THICKNESS HICKN ESS ESI ES G I N A ph a t l Pa P v a em e ents for r Hi way a s y s & & St S ree

Size: px
Start display at page:

Download "THICKNESS HICKN ESS ESI ES G I N A ph a t l Pa P v a em e ents for r Hi way a s y s & & St S ree"

Transcription

1 Asphalt Institute Lectures of 4., 5., 6. Week 4. Week Week Week (Adha holiday) 7. Week Prof. DR. Eng. Shafik Jendia Islamic University of Gaza Standard and Regulation THICKNESS DESIGN Asphalt Pavements for Highways & Streets MANUAL SERIES NO. (MS-1) FEBRUARY 1991 ١

2 Design Considerations Classifications of Highways and Streets Selection of Design Input Variables Stage Construction Economic comparisons Classifications of Highways and Streets Rural Functional Systems Principals Arterial System Interstate (free ways) Other principal arterials Minor Arterial System Collector System Major collector Minor collector Local System Urban Functional Systems Principals Arterial System Interstate Other freeways & expressways Other principal arterials Minor Arterial Street System Collector Street System Local Street System ٢

3 Rural Functional Systems Urban Functional Systems ٣

4 Relationship Between Road Systems And Their Functions Classifications of Highways and Streets Classifications of Highways and Streets Home work Compare between the American and European classification systems of highways and streets ٤

5 Selection of Design Input Variables All variables used in design should be based on Studies of actual data. The Design Variables are: Subgrade Properties Material Properties Traffic Values Environmental Factors Design Principles Basis for Design Design Criteria Material Characteristics Environmental Considerations ٥

6 Basis for Design The Pavement is regarded as a multi- layered elastic system. The material in each of the layers are characterized by a modulus of elasticity and a Poisson s ratio. Traffic is expressed in terms of repetitions of an equivalent 80 kn (18,000 lb) single- axle load. Basis for Design The subgrade, the lowest layer, is assumed infinite in the vertically downward and in the horizontal directions. ٦

7 Basis for Design Boussinesq Vertical and Horizontal Stresses Boussinesq Vertical and Horizontal Stresses σ z = P 1 ( a 2 z 3 + z 2 ) 3 σ h 3 P 2 ( ) ( 1+ ) µ z z = 1+ 2µ a + z 2 2 ( a + z ) τ v = 2 1 ( σ σ ) z h ٧

8 Boussinesq Vertical and Horizontal Stresses Basis for Design Boussinesq Relationship Contact Pressure (p), Modulus of Soil or Subgrade(E) and Deflection (D) Soil Deflection (mm D a D = 1. 5 P E a semi infinite mass m,e a D a a mass m,e E-Modulus of Soil (MN/m 2 ) ٨

9 Basis for Design Environmental Considerations Subgrade modulus variation for the conditions where freeze-thaw occurs Frozen Subgrade Modulus Normal Subgrade Modulus Thaw (Reduced) Subgrade Modulus Basis for Design The other layers, of finite thickness, are assumed infinite in extent in the horizontal directions. Full continuity ( full friction ) is assumed at the interfaces between each of the layers. ٩

10 Design Criteria In the methodology adopted for this manual, loads produce two strains which, are critical for design purposes. They are: -the horizontal tensile strain on the underside of the lowest asphalt-bound layer. -the vertical compressive strain at the surface of the subgrade. Design Criteria ١٠

11 Material Characteristics All Material were characterized by a modulus of elasticity and Poisson's ratio. Modulus of Elasticity = dynamic modulus for asphalt mixture. = resilient modulus for untreated granular or soil (subgrade) materials. The dynamic modulus of asphalt mixtures is highly dependent upon pavement temperature. Material Characteristics Untreated Granular Materials Resilient Modulus of untreated granular materials vary with stress conditions in the pavement. Values used in developing the design charts given in the Appendix of the manual vary from fewer than 103 MPa (15000 psi) to more than 345 MPa (50, psi) ١١

12 Environmental Considerations Mean Annual Air Temperature (MAAT) Three sets of environmental conditions are selected to represent the range of conditions to which the manual should apply. Mean Annual Air Temp. Less than or equal 7 o C (45 o F) = 15.5 o C (60 o F) Greater than or equal 24 o C (75 o F) Frost Effects yes Possible No Soil Stresses and deflection Home work 1-Calculate the vertical and horizontal stresses at depth 0.1a, 0.3a, 0.5a, a, 5a, 10a. Draw the curves, which show the relationship between all stresses and the depth (z). Where wheel load = 40 kn 2- Calculate the deflection on the surface of soil (subgrade E 30 MN/m 2 ) caused by a wheel load of 40 kn. Plot the relationship between deflection and E-Modulus of different Soils (E = 10, 20, 40, 60, 100, 150,... MN/m 2 ). ١٢

13 Traffic Analysis Traffic Volume Estimates (initial and future traffic volume, analysis period, classification and number of trucks, design lane, design period, traffic growth, etc..) Estimating ESAL Determining Design ESAL Traffic Analysis Traffic Volume Estimates ١٣

14 Traffic Analysis Traffic Volume Estimates Percentage of Total Truck Traffic in Design Lane Number of Traffic Lanes (Two Directions) or more Percentage of Trucks in Design Lane (35-48)* 40 (35-48)* * Probable range Traffic Analysis Traffic Volume Estimates ١٤

15 Traffic Analysis Estimating EAL Traffic Analysis Estimating EAL ١٥

16 Traffic Analysis Estimating EAL Traffic Analysis Estimating EAL ١٦

17 Traffic Analysis Estimating EAL Traffic Analysis Estimating EAL Example of U.S. axleload distribution (based on truck count and weight data for typical U.S. Interstate rural highways) ١٧

18 Traffic Analysis Estimating EAL Traffic Analysis Determining Design EAL Example worksheet for traffic Analysis 2000 ١٨

19 Traffic Analysis Home work In the previous Table 1-How can you determine / calculate the number of vehicle per year. 2-Classify the road according to its average truck factor. Material Evaluation Subgrade Soils Improved Subgrade Evaluation Methods Sampling and Testing Selection of Design Subgrade Resilient Modulus Subgrade Compaction ١٩

