time behaviour of geosynthetics using Findley equation: general theory and applications to EPS-block geofoam, Manhattan college research report No. CE/GE-98-3, USA MODCOMP3 v3.6, Cornell University, Local roads program,computer program VTT, Compressive strength of a thick EPS layer, prestudy (in Finnish, not published). Finnish EPS-insulation industry & Technical Research Centre of Finland. 29 p.

FEASIBILITY OF EPS AS A LIGHTWEIGHT SUB-BASE MATERIAL IN RAILWAY TRACK STRUCTURES

FEASIBILITY OF EPS AS A LIGHTWEIGHT SUB-BASE MATERIAL IN RAILWAY TRACK STRUCTURES FEASIBILITY OF EPS AS A LIGHTWEIGHT SUB-BASE MATERIAL IN RAILWAY TRACK STRUCTURES Coenraad Esveld 1, Valeri Markine 2 Milan Duškov 3 Abstract The paper presents results of a study on feasibility of Expanded

More information

Accelerated load testing of pavements

Accelerated load testing of pavements VTI rapport 477A 2001 Accelerated load testing of pavements HVS-NORDIC tests in Sweden 1999 Leif G Wiman Swedish National Road and Transport Research Institute Swedish Natonal Road Administration Finnish

More information

Mechanistic-Empirical Design of Chip- sealed Roads in SA. Christchurch workshop presentation 21/22 November 2002

Mechanistic-Empirical Design of Chip- sealed Roads in SA. Christchurch workshop presentation 21/22 November 2002 Mechanistic-Empirical Design of Chip- sealed Roads in SA Christchurch workshop presentation 21/22 November 2002 Structure of presentation Pavement materials Current SAMDM Variability and accuracy Distress

More information

Spectrum of Axles Approach

Spectrum of Axles Approach Spectrum of Axles Approach Typical Axle Load Spectrum Axle Load (kn) Single Number of Axles Tandem Tridem Quad 50 60 5,000 400 100 5 61 80 3,000 2,000 500 10 81 100 200 5,000 800 30 101 120 50 4,000 1,000

More information

ROADEX RESEARCH PROJECT: Road Widening

ROADEX RESEARCH PROJECT: Road Widening ROADEX RESEARCH PROJECT: Road Widening Petri Varin Roadscanners Oy Research Project: Widening of Roads Background: The cost effective widening of roads is a major issue facing the ROADEX Partners. State-of-the-art

More information

TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT

TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT There are two types of pavements based on design considerations i.e. flexible pavement and rigid pavement. Difference between flexible and rigid pavements

More information

Published in Roading Geotechnics 98, Institute of Professional Engineers, Auckland (1998), pp

Published in Roading Geotechnics 98, Institute of Professional Engineers, Auckland (1998), pp APPLICATIONS OF MECHANISTIC PAVEMENT DESIGN IN NEW ZEALAND (II) Case Histories Comparing Design Prediction with Post Construction Measurement and Analysis Graham Salt, Tonkin & Taylor Ltd William Gray,

More information

Corporación de Desarrollo Tecnológico

Corporación de Desarrollo Tecnológico Corporación de Desarrollo Tecnológico Conferencia Tecnológica: Asfalto Espumado; la experiencia australiana y su aplicación en Chile 28 de agosto de 2013 Foamed bitumen mix design and thickness design:

More information

Petri Varin, Timo Saarenketo, Pauli Kolisoja, Esa Juujärvi INTRODUCTION AND THE INSTRUCTIONS FOR USE

Petri Varin, Timo Saarenketo, Pauli Kolisoja, Esa Juujärvi INTRODUCTION AND THE INSTRUCTIONS FOR USE 1 Petri Varin, Timo Saarenketo, Pauli Kolisoja, Esa Juujärvi THE ROADEX PAVEMENT STRESS AND STRAIN CALCULATION DEMO, V. 1.3 20.10.2010 INTRODUCTION AND THE INSTRUCTIONS FOR USE 2 3 CONTENTS CONTENTS...

More information

7.1 Flexible Pavement Design. 7.2 Rigid Pavement Design TRANSPORTATION SYSTEM ENGINEERING 1, 61360

7.1 Flexible Pavement Design. 7.2 Rigid Pavement Design TRANSPORTATION SYSTEM ENGINEERING 1, 61360 7.1 Flexible Pavement Design 7.2 Rigid Pavement Design 1 Highway pavements are divided into two main categories: Flexible -Bituminous concrete Rigid -Portland cement concrete- Flexible pavements usually

More information

Implementation Activities of New MEPDG in Louisiana. Zhongjie Doc Zhang, PhD, PE

Implementation Activities of New MEPDG in Louisiana. Zhongjie Doc Zhang, PhD, PE Implementation Activities of New MEPDG in Louisiana Zhongjie Doc Zhang, PhD, PE May 12, 2009 Task Force Committee Chaired by the representative of Chief Engineer of LA DOTD Members are from research, material,

