FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES

Similar documents
Contents. Tables. Notation xii Latin upper case letters Latin lower case letters Greek upper case letters Greek lower case letters. Foreword.

Design of Steel-Concrete Composite Bridges

xiii Preface to the Fifth Edition Preface to the Second Edition Factors for Conversion to SI Units of

STEEL DESIGNERS MANUAL

DESIGN OF PLATED STRUCTURES

Contents EN :2008+A1:2011 (E) Page

CEN/TC 250- Published standards

Steel-concrete Composite Bridges Designing with Eurocodes

Fundamentals of Structural Design Part of Steel Structures

DIN EN : (E)

Steel structures I INTRODUCTION Steel structures Structural elements Structural design Design methods Euro code Chapter 2 LIMIT STATE DESIGN Limit

Update on ECCS TC10 and Eurocode 3 Efforts

TC 250 Structure. SC/WG for Existing Eurocodes SC4.EG1.1 SC4.EG1.2 SC4.EG2

Simple Complex Simple Complex

Design of Double Composite Bridges using High Strength Steel

AS/NZS :2017. Australian/New Zealand Standard. Bridge design. Part 6: Steel and composite construction AS/NZS :2017

w Whittles Publishing

Content. Introduction Amendments EN Other ongoing work Conclusions

BEAMS, PURLINS AND BRACING. 5.1 General The design of beams for strength is usually governed by one of the following limit states:

Prestressed Concrete

UNIT V PART A

2. Fatigue Strength of Welded Structural Components

Contents. Local (Structural) Stress Based Fatigue Design. Nominal Stress Ranges. Fatigue Design. Fatigue stress on a gusset

Inspection of Steel Girder Bridges

FIRE DESIGN OF STEEL STRUCTURES

Chapter 2 The Structural Hot-Spot Stress Approach to Fatigue Analysis

Eurocod 3: Proiectarea structurilor de oţel Partea 6: Căi de rulare Anexa naţională

DESIGN OF COLD-FORMED STEEL STRUCTURES

Analysis and Design of Steel

Dexter, R.J. and Fisher, J.W. Fatigue and Fracture Structural Engineering Handbook Ed. Chen Wai-Fah Boca Raton: CRC Press LLC, 1999

Stability and node-detailing of tubular steel arch bridges

AISI S E1 AISI STANDARD. Errata to North American Specification. for the Design of Cold-Formed. Steel Structural Members.

DESIGN OF THE NEW ARCH BRIDGE AT MIOVENI

SOUTH AFRICAN NATIONAL STANDARD

Lecture 10: Fatigue of welds

WELD DESIGN CONSIDERATIONS FOR BRIDGE GIRDERS WELD TYPE, QUALITY AND COST

On the problems of testing methodology used in case of the temporary steel through truss footbridge development

Potential for high-performance steel in a long span truss bridge

Fundamentals for Steel Constructions

Requirements for Use of Extremely Thick Steel Plates in Container Ships

Designer engineering specialisation (M4, M5 och M6)

Limit States Design in Structural Steel

Verification of Welded eaves moment connection of open sections

Eurocode 9: Design of aluminium structures

Main Contractors, Builders and Developers

DESIGN OF PLATED STRUCTURES

CRANES TABLE OF CONTENTS

Chapter 6: Structural Analysis

UPGRADING OF AN EXISTING CONCRETE-STEEL BRIDGE USING FIBRE REINFORCED POLYMER DECK- A FEASIBILITY STUDY

Item 442 Metal for Structures

Experimental and numerical validation of the technical solution of a brace with pinned connections for seismic-resistant multi-story structures

EXPERIMENTAL INVESTIGATIONS ON RESISTANCE SPOT WELDING OF BUILT-UP COLD-FORMED STEEL CORRUGATED WEB BEAMS

Numerical approach to the lateral buckling of steel tied-arch bridges

Potential Solutions- Background: Current Designs. Potential Solutions. Goals for Design What are we concerned about?

The Assessment of Steel Road Bridges and Structures

SECTION STRUCTURAL STEEL FRAMING

The basis of design rules is test results and although there is quite a lot available on HSS there are gaps compared to normal strength steel. The gen

CUAP 06.02/13. Blind rivets for metal members and sheeting

Steel Concrete Composite Railway Bridges with Continuous Decks

NORSOK STANDARD COMMON REQUIREMENTS STRUCTURAL DESIGN

Residual Stresses in Welded Elements: Measurements, Fatigue Analysis and Beneficial Redistribution

Stress-Laminated / Steel T-Beam Bridge System

Seminar Bridge Design with Eurocodes

Experiences of HSS structures in Scandinavia -HILONG Workshop-

STEEL DECKS FOR RAIL BRIDGES

Licensed Copy: Sheffield University, University of Sheffield, 18 December 2002, Uncontrolled Copy, (c) BSI

Contents. 1 Overview of Ship-Shaped Offshore Installations Front-End Engineering Preface Acknowledgments How to Use This Book.