20 Improved Subgrade An improved subgrade is any course or courses of improved material between the native subgrade soil and the pavement structure. It may be a treated inplace material, or an imported material. Evaluation Methods A subgrade resilient modulus can be determined from a laboratory test in accordance with procedures described in the Asphalt Institute's Soils Manual (MS-10). The resilient modulus may be approximated from the CBR test values according to the relationship Mr (MPa) =10.3 CBR or Mr (psi) = 1500 CBR. The resilient modulus may be approximated from the Resistance R-value test results according to the relationship Mr (MPa) = (R-value) or Mr (psi) = (R-value). ٢٠

21 Subgrade Soils Tests and Sample Sizes Selection of Design Subgrade Resilient Modulus ٢١

22 Selection of Design Subgrade Resilient Modulus Selection of Design Subgrade Resilient Modulus ٢٢

23 Selection of Design Subgrade Resilient Modulus From the graph, determine the design subgrade Mr value for the different design EAL values. EAL Design Percentile Value Design Subgrade Mr. Mpa PSi , Material Evaluation Untreated Aggregate Base and Subbase Quality Requirements ٢٣

24 Material Evaluation Untreated Aggregate Base and Subbase Quality Requirements Material Evaluation Home work U- Tubes 1-Sand Equivalent Test 2-Field Density Test 3-R-Value Test 4-Resilient Modulus Test ٢٤

25 Structural Design Procedure Design Procedure Select or determine input data - traffic value, EAL, - subgrade resilient modulus, Mr, -surface and base types. Determine design thicknesses for the specific conditions described by the input data. Prepare stage construction design, if appropriate. Make an economic analysis of the various solutions arrived at the design problem Select final design. Design Procedure ٢٥

26 Minimum Thickness of Asphalt concrete Material Characteristics Emulsified Asphalt Mixes The emulsified asphalt mixes included in this manual are characterized by three types, depending on the type of aggregate. They are: -Type I: made with processed, dense-graded aggregates. -Type II: made with semi-processed, crusher-run, pit-run or bank-run aggregates. -Type III: made with sand or siltysands. ٢٦

27 Thickness Determination For Full-Depth Asphalt Concrete Pavements Example 1 ٢٧

28 Example 1 Thickness Determination For Emulsified Asphalt Base Pavements ٢٨

29 Example 2 Example mm ٢٩

30 Minimum Thickness of Asphalt concrete Example 2 ٣٠

31 Thickness Determination For Pavements with Asphalt concrete Over Untreated Aggregate Base Example 3 ٣١

32 Example mm Example mm ٣٢

33 Minimum Thickness of Asphalt concrete over Untreated Aggregate Base Pavement Design Home work 1- Design a pavement with full depth asphalt concrete Subgrade Modulus: Mr. = 50 MPa (7140 PSI) MAAT = 7 o C, 15,5 o C and 24 o C ESAL = 5x10 6 Comparison is required 2- Design a pavement with emulsified asphalt base Subgrade Modulus: Mr. = 50 MPa (7140 PSI) MAAT = 7 o C, 15,5 o C and 24 o C ESAL = 5x10 6 Comparison is required 3- Design a pavement with untreated aggregate base Subgrade Modulus: Mr. = 50 MPa (7140 PSI) MAAT = 7 o C, 15,5 o C and 24 o C ESAL = 5x10 6 Comparison is required ٣٣

34 Thickness Determination For Pavements with Emulsified Asphalt Mixes Over Untreated Aggregate Base Thickness Determination For Pavements with Emulsified Asphalt Mixes Over Untreated Aggregate Base ٣٤

35 Example 4 Example 4 ٣٥

36 Pavement Design Home work 1-Design a pavement with: - an asphalt concrete surface - an emulsified asphalt base and - an untreated aggregate base Given: Subgrade Modulus: Mr. = 50 MPa (7140 PSI) MAAT = 7 o C, 15,5 o C and 24 o C ESAL = 5x10 6 Comparison is required ٣٦

7.1 Flexible Pavement Design. 7.2 Rigid Pavement Design TRANSPORTATION SYSTEM ENGINEERING 1, 61360

7.1 Flexible Pavement Design. 7.2 Rigid Pavement Design TRANSPORTATION SYSTEM ENGINEERING 1, 61360 7.1 Flexible Pavement Design 7.2 Rigid Pavement Design 1 Highway pavements are divided into two main categories: Flexible -Bituminous concrete Rigid -Portland cement concrete- Flexible pavements usually

More information

Spectrum of Axles Approach

Spectrum of Axles Approach Spectrum of Axles Approach Typical Axle Load Spectrum Axle Load (kn) Single Number of Axles Tandem Tridem Quad 50 60 5,000 400 100 5 61 80 3,000 2,000 500 10 81 100 200 5,000 800 30 101 120 50 4,000 1,000

More information

A Simplified Pavement Design Tool TxAPA Annual Meeting Danny Gierhart, P.E. Senior Regional Engineer Asphalt Institute.

A Simplified Pavement Design Tool TxAPA Annual Meeting Danny Gierhart, P.E. Senior Regional Engineer Asphalt Institute. A Simplified Pavement Design Tool 2016 TxAPA Annual Meeting Danny Gierhart, P.E. Senior Regional Engineer Asphalt Institute www.pavexpressdesign.com What are some methods people use to decide how thick

More information

TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT

TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT There are two types of pavements based on design considerations i.e. flexible pavement and rigid pavement. Difference between flexible and rigid pavements

More information

Perpetual Pavement Design An Introduction to the PerRoad Program

Perpetual Pavement Design An Introduction to the PerRoad Program Perpetual Pavement Design An Introduction to the PerRoad Program Dave Timm Auburn University / NCAT Dave Newcomb Texas A&M Transportation Institute Michigan Asphalt Conference 2016 Overview Pavement design

More information

Comparison of Three Methods of Pavement Design for Lexington-Fayette County

Comparison of Three Methods of Pavement Design for Lexington-Fayette County Transportation Kentucky Transportation Center Research Report University of Kentucky Year 1989 Comparison of Three Methods of Pavement Design for Lexington-Fayette County David L. Allen University of Kentucky,

More information

Dr. P. NANJUNDASWAMY Department of Civil Engineering S J College of Engineering Mysore

Dr. P. NANJUNDASWAMY Department of Civil Engineering S J College of Engineering Mysore Dr. P. NANJUNDASWAMY Department of Civil Engineering S J College of Engineering Mysore 570 006 pnswamy@yahoo.com In this presentation Rigid pavement design considerstions Wheel load and temperature stresses