More information

HVS-NORDIC The activity of the second period in Finland Finnra Reports 45/2003

HVS-NORDIC The activity of the second period in Finland Finnra Reports 45/2003 Leena Korkiala-Tanttu, Markku Juvankoski HVS-NORDIC The activity of the second period in Finland 2000-2003 Finnra Reports 45/2003 Leena Korkiala-Tanttu, Markku Juvankoski HVS-NORDIC The activity of the

More information

THICKNESS HICKN ESS ESI ES G I N A ph a t l Pa P v a em e ents for r Hi way a s y s & & St S ree

THICKNESS HICKN ESS ESI ES G I N A ph a t l Pa P v a em e ents for r Hi way a s y s & & St S ree Asphalt Institute Lectures of 4., 5., 6. Week 4. Week 28. 09-04. 10. 2013 5. Week 05. 10-11. 10. 2013 6. Week 12. 10-18. 10. 2013 (Adha holiday) 7. Week 19. 10-25. 10. 2013 Prof. DR. Eng. Shafik Jendia

More information

EPS in CIVIL ENGINEERING APLLICATIONS: Product properties and performance requirements connected

EPS in CIVIL ENGINEERING APLLICATIONS: Product properties and performance requirements connected EPS in CIVIL ENGINEERING APLLICATIONS: Product properties and performance requirements connected ABSTRACT Since decades expanded polystyrene (EPS) is successfully applied as light weight fill for roads

More information

Roads and Transport Department Pavement Design 3 rd Year TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT

Roads and Transport Department Pavement Design 3 rd Year TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT There are two types of pavements based on design considerations i.e. flexible pavement and rigid pavement. Difference between flexible and rigid pavements

More information

N1ZHW:P N1PRLVW:P &DOFXODWHGN1PRLVW:P

N1ZHW:P N1PRLVW:P &DOFXODWHGN1PRLVW:P Leena Korkiala-Tanttu, Rainer Laaksonen, Jouko Törnqvist Effect of spring and overload on the rutting of a low-volume road HVS-Nordic - research Finnra Reports 22/23 PHDVXUHPHQWV 5XWGHSWKPP N1ZHW:P N1ZHW:P

More information

Accelerated Pavement Testing at the Geotechnical and Structures Laboratory

Accelerated Pavement Testing at the Geotechnical and Structures Laboratory Accelerated Pavement Testing at the Geotechnical and Structures Laboratory Vicksburg, Mississippi, U.S.A. U.S. Army Engineer Research and Development Center Accelerated Pavement Testing 1999 2000 2001

More information

Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure.

Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure. Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure Pavement failures Themes of lecture Failure types of pavements Different

More information

USER S VIEW POINT: WHY WE USED THESE PRODUCTS

USER S VIEW POINT: WHY WE USED THESE PRODUCTS GEOSYNTHETICS & STEEL MESHES FOR LONGER LASTING ROADS SCI HQ, London Thursday, 12 May 2011 USER S VIEW POINT: WHY WE USED THESE PRODUCTS John Howe Lincs Laboratory Highways & Transportation www.lincolnshire.gov.uk/lincslab

More information

REPORT STATUS: DATE: Report n :

REPORT STATUS: DATE: Report n : REPORT: Expanded clay LWA in CEA Lightweight fill and thermal insulation products for civil engineering applications. Installation and structural quality control on site. STATUS: Technical report DATE:

More information

AUSTRIAN PAVEMENT DESIGN METHOD A CRITICAL REVIEW. FLEXIBLE PAVEMENT DESIGN WORKSHOP Ljubljana, Ljubljana, 2012

AUSTRIAN PAVEMENT DESIGN METHOD A CRITICAL REVIEW. FLEXIBLE PAVEMENT DESIGN WORKSHOP Ljubljana, Ljubljana, 2012 FLEXIBLE PAVEMENT DESIGN WORKSHOP Ljubljana, 2012 AUSTRIAN PAVEMENT DESIGN METHOD A CRITICAL REVIEW FLEXIBLE RONALD PAVEMENT BLAB & BERNHARD DESIGN HOFKOWORKSHOP Ljubljana, 2012 INSTITUTE OF TRANSPORTATION

More information

Interpretation of Backcalculated Layer. Falling Weight Deflectometer Data. Moduli of Crack-and-Seat Pavement from

Interpretation of Backcalculated Layer. Falling Weight Deflectometer Data. Moduli of Crack-and-Seat Pavement from TRANSPORTATION RESEARCH RECORD 1377 167 Interpretation of Backcalculated Layer Moduli of Crack-and-Seat Pavement from Falling Weight Deflectometer Data MUSTAQUE HOSSAIN AND LARRY A. SCOFIELD In 1986 the

More information

RR 498: The Design of Stabilised Pavements in New Zealand. Alabaster, Patrick, Arampamoorthy, Gonzalez

RR 498: The Design of Stabilised Pavements in New Zealand. Alabaster, Patrick, Arampamoorthy, Gonzalez RR 498: The Design of Stabilised Pavements in New Zealand Alabaster, Patrick, Arampamoorthy, Gonzalez Presentation Outline 1. Project Drivers 2. CAPTIF Construction 3. CAPTIF Testing 4. Field Results 5.