More information

2016 Louisiana Transportation Conference Danny Gierhart, P.E. Regional Engineer Asphalt Institute

2016 Louisiana Transportation Conference Danny Gierhart, P.E. Regional Engineer Asphalt Institute A Simplified Pavement Design Tool 2016 Louisiana Transportation Conference Danny Gierhart, P.E. Regional Engineer Asphalt Institute www.pavexpressdesign.com What Is PaveXpress? A free, online tool to help

More information

Overview. What is a Perpetual Pavement? Design Concept. PerRoad Pavement Design Software. Design Against Deep Structural Problems

Overview. What is a Perpetual Pavement? Design Concept. PerRoad Pavement Design Software. Design Against Deep Structural Problems PerRoad Pavement Design Sotware SEAUPG Annual Meeting Nashville, TN December 13, 2 Overview Perpetual Pavements Deined Design Principles Design Sotware PerRoad 2.4 Case Study Bin-Bo Expressway, Shandong

More information

Rational Structural Designs for Highways in Different Climatic Zones in Sudan

Rational Structural Designs for Highways in Different Climatic Zones in Sudan IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 04 (April. 2014), V2 PP 13-26 www.iosrjen.org Rational Structural Designs for Highways in Different Climatic

More information

Roads and Transport Department Pavement Design 3 rd Year TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT

Roads and Transport Department Pavement Design 3 rd Year TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT TYPES OF PAVEMENT FLEXIBLE AND RIGID PAVEMENT There are two types of pavements based on design considerations i.e. flexible pavement and rigid pavement. Difference between flexible and rigid pavements

More information

Integrating Structural and Hydrologic Design in Permeable Pavement David R. Smith Technical Director Interlocking Concrete Pavement Institute

Integrating Structural and Hydrologic Design in Permeable Pavement David R. Smith Technical Director Interlocking Concrete Pavement Institute Integrating Structural and Hydrologic Design in Permeable Pavement David R. Smith Technical Director Interlocking Concrete Pavement Institute 2010 Concrete Sustainability Conference 1 National Ready Mixed

More information

RESILIENT MODULUS TESTING OF OPEN GRADED DRAINAGE LAYER AGGREGATES FOR INTERLOCKING CONCRETE BLOCK PAVEMENTS

RESILIENT MODULUS TESTING OF OPEN GRADED DRAINAGE LAYER AGGREGATES FOR INTERLOCKING CONCRETE BLOCK PAVEMENTS RESILIENT MODULUS TESTING OF OPEN GRADED DRAINAGE LAYER AGGREGATES FOR INTERLOCKING CONCRETE BLOCK PAVEMENTS SUMMARY David Hein, P. Eng., Principal Engineer Applied Research Associates, Inc. 541 Eglinton

More information

Technical Memorandum-TM UCB PRC Overlay Design for Cracked and Seated Portland Cement Concrete. (PCC) Pavement Interstate Route 710

Technical Memorandum-TM UCB PRC Overlay Design for Cracked and Seated Portland Cement Concrete. (PCC) Pavement Interstate Route 710 Technical Memorandum-TM UCB PRC 99-3 Overlay Design for Cracked and Seated Portland Cement Concrete (PCC) Pavement Interstate Route 710 Prepared for: Long Life Pavement Task Force Prepared by: C. L. Monismith

More information

A Simplified Pavement Design Tool

A Simplified Pavement Design Tool A Simplified Pavement Design Tool Marshall Klinefelter Maryland Asphalt Association September 25, 2015 www.pavexpressdesign.com Brief Overview Why PaveXpress? What Is PaveXpress? An Introduction Overview

More information

SUDAS Revision Submittal Form

SUDAS Revision Submittal Form SUDAS Revision Submittal Form Status Date: As of 3/20/2017 Topic: Pavement thickness Manual: Design Manual Location: Section 5F-1 Requested Revision: Reason for Revision: Comments: See attached. Updating

More information

SUDAS Revision Submittal Form

SUDAS Revision Submittal Form SUDAS Revision Submittal Form Status Date: As of 3/15/2018 Topic: Pavement thickness Manual: Design Manual Location: Section 5F-1 Requested Revision: Reason for Revision: Comments: See attached. Updating

More information

Sensitivity analysis of pavement thickness design software for local roads in Iowa

Sensitivity analysis of pavement thickness design software for local roads in Iowa University of Iowa Iowa Research Online Theses and Dissertations Spring 2013 Sensitivity analysis of pavement thickness design software for local roads in Iowa Jeremy Purvis University of Iowa Copyright

More information

Lecture 12 TxDOT Flexible Pavement Design Method Texas ME (FPS21)

Lecture 12 TxDOT Flexible Pavement Design Method Texas ME (FPS21) Lecture 12 TxDOT Flexible Pavement Design Method Texas ME (FPS21) Background Design software for the TxDOT method is called Texas Flexible Pavement System (FPS21). The Triaxial procedure supplements FPS

More information

Supeseded. by T-01/15 PAVEMENT STRUCTURE DESIGN GUIDELINES. Technical Circular T-01/04. Geotechnical, Materials and Pavement Engineering

Supeseded. by T-01/15 PAVEMENT STRUCTURE DESIGN GUIDELINES. Technical Circular T-01/04. Geotechnical, Materials and Pavement Engineering MINISTRY OF TRANSPORTATION Geotechnical, Materials, & Pavement Engineering PAVEMENT STRUCTURE DESIGN GUIDELINES Technical Circular T-01/04 Geotechnical, Materials and Pavement Engineering February, 2004

More information

Easy-To-Use Perpetual Pavement Design Software

Easy-To-Use Perpetual Pavement Design Software Easy-To-Use Perpetual Pavement Design Software Rocky Mountain Asphalt Conference February 25, 2010 Dr. David Timm, P.E. Department of Civil Engineering Auburn University What is a Perpetual Pavement? A

More information

BEST PRACTICE DESIGN FOR CONCRETE PAVERS FOR CANADIAN MUNICIPAL APPLICATIONS

BEST PRACTICE DESIGN FOR CONCRETE PAVERS FOR CANADIAN MUNICIPAL APPLICATIONS BEST PRACTICE DESIGN FOR CONCRETE PAVERS FOR CANADIAN MUNICIPAL APPLICATIONS David Hein, P.Eng.,* Patrick Leong and Dr. Susan Tighe, P.Eng.** *Applied Research Associates Inc. 5401 Eglinton Avenue West,

More information

Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure.

Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure. Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure Pavement failures Themes of lecture Failure types of pavements Different

More information

A STUDY ON THE UTILITY OF PAVEMENT METHOD. Yogesh Kumar Bajpai

A STUDY ON THE UTILITY OF PAVEMENT METHOD. Yogesh Kumar Bajpai A STUDY ON THE UTILITY OF PAVEMENT METHOD Yogesh Kumar Bajpai Abstract Performance of pavement can be generally defined as to the change in their condition or function with respect to age. It can also

More information

Pavement Design Webinar

Pavement Design Webinar Pavement Design Webinar JUNE 23, 2016 COLORADO ASPHALT PAVEMENT ASSOCIATION Who is CAPA? Producers /Suppliers Local Agencies Contractors Designers We are a resource for YOU 1 Mike Skinner, PE Director

More information

SILVA CELL 2 ENGINEERING REPORT AND TESTING CONCLUSIONS. Prepared by: Derek Barkey, Innova Engineering

SILVA CELL 2 ENGINEERING REPORT AND TESTING CONCLUSIONS. Prepared by: Derek Barkey, Innova Engineering SILVA CELL 2 ENGINEERING REPORT AND TESTING CONCLUSIONS Prepared by: Derek Barkey, Innova Engineering Table of Contents Executive Summary. 1 Test Report Introduction.. Test Configuration... Test Results..

More information

GEOGRID REINFORCEMENT OF FLEXIBLE PAVEMENTS: A PRACTICAL PERSPECTIVE

GEOGRID REINFORCEMENT OF FLEXIBLE PAVEMENTS: A PRACTICAL PERSPECTIVE TENAX Technical Reference GEOGRID REINFORCEMENT OF FLEXIBLE PAVEMENTS: A PRACTICAL PERSPECTIVE 1999 TENAX Corporation 4800 East Monument Street Baltimore, Maryland 21205 tel: (410) 522-7000 fax: (410)

More information

Mechanistic-Empirical Pavement Design Guide

Mechanistic-Empirical Pavement Design Guide Mechanistic-Empirical Pavement Design Guide Tommy Nantung INDOT Research and Development Division February 13, 2014 Pavements are designed to fail (in a predictable way) Performance vs. Design Life From

More information

Design Considerations for Perpetual Pavements. Gary L. Fitts, P.E. Sr. Field Engineer Asphalt Institute

Design Considerations for Perpetual Pavements. Gary L. Fitts, P.E. Sr. Field Engineer Asphalt Institute Design Considerations for Perpetual Pavements Gary L. Fitts, P.E. Sr. Field Engineer Asphalt Institute Topics How do perpetual pavements differ from other pavement designs? What procedures/tools are available

More information

Chapter 19 Design of Flexible Pavements

Chapter 19 Design of Flexible Pavements Chapter 19 Design of Flexible Pavements Objective Describe: Structural Components of a Flexible Pavement,,,,, Soil Stabilization Methods,,,,, General Principles of Flexible Pavement Design,,,,, 2 Chapter

More information

SUDAS Revision Submittal Form

SUDAS Revision Submittal Form SUDAS Revision Submittal Form Status Date: As of 5/18/2018 Topic: Pavement thickness design Manual: Design Manual Location: Section 5F-1 Requested Revision: Reason for Revision: Comments: See attached.

More information

TRANSPORTATION RESEARCH BOARD. Structural Design of Porous Asphalt Pavements. Tuesday, July 17, :00-3:30 PM ET

TRANSPORTATION RESEARCH BOARD. Structural Design of Porous Asphalt Pavements. Tuesday, July 17, :00-3:30 PM ET TRANSPORTATION RESEARCH BOARD Structural Design of Porous Asphalt Pavements Tuesday, July 17, 2018 2:00-3:30 PM ET The Transportation Research Board has met the standards and requirements of the Registered

More information

TECH SPEC. temperatures. Once installed, there is no waiting time for curing. The pavement is immediately

TECH SPEC. temperatures. Once installed, there is no waiting time for curing. The pavement is immediately TECH SPEC N u m b er 4 Structural Design of Interlocking Concrete Pavement for Roads and Parking Lots History The concept of interlocking concrete pavement dates back to the roads of the Roman Empire.

More information

ARMY TM AIR FORCE AFJMAN PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD

ARMY TM AIR FORCE AFJMAN PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD ARMY TM 5-822-13 AIR FORCE AFJMAN 32-1018 PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED DEPARTMENTS OF THE ARMY

More information

SR-25 Roller Compacted Concrete Pavement Evaluation

SR-25 Roller Compacted Concrete Pavement Evaluation SR-25 Roller Compacted Concrete Pavement Evaluation Tommy Nantung INDOT Research and Development Division Roadmap to Presentation Project overview Pavement joints, surface and anticipated cracks Pavement

More information

PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD

PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD ARMY TM 5-822-13 AIR FORCE AFJMAN 32-1018 PAVEMENT DESIGN FOR ROADS, STREETS, AND OPEN STORAGE AREAS, ELASTIC LAYERED METHOD APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED DEPARTMENTS OF THE ARMY

More information

Scholars Research Library

Scholars Research Library Available online at www.scholarsresearchlibrary.com European Journal of Applied Engineering and Scientific Research, 2013, 2 (2):8-22 (http://scholarsresearchlibrary.com/archive.html) ISSN: 2278 0041 Layered

More information

Pavement design in the UK and future developments. Andy Collop Professor of Civil Engineering Director of NTEC

Pavement design in the UK and future developments. Andy Collop Professor of Civil Engineering Director of NTEC Pavement design in the UK and future developments Andy Collop Professor of Civil Engineering Director of NTEC Outline Standard UK pavement design Foundation Upper pavement Long Term Pavement Performance

More information

Expected traffic, pavement thickness, fatigue and rutting strain relationship for low volume asphalt pavement

Expected traffic, pavement thickness, fatigue and rutting strain relationship for low volume asphalt pavement The International Journal Of Engineering And Science (IJES) Volume 2 Issue 8 Pages 62-77 2013 ISSN(e): 2319 1813 ISSN(p): 2319 1805 Expected traffic, pavement thickness, fatigue and rutting strain relationship