More information

Performance Testing of Bituminous Mixes Using Falling Weight Deflectometer

Performance Testing of Bituminous Mixes Using Falling Weight Deflectometer Performance Testing of Bituminous Mixes Using Falling Weight Deflectometer Praveen Kumar 1, G.D. Ransinchung R.N. 2, and Lt Col Mayank Mehta 3 1 Professor Transportation Engineering Group 2 Associate Professor

More information

TEST ROAD THE ROAD OF EXPERIMENTAL PAVEMENT STRUCTURES

TEST ROAD THE ROAD OF EXPERIMENTAL PAVEMENT STRUCTURES TEST ROAD THE ROAD OF EXPERIMENTAL PAVEMENT STRUCTURES TABLE OF CONTENTS 3 Idea of the project Construction phase Pavement structures 15 Research methodology and equipment 10 11 Measurement of traffic

More information

Development of improved mechanistic deterioration models for flexible pavements

Development of improved mechanistic deterioration models for flexible pavements Development of improved mechanistic deterioration models for flexible pavements Danish Road Institute Report 89 1998 0LQLVWU\ÃRIÃ7UDQVSRUWÃÃ'HQPDUN Development of improved mechanistic deterioration models

More information

Pavement Design Overview. Rebecca S. McDaniel March 10, 2011

Pavement Design Overview. Rebecca S. McDaniel March 10, 2011 Pavement Design Overview Rebecca S. McDaniel March 10, 2011 Plan Review types of pavements Features Advantages and Disadvantages Typical Distresses Common design techniques/considerations AASHTO Mechanistic-Empirical

More information

STABILIZED SUB-BASES FOR HEAVILY TRAFFICKED ROADS IN THE PHILIPPINES

STABILIZED SUB-BASES FOR HEAVILY TRAFFICKED ROADS IN THE PHILIPPINES STABILIZED SUB-BASES FOR HEAVILY TRAFFICKED ROADS IN THE PHILIPPINES Judy F. SESE Assistant Director Bureau of Research and Standards, Department of Public Works and Highways, EDSA, Diliman, Quezon City,

More information

Mechanistic-Empirical Pavement Design Guide

Mechanistic-Empirical Pavement Design Guide Mechanistic-Empirical Pavement Design Guide Tommy Nantung INDOT Research and Development Division February 13, 2014 Pavements are designed to fail (in a predictable way) Performance vs. Design Life From

More information

Pavement reinforcement

Pavement reinforcement Pavement reinforcement Reducing fatigue cracking 2 Innovative solutions for asphalt and unbound pavements and soft ground stabilisation Whether constructing a gravel forestry track over soft soil or resurfacing

More information

Evaluation Plan for Investigation of In- Place Recycling of Asphalt Concrete as Unbound Base Material

Evaluation Plan for Investigation of In- Place Recycling of Asphalt Concrete as Unbound Base Material November 2004 Evaluation Plan for Investigation of In- Place Recycling of Asphalt Concrete as Unbound Base Material PPRC 2003-2004 Strategic Plan Item 2.4.2 Prepared by Partnered Pavement Research Center

More information

Pavement design in the UK and future developments. Andy Collop Professor of Civil Engineering Director of NTEC

Pavement design in the UK and future developments. Andy Collop Professor of Civil Engineering Director of NTEC Pavement design in the UK and future developments Andy Collop Professor of Civil Engineering Director of NTEC Outline Standard UK pavement design Foundation Upper pavement Long Term Pavement Performance

More information

Low Standard Bitumen Surfaced Roads in Kenya: A Case Study on Mackenzie Kandara (D415) Road

Low Standard Bitumen Surfaced Roads in Kenya: A Case Study on Mackenzie Kandara (D415) Road Low Standard Bitumen Surfaced Roads in Kenya: A Case Study on Mackenzie Kandara (D415) Road Albert Ndege & J.M. Mbarua Ministry of Transport and Infrastructure Materials Testing & Research Division Address:

More information

Performance of Drained and Undrained Flexible Pavement. Structures under Wet Conditions. Accelerated Test Data. Test Section 544 Undrained

Performance of Drained and Undrained Flexible Pavement. Structures under Wet Conditions. Accelerated Test Data. Test Section 544 Undrained Performance of Drained and Undrained Flexible Pavement Structures under Wet Conditions Accelerated Test Data Test Section 544 Undrained Prepared for: California Department of Transportation by: Manuel

More information

GEOGRID REINFORCEMENT OF FLEXIBLE PAVEMENTS: A PRACTICAL PERSPECTIVE

GEOGRID REINFORCEMENT OF FLEXIBLE PAVEMENTS: A PRACTICAL PERSPECTIVE TENAX Technical Reference GEOGRID REINFORCEMENT OF FLEXIBLE PAVEMENTS: A PRACTICAL PERSPECTIVE 1999 TENAX Corporation 4800 East Monument Street Baltimore, Maryland 21205 tel: (410) 522-7000 fax: (410)