More information

BEHAVIOUR OF AN OLD EPS LIGHT-WEIGHT FILL AT VAMMALA, FINLAND. Seppo Saarelainen 1 and Heikki Kangas 2

BEHAVIOUR OF AN OLD EPS LIGHT-WEIGHT FILL AT VAMMALA, FINLAND. Seppo Saarelainen 1 and Heikki Kangas 2 BEHAVIOUR OF AN OLD EPS LIGHT-WEIGHT FILL AT VAMMALA, FINLAND Seppo Saarelainen 1 and Heikki Kangas 2 ABSTRACT Characteristics of a pavement and its EPS compensation fill were investigated in the fall

More information

AUSTRIAN PAVEMENT DESIGN METHOD A CRITICAL REVIEW. FLEXIBLE PAVEMENT DESIGN WORKSHOP Ljubljana, Ljubljana, 2012

AUSTRIAN PAVEMENT DESIGN METHOD A CRITICAL REVIEW. FLEXIBLE PAVEMENT DESIGN WORKSHOP Ljubljana, Ljubljana, 2012 FLEXIBLE PAVEMENT DESIGN WORKSHOP Ljubljana, 2012 AUSTRIAN PAVEMENT DESIGN METHOD A CRITICAL REVIEW FLEXIBLE RONALD PAVEMENT BLAB & BERNHARD DESIGN HOFKOWORKSHOP Ljubljana, 2012 INSTITUTE OF TRANSPORTATION

More information

Numerical Study of Effects of Different Base on Asphalt Pavement Responses Using FEM

Numerical Study of Effects of Different Base on Asphalt Pavement Responses Using FEM 5th International Conference on Civil Engineering and Transportation (ICCET 2015) Numerical Study of Effects of Different Base on Asphalt Pavement Responses Using FEM Lu Bai 1, a *, Guo Cong 2,b, Jianping

More information

Pavement Design Catalogue Development for Pavements in Energy Affected Areas of Texas

Pavement Design Catalogue Development for Pavements in Energy Affected Areas of Texas Pavement Design Catalogue Development for Pavements in Energy Affected Areas of Texas Implementation Report IR-15-01 Prepared for Texas Department of Transportation Maintenance Division Prepared by Texas

More information

Performance Characteristics of Liquid and Lime-Treated Asphalt Mixtures

Performance Characteristics of Liquid and Lime-Treated Asphalt Mixtures Performance Characteristics of Liquid and Lime-Treated Asphalt Mixtures P. Sebaaly & E. Hajj Department of Civil& Env. Engineering,University of Nevada, Reno, Nevada, USA ABSTRACT: An extensive laboratory

More information

Ultra-Thin Reinforced Concrete Pavements (UTRCP): Addressing the design issues

Ultra-Thin Reinforced Concrete Pavements (UTRCP): Addressing the design issues Ultra-Thin Reinforced Concrete Pavements (UTRCP): Addressing the design issues L du Plessis, A Kilian*, K Mngaza** CSIR Built Environment, Meiring Naudé Street, Brummeria, Pretoria, South Africa, Phone:

More information

Best Practices for Design and Construction of Low Volume Roads. MnPAVE Training, 2002 Gene Skok,

Best Practices for Design and Construction of Low Volume Roads. MnPAVE Training, 2002 Gene Skok, Best Practices for Design and Construction of Low Volume Roads MnPAVE Training, 2002 Gene Skok, skokx003@umn.edu Best Practices for Design and Construction of HMA Pavements Sponsored by : Minnesota Local

More information

Development of Mechanistic-Empirical Pavement Design for Tropical Climate Using Cement-Treated Base Layer

Development of Mechanistic-Empirical Pavement Design for Tropical Climate Using Cement-Treated Base Layer American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-04, pp-236-244 www.ajer.org Research Paper Open Access Development of Mechanistic-Empirical Pavement

More information

Design of Rigid Pavements

Design of Rigid Pavements Traffic and Highway Engineering (ІІ) CVL 4324 Chapter 20 Design of Rigid Pavements Dr. Sari Abusharar Assistant Professor Civil Engineering Department Faculty of Applied Engineering and Urban Planning

More information

SECTION DESIGN, MIXTURE DESIGNS AND QUALITY CONTROL

SECTION DESIGN, MIXTURE DESIGNS AND QUALITY CONTROL SECTION DESIGN, MIXTURE DESIGNS AND QUALITY CONTROL APWA MARCH 22, 2005 STEVEN R. MARVIN Pavement Design Components Material Type Asphalt Concrete Aggregate Base Cement Treated Base/Recycled CTS Traffic

More information

PAVEMENT DESIGN: Flexible Pavement Design (JKR Method)

PAVEMENT DESIGN: Flexible Pavement Design (JKR Method) CHAPTER 3 PAVEMENT DESIGN: Flexible Pavement Design (JKR Method) FACTORS THAT INFLUENCE PAVEMENT DESIGN () Traffic Loading Magnitude of axle load Wheel configuration Volume and composition of axle loads

More information

SEAUPG 2002 CONFERENCE

SEAUPG 2002 CONFERENCE SEAUPG CONFERENCE Top-Down Cracking: Causes and Potential Solutions Dr. Rey Roque, P.E. University of Florida 35-39-9537 rroqu@ce.ufl.edu Introduction Surface-initiated longitudinal wheel path cracking:

More information

Transport and Main Roads. Deflection Response. o Benkelman Beam o Deflectograph o Falling Weight Deflectometer

Transport and Main Roads. Deflection Response. o Benkelman Beam o Deflectograph o Falling Weight Deflectometer Deflection Response o Benkelman Beam o Deflectograph o Falling Weight Deflectometer Deflectograph (PAVDEF) Heavy weight deflectometer HWD/FWD Loading system HWD/FWD Bowl Deflection Measurement Devices

More information

Chapter Forty-four PAVEMENT DESIGN BUREAU OF LOCAL ROADS AND STREETS MANUAL

Chapter Forty-four PAVEMENT DESIGN BUREAU OF LOCAL ROADS AND STREETS MANUAL Chapter Forty-four PAVEMENT DESIGN BUREAU OF LOCAL ROADS AND STREETS MANUAL Jan 2012 PAVEMENT DESIGN 44(i) Chapter Forty-four PAVEMENT DESIGN Table of Contents Section Page 44-1 GENERAL... 44-1(1) 44-1.01

More information

Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure.

Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure. Széchenyi István University Faculty of Architecture, Civil Engineering and Transport Sciences Department of Transport Infrastructure Design traffic, Bearing capacity, Falling Weight Deflectometer (FWD)

More information

Influence of Subgrade/Subbase Non-Uniformity on PCC Pavement Performance

Influence of Subgrade/Subbase Non-Uniformity on PCC Pavement Performance Influence of Subgrade/Subbase Non-Uniformity on PCC Pavement Performance Tyson Rupnow, Ph.D. Concrete Research Engineer Louisiana Transportation Research Center David White, Ph.D. Halil Ceylan, Ph.D. Outline

More information

Published in Roading Geotechnics 98, Institute of Professional Engineers, Auckland (1998), pp

Published in Roading Geotechnics 98, Institute of Professional Engineers, Auckland (1998), pp APPLICATIONS OF MECHANISTIC PAVEMENT DESIGN IN NEW ZEALAND (II) Case Histories Comparing Design Prediction with Post Construction Measurement and Analysis Graham Salt, Tonkin & Taylor Ltd William Gray,

More information

KENTRACK Version Railway Trackbed Structural Design Software

KENTRACK Version Railway Trackbed Structural Design Software KENTRACK Version 2.0.1 Railway Trackbed Structural Design Software Background KENTRACK Developed specifically to analyze HMA trackbeds Has the versatility to analyze all-granular trackbeds Initially a

More information

Pavement Design & Rehabilitation Manual October 19, 2007 Update

Pavement Design & Rehabilitation Manual October 19, 2007 Update Pavement Design & Rehabilitation Manual October 19, 2007 Update This file contains the October 19, 2007 update to the Pavement Design & Rehabilitation Manual. The file is set up for double sided printing.

More information

Analysis of Stress- Strain and Deflection of Flexible Pavements Using Finite Element Method Case Study on Bako-Nekemte Road

Analysis of Stress- Strain and Deflection of Flexible Pavements Using Finite Element Method Case Study on Bako-Nekemte Road Journal of Civil, Construction and Environmental Engineering 2017; 2(4): 100-111 http://www.sciencepublishinggroup.com/j/jccee doi: 10.11648/j.jccee.20170204.11 Analysis of Stress- Strain and Deflection

More information

Sensitivity Study of 1986 AASHTO Guide for Design of Pavement Structures

Sensitivity Study of 1986 AASHTO Guide for Design of Pavement Structures Transportation Kentucky Transportation Center Research Report University of Kentucky Year 1991 Sensitivity Study of 1986 AASHTO Guide for Design of Pavement Structures Herbert F. Southgate University of

More information

PART II : PAVEMENT DESIGN METHOD

PART II : PAVEMENT DESIGN METHOD 7 PART II : PAVEMENT DESIGN METHOD 1. INTRODUCTION The structural design guide developed consists of nomographs from which the thickness of the asphaltic layers in relation to the thickness of the base

More information

RESPONSE OF IOWA PAVEMENTS TO A TRACKED AGRICULTURAL VEHICLE

RESPONSE OF IOWA PAVEMENTS TO A TRACKED AGRICULTURAL VEHICLE RESPONSE OF IOWA PAVEMENTS TO A TRACKED AGRICULTURAL VEHICLE FINAL REPORT Sponsored by the Highway Division of the Iowa Department of Transportation Iowa DOT Project HR-1075 CTRE Management Project 99-51

More information

Objectives: NETWORK PAVEMENT EVALUATION USING FWD AND GPR

Objectives: NETWORK PAVEMENT EVALUATION USING FWD AND GPR NETWORK PAVEMENT EVALUATION USING FWD AND GPR Dwayne Harris, M.Sc. Samy Noureldin, Ph.D., PE Research Division INDOT Objectives:. Prepare for Full Implementation of AASHTO 22 (Mechanistic Information)

More information

Pavement Design of Unpaved Roadways

Pavement Design of Unpaved Roadways Pavement Design of Unpaved Roadways C-TEP (Center for Transportation Engineering & Planning) Annual Pavement Workshop February 3, 2015, Calgary, Alta. Glen Légère, M.Eng., F.Eng. Research Leader Resource

More information

1 Background. 2 Example Vehicles used in the Analysis. NZ Transport Agency (NZTA) - Hamilton PO Box 973 Waikato Mail Centre Hamilton 3240 New Zealand

1 Background. 2 Example Vehicles used in the Analysis. NZ Transport Agency (NZTA) - Hamilton PO Box 973 Waikato Mail Centre Hamilton 3240 New Zealand 32 Harington Street PO Box 903, Tauranga 3140, New Zealand T: +64 7 578 0896 // F: +64 7 578 2968 E: info@beca.com // www.beca.com NZ Transport Agency (NZTA) - Hamilton PO Box 973 Waikato Mail Centre Hamilton

More information

PERFORMANCE OF CONCRETE BLOCK PAVEMENT ON LOW-VOLUME ROAD

PERFORMANCE OF CONCRETE BLOCK PAVEMENT ON LOW-VOLUME ROAD 21 PAVE 92 PERFORMANCE OF CONCRETE BLOCK PAVEMENT ON LOW-VOLUME ROAD Atsushi Kasahara Professor, Hokkaido Institute of Technology, Sapporo, Japan Mitsuru Komura Secretary, Interlocking Block Association

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of civil engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module-5 LECTURE-

More information

ELMOD 6: THE DESIGN AND STRUCTURAL EVALUATION PACKAGE FOR ROAD, AIRPORT AND INDUSTRIAL PAVEMENTS

ELMOD 6: THE DESIGN AND STRUCTURAL EVALUATION PACKAGE FOR ROAD, AIRPORT AND INDUSTRIAL PAVEMENTS ELMOD 6: THE DESIGN AND STRUCTURAL EVALUATION PACKAGE FOR ROAD, AIRPORT AND INDUSTRIAL PAVEMENTS SUMMARY Kars P. Drenth, Manager Consulting Engineering Dynatest UK Ltd 3 Marquis Court, Marquis Drive Moira,

More information

Analysis of Paved Shoulder Width Requirements

Analysis of Paved Shoulder Width Requirements Analysis of Paved Shoulder Width Requirements Research Report RR-14-02 Prepared for Texas Department of Transportation Maintenance Division Prepared by Texas A&M Transportation Institute Emmanuel Fernando