More information

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN FILIPPO MONTANELLI TENAX SPA, ITALY AIGEN ZHAO TENAX CORPORATION, USA PIETRO RIMOLDI TENAX SPA, ITALY ABSTRACT A large scale experimental program

More information

The development of a plastic geo cellular subbase replacement system laboratory structural trials

The development of a plastic geo cellular subbase replacement system laboratory structural trials The development of a plastic geo cellular subbase replacement system laboratory structural trials S Wilson 1*, R Allen 2, P Tomlinson 2, N Abbott 3 1 EPG Ltd., Warrington Business Park, Unit CG11, Long

More information

Pavement materials: Soil

Pavement materials: Soil Pavement materials: Soil Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Overview 1 2 Sub grade soil 2 2.1 Desirable properties................................ 2 2.2

More information

Dr. P. NANJUNDASWAMY Department of Civil Engineering S J College of Engineering Mysore

Dr. P. NANJUNDASWAMY Department of Civil Engineering S J College of Engineering Mysore Dr. P. NANJUNDASWAMY Department of Civil Engineering S J College of Engineering Mysore 570 006 pnswamy@yahoo.com In this presentation Rigid pavement design considerstions Wheel load and temperature stresses

More information

Evaluating and Modelling the Effect of Carbon Fiber Grid Reinforcement in a Model Asphalt Pavement

Evaluating and Modelling the Effect of Carbon Fiber Grid Reinforcement in a Model Asphalt Pavement Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Evaluating and Modelling the Effect of Carbon Fiber Grid Reinforcement in a Model Asphalt

More information

Transport and Main Roads. Deflection Response. o Benkelman Beam o Deflectograph o Falling Weight Deflectometer

Transport and Main Roads. Deflection Response. o Benkelman Beam o Deflectograph o Falling Weight Deflectometer Deflection Response o Benkelman Beam o Deflectograph o Falling Weight Deflectometer Deflectograph (PAVDEF) Heavy weight deflectometer HWD/FWD Loading system HWD/FWD Bowl Deflection Measurement Devices

More information

INFLUENCE OF ENVIRONMENTAL HUMIDITY ON MECHANICAL PROPERTIES OF NATURAL AND RECYCLED UNBOUND MATERIALS

INFLUENCE OF ENVIRONMENTAL HUMIDITY ON MECHANICAL PROPERTIES OF NATURAL AND RECYCLED UNBOUND MATERIALS ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS Volume 63 47 Number 2, 215 http://dx.doi.org/1.11118/actaun21563245 INFLUENCE OF ENVIRONMENTAL HUMIDITY ON MECHANICAL PROPERTIES OF

More information

PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD

PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD ARMY TM 5-822-13 AIR FORCE AFJMAN 32-1018 PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED DEPARTMENTS OF THE ARMY

More information

Sensitivity of Pavement ME Design Predicted Distresses to Asphalt Materials Inputs

Sensitivity of Pavement ME Design Predicted Distresses to Asphalt Materials Inputs Sensitivity of Pavement ME Design Predicted Distresses to Asphalt Materials Inputs Saman Esfandiarpour Ph.D candidate, Department of Civil Engineering University of Manitoba E3-386 EITC, 15 Gillson Street,

More information

MAINTENANCE OF CRACKED PAVEMENTS WITHIN THE FORMAT PROJECT

MAINTENANCE OF CRACKED PAVEMENTS WITHIN THE FORMAT PROJECT MAINTENANCE OF CRACKED PAVEMENTS WITHIN THE FORMAT PROJECT M.L. Antunes 1, A. van Dommelen 2, P. Sanders 3, J.M. Balay 4 and E.L. Gamiz 5 (1) Laboratório Nacional de Engenharia Civil, Portugal (2) Rijkswaterstaat,

More information

Pavement Distress Categories

Pavement Distress Categories Pavement Distress Identification Asphalt Pavements Raymond Ong, Purdue University William Flora, INDOT Planning Joyce Stone, INDOT Pavement Engineering Samy Noureldin, INDOT Research Pavement Distress

More information

Long-term performance of flexible pavement structures in a changing climate

Long-term performance of flexible pavement structures in a changing climate Long-term performance of flexible pavement structures in a changing climate Jean-Pascal Bilodeau, ing., Ph.D. Research engineer, department of civil engineering, Laval University Guy Doré, ing. Ph.D. Professor,

More information

SEMI-FLEXIBLE PAVEMENT SYSTEMS FOR HEAVY DUTY PAVEMENT SECTIONS

SEMI-FLEXIBLE PAVEMENT SYSTEMS FOR HEAVY DUTY PAVEMENT SECTIONS SEMI-FLEXIBLE PAVEMENT SYSTEMS FOR HEAVY DUTY PAVEMENT SECTIONS Pavement Design Methodology January 2002 Job 2426002 Ref.No. RP001.doc Prepd. JHH Edition 1 Checked JSU Date 2002-01-31 Appd. JHH RAMBØLL