More information

Long-term performance of flexible pavement structures in a changing climate

Long-term performance of flexible pavement structures in a changing climate Long-term performance of flexible pavement structures in a changing climate Jean-Pascal Bilodeau, ing., Ph.D. Research engineer, department of civil engineering, Laval University Guy Doré, ing. Ph.D. Professor,

More information

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN

GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN GEOSYNTHETIC-REINFORCED PAVEMENT SYSTEM : TESTING & DESIGN FILIPPO MONTANELLI TENAX SPA, ITALY AIGEN ZHAO TENAX CORPORATION, USA PIETRO RIMOLDI TENAX SPA, ITALY ABSTRACT A large scale experimental program

More information

Concrete Paving in NOVA Conventional and Pervious Concrete & Streets and Local Roads. Rod Meyers, PE, BASF Construction Chemicals

Concrete Paving in NOVA Conventional and Pervious Concrete & Streets and Local Roads. Rod Meyers, PE, BASF Construction Chemicals Concrete Paving in NOVA Conventional and Pervious Concrete & Streets and Local Roads Rod Meyers, PE, BASF Construction Chemicals How Thick Should The Pervious Concrete Pavement Be? ACI 552-10, Report on

More information

THE DEVELOPMENT OF STRUCTURAL DESIGN MODELS FOR FOAMED BITUMEN TREATED MATERIALS

THE DEVELOPMENT OF STRUCTURAL DESIGN MODELS FOR FOAMED BITUMEN TREATED MATERIALS THE DEVELOPMENT OF STRUCTURAL DESIGN MODELS FOR FOAMED BITUMEN TREATED MATERIALS F M LONG and H L THEYSE Transportek, CSIR, PO Box 395, Pretoria, 0001 INTRODUCTION The use of foamed bitumen treated materials

More information

Incorporating Recycling into Pavement Design Where does it Fit?

Incorporating Recycling into Pavement Design Where does it Fit? Incorporating Recycling into Pavement Design Where does it Fit? AEMA-ARRA-ISSA-PPRA Fall Meeting Niagara Falls, Ontario October 13-15, 2015 David Hein, P. Eng., Principal Engineer Vice-President, Transportation

More information

Inverted Pavement VULCAN MATERIALS COMPANY S EXPERIENCE

Inverted Pavement VULCAN MATERIALS COMPANY S EXPERIENCE erted Pavement VULCAN MATERIALS COMPANY S EXPERIENCE What is an erted Pavement 2 to 3¼ HMA 6 to 8 Unbound Aggregate Base Compacted to 100% + Modified Proctor 6 to 10 Cement-Treated Base ( 4% cement) Prepared

More information

Pavement Structural Design Practices Across Canada

Pavement Structural Design Practices Across Canada Canadian Strategic Highway Research Program (C-SHRP) Pavement Structural Design Practices Across Canada April 2002 C-SHRP Technical Brief # 23 In April 2001, the Transportation Association of Canada (TAC)

More information

PAVEMENT DESIGN SUMMARY TANGERINE ROAD CORRIDOR PROJECT INTERSTATE 10 TO LA CANADA DRIVE PIMA COUNTY, ARIZONA

PAVEMENT DESIGN SUMMARY TANGERINE ROAD CORRIDOR PROJECT INTERSTATE 10 TO LA CANADA DRIVE PIMA COUNTY, ARIZONA PAVEMENT DESIGN SUMMARY TANGERINE ROAD CORRIDOR PROJECT INTETATE 10 TO LA CANADA DRIVE PIMA COUNTY, ARIZONA Terracon Project No. 3105079, Revision 3 1.0 INTRODUCTION This report presents the results of

More information

Variations on In Situ Pavement Layer Properties

Variations on In Situ Pavement Layer Properties 16 TRANSPORTATION RESEARCH RECORD 1448 Influence of Stress s and al Variations on In Situ Pavement Layer Properties A. SAMY NOURELDIN Presented is a small-scale investigation of how stress levels and seasonal

More information

Development of a National ASCE Standard for Permeable Interlocking Concrete Pavement

Development of a National ASCE Standard for Permeable Interlocking Concrete Pavement Development of a National ASCE Standard for Permeable Interlocking Concrete Pavement David Hein, P. Eng. Vice-President, Transportation Applied Research Associates, Inc. Glenn Herold, P. Eng. Director

More information

A Laboratory Technique for Estimating the Resilient Modulus Variation of Unsaturated Soil Specimens from CBR and Unconfined Compression Tests

A Laboratory Technique for Estimating the Resilient Modulus Variation of Unsaturated Soil Specimens from CBR and Unconfined Compression Tests A Laboratory Technique for Estimating the Resilient Modulus Variation of Unsaturated Soil Specimens from CBR and Unconfined Compression Tests by: Mike Vogrig Adam McDonald Presented to Civil Engineering

More information

CONCRETE. Information AMERICAN CONCRETE PAVEMENT ASSOCIATION. Design of Concrete Pavement for Streets and Roads. Design Considerations

CONCRETE. Information AMERICAN CONCRETE PAVEMENT ASSOCIATION. Design of Concrete Pavement for Streets and Roads. Design Considerations CONCRETE Information AMERICAN CONCRETE PAVEMENT ASSOCIATION Design of Concrete Pavement for Streets and Roads Design and construction standards for streets and roadways should provide for pavements with

More information

AUSTROADS Pavement Design

AUSTROADS Pavement Design AUSTROADS Pavement Design Dr Bryan Pidwerbesky Group Technical Manager Fulton Hogan Ltd Load, W P 0 P 0 Pavement P 1 Subgrade P 1 2 Load, W Pavement Subgrade Compression Tension 3 Pavement Life Cycle Strategies

More information

Flexible pavement thickness design by Haryati Yaacob (fka, utm)

Flexible pavement thickness design by Haryati Yaacob (fka, utm) Flexible pavement thickness design by Haryati Yaacob (fka, utm) Flexible pavement thickness design Flexible Pavement Structure Factors to be Considered in Designing Flexible Pavement Thickness Thickness

More information

Overview and Implementation Issues

Overview and Implementation Issues Mechanistic-Empirical Pavement Design Guide Overview and Implementation Issues Athar Saeed, Ph.D., P.E. Senior Pavement Engineer October 7, 2004 My Purpose! Status! Overview of ME PDG! Products! Implementation

More information

CHAPTER 10 PAVEMENT DESIGN AND REPORT TABLE OF CONTENTS

CHAPTER 10 PAVEMENT DESIGN AND REPORT TABLE OF CONTENTS CHAPTER 10 PAVEMENT DESIGN AND REPORT TABLE OF CONTENTS Section Title Page 10.1 General... 10-1 10.1.1 Existing Streets...10-1 10.1.2 AASHTO Design...10-1 10.1.3 Pavement Type...10-1 10.1.4 Treated Subgrade...10-1

More information

General Information for Joints

General Information for Joints Design Manual Chapter 5 - Roadway Design 5G - PCC Pavement Joints 5G-1 General Information for Joints A. General Information The need for a jointing system in concrete pavements results from the desire

More information

SEMI-FLEXIBLE PAVEMENT SYSTEMS FOR HEAVY DUTY PAVEMENT SECTIONS

SEMI-FLEXIBLE PAVEMENT SYSTEMS FOR HEAVY DUTY PAVEMENT SECTIONS SEMI-FLEXIBLE PAVEMENT SYSTEMS FOR HEAVY DUTY PAVEMENT SECTIONS Pavement Design Methodology January 2002 Job 2426002 Ref.No. RP001.doc Prepd. JHH Edition 1 Checked JSU Date 2002-01-31 Appd. JHH RAMBØLL

More information

RESEARCH ON CEAC LONG-LIFE COMPOSITE PAVEMENT. (2. School of transportation, Wuhan University of Technology, Wuhan , China,

RESEARCH ON CEAC LONG-LIFE COMPOSITE PAVEMENT. (2. School of transportation, Wuhan University of Technology, Wuhan , China, RESEARCH ON CEAC LONG-LIFE COMPOSITE PAVEMENT Fu Jun 1, Yang Yanqing 2, Huang Jiabiao 3, Gou Yonggang 4, Wan Yaofang 5, Shu Huarong 6 (1. School of transportation, Wuhan University of Technology, Wuhan

More information

Introduction to Asphalt Pavement Design and Specifications

Introduction to Asphalt Pavement Design and Specifications Introduction to Asphalt Pavement Design and Specifications Ensuring Good Performance in Flexible Pavement Design and Construction: accomplished through: 1. Proper structural (thickness) design for the

More information

Mechanistic-Empirical Design of Chip- sealed Roads in SA. Christchurch workshop presentation 21/22 November 2002

Mechanistic-Empirical Design of Chip- sealed Roads in SA. Christchurch workshop presentation 21/22 November 2002 Mechanistic-Empirical Design of Chip- sealed Roads in SA Christchurch workshop presentation 21/22 November 2002 Structure of presentation Pavement materials Current SAMDM Variability and accuracy Distress

More information

We follow the 1993 version of the AASHTO Pavement Design Guide as closely as possible.

We follow the 1993 version of the AASHTO Pavement Design Guide as closely as possible. We follow the 1993 version of the AASHTO Pavement Design Guide as closely as possible. CAVEATS: a. The information on this document is not official Department policy but it represents good pavement design

More information

TEST ROAD THE ROAD OF EXPERIMENTAL PAVEMENT STRUCTURES

TEST ROAD THE ROAD OF EXPERIMENTAL PAVEMENT STRUCTURES TEST ROAD THE ROAD OF EXPERIMENTAL PAVEMENT STRUCTURES TABLE OF CONTENTS 3 Idea of the project Construction phase Pavement structures 15 Research methodology and equipment 10 11 Measurement of traffic

More information

Cement Treated Sub-Base For Bituminous Pavement

Cement Treated Sub-Base For Bituminous Pavement 6th International Conference on Recent Trends in Engineering & Technology (ICRTET - 2018) Cement Treated Sub-Base For Bituminous Pavement 1 Aher D.D., 2 Sangale Y. B., 3 Pagar S. R., 4 Yadnesh Patil, 5

More information

ACKNOWLEDGMENT OF SPONSORSHIP

ACKNOWLEDGMENT OF SPONSORSHIP ACKNOWLEDGMENT OF SPONSORSHIP This work was sponsored by the American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted

More information

Design of Flexible Pavement

Design of Flexible Pavement Design of Flexible Pavement 1. Anjali G. Atkar; 2.Shubham K. Tarase; 3.Kalindra U. Singh ; 4dinesh U. Singh & 5.Kailas D. Hagawane 1 Final year student, Department of civil, AST,Wardha,MH, atkaranjali@gmail.com

More information

100 Pavement Requirements Pavement Design Concepts 200-1

100 Pavement Requirements Pavement Design Concepts 200-1 Table of Contents 100 Pavement Requirements 100-1 101 Design Responsibility 100-1 102 Structural Design Period 100-1 102.1 Priority System Design Period... 100-1 102.2 General System Design Period... 100-2

More information

Analysis and Execution of WBM and Bituminous Premix Roads

Analysis and Execution of WBM and Bituminous Premix Roads Analysis and Execution of WBM and Bituminous Premix Roads Naveen.N 1, D.V.Manoj Kumar 2 Assistant Professor, Civil Engineering Department, Auroras Engineering College, Hyderabad, India 1 Site Engineer,

More information

Plantmix Asphalt Industry of Kentucky Winter Meeting February 10, 2011

Plantmix Asphalt Industry of Kentucky Winter Meeting February 10, 2011 Plantmix Asphalt Industry of Kentucky Winter Meeting February 10, 2011 AASHTO Guidelines for Geometric Design of Very Low-Volume Local Roads (2001) ADT 400 AASHTO Guide for Design of Pavement Structures

More information

This study was undertaken to provide the LA DOTD with an implementation package to facilitate adoption of the new AASHTO Guide for Design of Pavement

This study was undertaken to provide the LA DOTD with an implementation package to facilitate adoption of the new AASHTO Guide for Design of Pavement This study was undertaken to provide the LA DOTD with an implementation package to facilitate adoption of the new AASHTO Guide for Design of Pavement Structures. The study included evaluation of design

More information

The development of a plastic geo cellular subbase replacement system laboratory structural trials

The development of a plastic geo cellular subbase replacement system laboratory structural trials The development of a plastic geo cellular subbase replacement system laboratory structural trials S Wilson 1*, R Allen 2, P Tomlinson 2, N Abbott 3 1 EPG Ltd., Warrington Business Park, Unit CG11, Long

More information