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module-5 LECTURE-

More information

THE DEVELOPMENT OF STRUCTURAL DESIGN MODELS FOR FOAMED BITUMEN TREATED MATERIALS

THE DEVELOPMENT OF STRUCTURAL DESIGN MODELS FOR FOAMED BITUMEN TREATED MATERIALS THE DEVELOPMENT OF STRUCTURAL DESIGN MODELS FOR FOAMED BITUMEN TREATED MATERIALS F M LONG and H L THEYSE Transportek, CSIR, PO Box 395, Pretoria, 0001 INTRODUCTION The use of foamed bitumen treated materials

More information

Discussion of Deep In-Situ Recycling (DISR)

Discussion of Deep In-Situ Recycling (DISR) Discussion of Deep In-Situ Recycling (DISR) Technical Memorandum Prepared For CALIFORNIA DEPARTMENT OF TRANSPORTATION By: Hechter Theyse, Fenella Long, John T. Harvey, and Carl L. Monismith Technical Memorandum

More information

Super pave Mix Design (Permanent Deformation of Flexible Pavement)

Super pave Mix Design (Permanent Deformation of Flexible Pavement) Mix Design (Permanent Deformation of Flexible Pavement) Suresh Department of Civil Engineering, Satpriya College of Engineering, Rohtak ABSTRACT This paper contains an extensive study on the Super Pave

More information

CRCP Long-Term Performance

CRCP Long-Term Performance R E S E A R C H S E R I E S N O. 9 S UMMARY OF CRCP Long-Term Performance PERFORMANCE OF CONTINUOUSLY REINFORCED CONCRETE PAVEMENT IN THE LTPP PROGRAM Identifying design and construction factors that lead

More information

Variations on In Situ Pavement Layer Properties

Variations on In Situ Pavement Layer Properties 16 TRANSPORTATION RESEARCH RECORD 1448 Influence of Stress s and al Variations on In Situ Pavement Layer Properties A. SAMY NOURELDIN Presented is a small-scale investigation of how stress levels and seasonal

More information

MONITORING OF LONG-TERM PAVEMENT PERFORMANCE SITES IN THE WESTERN CAPE PROVINCE OF SOUTH AFRICA

MONITORING OF LONG-TERM PAVEMENT PERFORMANCE SITES IN THE WESTERN CAPE PROVINCE OF SOUTH AFRICA MONITORING OF LONG-TERM PAVEMENT PERFORMANCE SITES IN THE WESTERN CAPE PROVINCE OF SOUTH AFRICA J.K. Anochie-Boateng CSIR Built Environment, Pretoria, South Africa janochieboateng@csir.co.za W.J.vd.M.

More information

Design Considerations for Perpetual Pavements. Gary L. Fitts, P.E. Sr. Field Engineer Asphalt Institute

Design Considerations for Perpetual Pavements. Gary L. Fitts, P.E. Sr. Field Engineer Asphalt Institute Design Considerations for Perpetual Pavements Gary L. Fitts, P.E. Sr. Field Engineer Asphalt Institute Topics How do perpetual pavements differ from other pavement designs? What procedures/tools are available

More information

Gravel Road Building Myth versus Science

Gravel Road Building Myth versus Science Local Government Supervisors Association of Western Australia Gravel Road Building Myth versus Science Brendan Scott Brendan Lecturer in Geotechnical Engineering, School of Civil, Environmental and Mining

More information

REHABILITATION OF UNBOUND GRANULAR PAVEMENTS. Improved design criteria for each region based on precedent performance throughout each network

REHABILITATION OF UNBOUND GRANULAR PAVEMENTS. Improved design criteria for each region based on precedent performance throughout each network REHABILITATION OF UNBOUND GRANULAR PAVEMENTS Improved design criteria for each region based on precedent performance throughout each network IMPROVED DESIGN CRITERIA FOR EACH REGION One of the more widely

More information

AUSTROADS Pavement Design

AUSTROADS Pavement Design AUSTROADS Pavement Design Dr Bryan Pidwerbesky Group Technical Manager Fulton Hogan Ltd Load, W P 0 P 0 Pavement P 1 Subgrade P 1 2 Load, W Pavement Subgrade Compression Tension 3 Pavement Life Cycle Strategies

More information

Evaluation of unbound crushed concrete as road building material Mechanical properties vs field performance

Evaluation of unbound crushed concrete as road building material Mechanical properties vs field performance Evaluation of unbound crushed concrete as road building material Mechanical properties vs field performance Corresponding author: Joralf Aurstad Norwegian Public Roads Administration, Trondheim, Norway

More information

Development of Mechanistic-Empirical Pavement Design for Tropical Climate Using Cement-Treated Base Layer

Development of Mechanistic-Empirical Pavement Design for Tropical Climate Using Cement-Treated Base Layer American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-04, pp-236-244 www.ajer.org Research Paper Open Access Development of Mechanistic-Empirical Pavement

More information

Parametric Study on Geogrid-Reinforced Track Substructure

Parametric Study on Geogrid-Reinforced Track Substructure IJR International Journal of Railway Vol. 6, No. 2 / June 2013, pp. 59-63 ISSN 1976-9067(Print) ISSN 2288-3010(Online) Parametric Study on Geogrid-Reinforced Track Substructure Jeongho Oh Abstract The

More information

Analysis of Paved Shoulder Width Requirements

Analysis of Paved Shoulder Width Requirements Analysis of Paved Shoulder Width Requirements Research Report RR-14-02 Prepared for Texas Department of Transportation Maintenance Division Prepared by Texas A&M Transportation Institute Emmanuel Fernando

More information

Trackbed Evaluation and Design Using FWD Deflections as Performance Indicators

Trackbed Evaluation and Design Using FWD Deflections as Performance Indicators Trackbed Evaluation and Design Using FWD Deflections as Performance Indicators 7th European FWD Users Group 9 th International Conference on Bearing Capacity of Roads, Railways and Airfields Trondheim,

More information

The Danish Pavement Design Guide. Gregers Hildebrand, Danish Road Directorate

The Danish Pavement Design Guide. Gregers Hildebrand, Danish Road Directorate The Danish Pavement Design Guide Gregers Hildebrand, Danish Road Directorate New Danish design guide Modern tool based on sound scientific principles Designs for roads at all levels Designs in three ways:

More information

A STUDY ON THE UTILITY OF PAVEMENT METHOD. Yogesh Kumar Bajpai

A STUDY ON THE UTILITY OF PAVEMENT METHOD. Yogesh Kumar Bajpai A STUDY ON THE UTILITY OF PAVEMENT METHOD Yogesh Kumar Bajpai Abstract Performance of pavement can be generally defined as to the change in their condition or function with respect to age. It can also

More information

EVALUATION OF USING RECLAIMED ASPHALT PAVEMENT (RAP) AS UNBOUND BASE AGGREGATE LAYER

EVALUATION OF USING RECLAIMED ASPHALT PAVEMENT (RAP) AS UNBOUND BASE AGGREGATE LAYER EVALUATION OF USING RECLAIMED ASPHALT PAVEMENT (RAP) AS UNBOUND BASE AGGREGATE LAYER Burak Tanyu (Associate Professor at George Mason University) Saad Ullah (Graduate Research Assistant at GMU) Edward

More information

Road Engineering in the Netherlands

Road Engineering in the Netherlands Road Engineering in the Netherlands Dr. Ir. Sandra Erkens - Rijkswaterstaat The Netherlands 1 The Netherlands Netherlands United Kindom Germany Belgium France The Netherlands Netherlands or Holland: Flat

More information

FINITE ELEMENT ANALYSIS OF CONCRETE BLOCK PAVING

FINITE ELEMENT ANALYSIS OF CONCRETE BLOCK PAVING FINITE ELEMENT ANALYSIS OF CONCRETE BLOCK PAVING Nejad, F.M. Amirkabir University of Technology, Tehran, Iran. ABSTRACT Two and Three-dimensional finite element analyses were conducted on concrete block

More information

Advanced Pavement Evaluation & Design Methods

Advanced Pavement Evaluation & Design Methods Advanced Pavement Evaluation & Design Methods PRESENTED BY : CHUCK A. GEMAYEL, PE - SME MICHAEL J. MAUROVICH, PE - ASP March 5, 2013 OUTLINE Introduction to Non-Destructive Pavement Testing (NDT) Description

More information

Latest Developments in Concrete Research

Latest Developments in Concrete Research Latest Developments in Concrete Research Presented by: Elsabe Kearsley University of Pretoria Introduction Background Concrete properties Appropriate test methods and specifications Examples of applications

More information

Geosynthetic reinforcement in road pavements Guidelines and experiences

Geosynthetic reinforcement in road pavements Guidelines and experiences Geosynthetic reinforcement in road pavements Guidelines and experiences Myre i Lofoten 1984 Arnstein Watn, Senior Advisor SINTEF/ Managing Director WatnConsult AS Photo: SINTEF Hitra in Trøndelag 2008

More information

Carry out Concrete Work

Carry out Concrete Work RIICCM209D Carry out Concrete Work This document is a breif overview of concrete pavement types in Australia, with a particular focus on dowelled joints and reinforcement. Learner Tool 1. INTRODUCTION

More information

ACKNOWLEDGMENT OF SPONSORSHIP

ACKNOWLEDGMENT OF SPONSORSHIP ACKNOWLEDGMENT OF SPONSORSHIP This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted

More information

This document addresses design and construction practices for asphalt

This document addresses design and construction practices for asphalt TECHNICAL BULLETIN CONTENTS Common Wisconsin practice 1 Causes of poor performance 2 WAPA s design proposal 2 Design methodology 3 Design parameters 3 Recommended designs 5 Subdivision Street Design This

More information

Foamed Bitumen. The innovative Binder for Cold Recycling in situ and in plant

Foamed Bitumen. The innovative Binder for Cold Recycling in situ and in plant Foamed Bitumen The innovative Binder for Cold Recycling in situ and in plant What is Foamed Bitumen? 2 3 % bitumen water in 180 C hot bitumen: The bitumen expands 15 to 20 times its original volume. Movie

More information

Permanent Deformation Tests on conventional and polymer modified asphalt mixes

Permanent Deformation Tests on conventional and polymer modified asphalt mixes Permanent Deformation Tests on conventional and polymer modified asphalt mixes PROF. DR. ING. KLAUS WERNER DAMM, Technical University of Hamburg, Germany 1. Introduction As we all know, the increase of

More information

Ground Improvement Using Steel Reinforcing Strips

Ground Improvement Using Steel Reinforcing Strips SAICE Geotechnical Division: Seminar on Ground Improvement Johannesburg, South Africa 8 & 9 October, 2001 Ground Improvement Using Steel Reinforcing Strips ACS Smith Reinforced Earth (Pty) Ltd, Johannesburg,

More information

Performance Comparison of Cold in Place Recycled and Conventional HMA Mixes

Performance Comparison of Cold in Place Recycled and Conventional HMA Mixes IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684 Volume 4, Issue 1 (Nov-Dec. 2012), PP 27-31 Performance Comparison of Cold in Place Recycled and Conventional HMA Mixes Kamran

More information

ARMY TM AIR FORCE AFJMAN PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD

ARMY TM AIR FORCE AFJMAN PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD ARMY TM 5-822-13 AIR FORCE AFJMAN 32-1018 PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED DEPARTMENTS OF THE ARMY

More information

STUDIES ON MARSHALL AND MODIFIED MARSHALL SPECIMENS BY USING CRMB

STUDIES ON MARSHALL AND MODIFIED MARSHALL SPECIMENS BY USING CRMB Int. J. Struct. & Civil Engg. Res. 2014 Sk. Wasim Anwar, 2014 Research Paper ISSN 2319 6009 www.ijscer.com Vol. 3, No. 4, November 2014 2014 IJSCER. All Rights Reserved STUDIES ON MARSHALL AND MODIFIED

More information

Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades

Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades Geosynthetics International, 23, 2, No. 2 Laboratory evaluation of geocell-reinforced gravel subbase over poor subgrades B. F. Tanyu, A. H. Aydilek 2,A.W.Lau 3, T. B. Edil 4 and C. H. Benson 5 Assistant

More information

Implementing the AASHTOWare Pavement ME Design Guide: Manitoba Issues and Proposed Approaches

Implementing the AASHTOWare Pavement ME Design Guide: Manitoba Issues and Proposed Approaches Implementing the AASHTOWare Pavement ME Design Guide: Manitoba Issues and Proposed Approaches M. Alauddin Ahammed, Ph.D., P.Eng. (Principal and Corresponding Author) Pavement Design Engineer Materials

More information

Recycled Base Aggregates in Pavement Applications

Recycled Base Aggregates in Pavement Applications Recycled Base Aggregates in Pavement Applications Jeffrey S. Melton, Ph.D. Outreach Director, Recycled Materials Resource Center jeffrey.melton@unh.edu The Big Picture Sustainability Nexus of major issues

More information

Perpetual Pavement Design An Introduction to the PerRoad Program

Perpetual Pavement Design An Introduction to the PerRoad Program Perpetual Pavement Design An Introduction to the PerRoad Program Dave Timm Auburn University / NCAT Dave Newcomb Texas A&M Transportation Institute Michigan Asphalt Conference 2016 Overview Pavement design

More information

Supeseded. by T-01/15 PAVEMENT STRUCTURE DESIGN GUIDELINES. Technical Circular T-01/04. Geotechnical, Materials and Pavement Engineering

Supeseded. by T-01/15 PAVEMENT STRUCTURE DESIGN GUIDELINES. Technical Circular T-01/04. Geotechnical, Materials and Pavement Engineering MINISTRY OF TRANSPORTATION Geotechnical, Materials, & Pavement Engineering PAVEMENT STRUCTURE DESIGN GUIDELINES Technical Circular T-01/04 Geotechnical, Materials and Pavement Engineering February, 2004

More information

Forensic Pavement Study: Practical Methods, Analysis and Applications

Forensic Pavement Study: Practical Methods, Analysis and Applications Forensic Pavement Study: Practical Methods, Analysis and Applications Chris Olmedo Stantec Consulting 49 Frederick Street, Kitchener, N2H 6M7 ON, Canada Phone: 1-519-585-7493 Fax: 1-519-579-7945 Email:

More information

Rehabilitation Recommendations for FM 97 in Gonzales County

Rehabilitation Recommendations for FM 97 in Gonzales County Rehabilitation Recommendations for FM 97 in Gonzales County Technical Memorandum TM-14-04 Prepared for Texas Department of Transportation Maintenance Division Prepared by Texas A&M Transportation Institute

More information

Fiji Roads Authority GUIDE to PAVEMENT DESIGN. Supplement to the AUSTROADS Guide to the Structural Design of Road Pavements

Fiji Roads Authority GUIDE to PAVEMENT DESIGN. Supplement to the AUSTROADS Guide to the Structural Design of Road Pavements Fiji Roads Authority GUIDE to PAVEMENT DESIGN Supplement to the AUSTROADS Guide to the Structural Design of Road Pavements TA-8777 FIJI 1 VERSION 2 June 2018 TA-8777 FIJI 2 VERSION 2 June 2018 1.0 Introduction

More information

Flexible pavement thickness design by Haryati Yaacob (fka, utm)

Flexible pavement thickness design by Haryati Yaacob (fka, utm) Flexible pavement thickness design by Haryati Yaacob (fka, utm) Flexible pavement thickness design Flexible Pavement Structure Factors to be Considered in Designing Flexible Pavement Thickness Thickness

More information

Figure 1 : Specimen in the TSRST test device (left) and principle of the TSRST (right) [3].

Figure 1 : Specimen in the TSRST test device (left) and principle of the TSRST (right) [3]. 1. INTRODUCTION Awareness increases that the construction of infrastructure needs to become more efficient and sustainable. Rising prices for bitumen and disposal of reclaimed asphalt provide additional

More information

Intelligent Compaction Mn/DOT Demonstrations 2005

Intelligent Compaction Mn/DOT Demonstrations 2005 Intelligent Compaction Mn/DOT Demonstrations 2005 Iowa Geotechnical Workshop December 13, 2005 Ames, IA John Siekmeier, PE Mn/DOT Office of Materials and Road Research Definition Intelligent compaction

More information

BEHAVIOUR OF AN EMULSION TREATED BASE (ETB) LAYER AS DETERMINED FROM HEAVY VEHICLE SIMULATOR (HVS) TESTING.

BEHAVIOUR OF AN EMULSION TREATED BASE (ETB) LAYER AS DETERMINED FROM HEAVY VEHICLE SIMULATOR (HVS) TESTING. BEHAVIOUR OF AN EMULSION TREATED BASE (ETB) LAYER AS DETERMINED FROM HEAVY VEHICLE SIMULATOR (HVS) TESTING. Prof G.J. Jordaan, Pr Eng Tshepega Engineering (Pty) Ltd, Highgrove Office Park, Building No

More information

Characterization of Cement Treated Crushed Rock for Western Australia Roads

Characterization of Cement Treated Crushed Rock for Western Australia Roads Characterization of Cement Treated Crushed Rock for Western Australia Roads RSID6-GEO-6 Characterization of Cement Treated Crushed Rock for Western Australia Roads Peerapong Jitsangiam Curtin University

More information

Technical Support/ Research to the NJDOT. Thomas Bennert Rutgers University Asphalt/Pavement Laboratory (RAPL)

Technical Support/ Research to the NJDOT. Thomas Bennert Rutgers University Asphalt/Pavement Laboratory (RAPL) Technical Support/ Research to the NJDOT Thomas Bennert Rutgers University Asphalt/Pavement Laboratory (RAPL) Tech Support/Research Rutgers Asphalt/Pavement Laboratory (RAPL) implemented to support the

More information

GEOSYNTHETICS AND. Design and Construction of Pavements Using Geosynthetics-II

GEOSYNTHETICS AND. Design and Construction of Pavements Using Geosynthetics-II GEOSYNTHETICS AND REINFORCED SOIL STRUCTURES Design and Construction of Pavements Using Geosynthetics-II P f K R j l Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai 600 036 e-mail:

More information

100 Pavement Requirements Pavement Design Concepts 200-1

100 Pavement Requirements Pavement Design Concepts 200-1 Table of Contents 100 Pavement Requirements 100-1 101 Design Responsibility 100-1 102 Structural Design Period 100-1 102.1 Priority System Design Period... 100-1 102.2 General System Design Period... 100-2

More information

Finite Element Modelling of Asphalt Concrete Pavement Reinforced with Geogrid by Using 3-D Plaxis Software

Finite Element Modelling of Asphalt Concrete Pavement Reinforced with Geogrid by Using 3-D Plaxis Software International Journal of Materials Chemistry and Physics Vol. 2, No. 2, 2016, pp. 62-70 http://www.aiscience.org/journal/ijmcp Finite Element Modelling of Asphalt Concrete Pavement Reinforced with Geogrid

More information

DARWIN-ME Pavement Analysis and Design Manual for NJDOT

DARWIN-ME Pavement Analysis and Design Manual for NJDOT 2012 DARWIN-ME Pavement Analysis and Design Manual for NJDOT Book 2 Manual of Practice Vitillo, Nicholas Rutgers - CAIT Pavement Resource Program 1 4/1/2012 Darwin ME Flexible Pavement Design and Flexible

More information

Impact of Overweight Traffic on Pavement Life Using Weigh-In-Motion Data and Mechanistic-Empirical Pavement Analysis

Impact of Overweight Traffic on Pavement Life Using Weigh-In-Motion Data and Mechanistic-Empirical Pavement Analysis Impact of Overweight Traffic on Pavement Life Using Weigh-In-Motion Data and Mechanistic-Empirical Pavement Analysis Hao Wang 1 Assistant Professor Department of Civil and Environmental Engineering Rutgers,

More information