Load Rating of a Steel Composite Girder Bridge

Design Of Steel Beams In Torsion Steelconstructionfo

Reconstruction of Space Steel Constructions

Selection of steel sub-grade in accordance with the Eurocodes

BS EN :2004 EN :2004 (E)

NZS 3404:1997 COMMITTEE REPRESENTATION

1. ASSIGNMENT GUIDELINE

Insulating Cellular Concrete Steel Joists Painting. A. America Society for Testing and Materials (ASTM):

FATIGUE ASSESSMENT OF SHIP STRUCTURES * * *

Research on seismic safety, retrofit, and design of a steel cable-stayed bridge

Chapter 1 PLATE BUCKLING IN STEEL STRUCTURES

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns

High Performance Steel Girders with Tubular Flanges

Diploma Examination Questions. (first-circle study)

STRUCTURAL DESIGN OF STEEL CONNECTIONS AND JOINTS

1. BS 5950: Structural use of steelwork in building Part 1: Code of practice for design of simple and continuous construction, BSI, 1990

GUIDELINES FOR FATIGUE STRENGTH ASSESSMENT OF OFFSHORE ENGINEERING STRUCTURES

Design Of Steel Beams In Torsion Steelconstructionfo

SHIP & OFFSHORE STRUCTURES

HIGH PERFORMANCE REINFORCEMENT PRODUCTS. Product Catalogue.

Fatigue strength of welded attachments with large eccentricity

Jonathan R. Torch Thesis Proposal Columbia University. Thesis Proposal. Columbia University Northwest Science Building

TABLE OF CONTENTS PREFACE

Figure 1 shows a typical composite beam for reference. The beam shown is a rolled beam section from the built-in section database.

DESIGN OF JOINTS IN STEEL AND COMPOSITE STRUCTURES

RELIABLE STEEL DISTRIBUTORS

New Troja Bridge in Prague Structural Solution of Steel Parts

FEM STRESS CONCENTRATION FACTORS FOR FILLET WELDED CHS-PLATE T-JOINT

The construction technology of Chongqing Chaotianmen Bridge

EXAMPLE STATEMENT OF SPECIAL INSPECTIONS (SSI)

8 Crane Runway Beams

NZS 3404:Part 1:2009. Steel structures Standard Part 1: Materials, fabrication, and construction. NZS 3404:Part 1:2009 New Zealand Standard

ULTRASONIC MEASUREMENT OF RESIDUAL STRESSES IN WELDED SPECIMENS AND STRUCTURES

Transcription:

FATIGUE DESIGN OF STEEL AND COMPOSITE STRUCTURES Eurocode 3: Design of Steel Structures Part 1-9 - Fatigue Eurocode 4: Design of Composite Steel and Concrete Structures Alain Nussbaumer Luis Borges Laurence Davaine ECCS CECM E K S @WILEY-BLACKWELL.r~~~e ~c~?p~~

TABLE OF CONTENTS FOREWORD PREFACE ACKNOLWLEDGMENTS SYMBOLOGY TERMINOLOGY IX Xl Xlll XV XIX 1.1 Basis offatigue design in steel structures 1 1.1.1 General 1 1.1.2 Main parameters influencing fatigue life 3 1.1.3 Expression offatigue strength 7 1.1.4 Variable amplitude and cycle counting 10 1.1.5 Damage accumulation 13 1.2. Damage equivalent factor concept 16 1.3. Codes of practice 18 1.3.1 Introduction 18 1.3.2 Eurocodes 3 and 4 19 1.3.3 Eurocode 9 22 1.3.4 Execution (EN 1090-2) 24 1.3.5 Other execution standards 30 1.4 Description ofthe structures used in the worked examples 31 1.4.1 Introduction 31 1.4.2 Steel and concrete composite road bridge (worked example 1) 32 1.4.2.1 Longitudinal elevation and transverse cross section 32 1.4.2.2 Materials and structural steel distribution 33 1.4.2.3 The construction stages 35

T\BLE 01' Cox'rt.xt S 1.4.3 Chimney (worked example 2) 35 1.4.3.1 Introduction 35 1.4.3.2 General characteristics ofthe chimney 38 1.4.3.3 Dimensions 01socket joint located at +11.490 m 39 1.4.3.4 Dimensions 01groundplatejoint with welded stiffeners located at the bottom, at +0.350m 40 1.4.3.5 Dimensions olmanhole located between +1.000 m and +2.200 m 40 1.4.4 Crane supporting structures (worked example 3) 41 1.4.4.1 Introduction 41 1.4.4.2 Actions to be considered 42 Chapter 2 ii APPLlCATIO~ RANGE AND LIMITATIONS 2.1 Introduction 2.2 Materials 2.3 Corrosion 2.4 Temperature 2.5 Loading rate 2.6 Limiting stress ranges 43 43 44 44 45 47 47 Chapter 3 J)[TEI OllNATION OF STRf:SSES ANn STRESS RANGES 51 3.1 Fatigue loads 51 3.1.1 Introduction 51 3.1.2 Road Bridges 52 3.1.2.1 Fatigue load modell (FLM1) 53 3.1.2.2 Fatigue load model 2 (FLM2) 53 3.1.2.3 Fatigue load model 3 (FLM3) 54 3.1.2.4 Fatigue load model 4 (FLM4) 56 3.1.2.5 Fatigue load model S (FLM5) 57 3.1.3 Railway bridges 58 3.1.4 Crane supporting structures 59

3.1.5 Masts, towers and chimneys 3.1.6 Silos and tanks 3.1.7 Tensile cable structures, tension components 3.1.8 Other structures 3.2 Damage equivalent factors 3.2.1 Coneept 3.2.2 Critical influence line 1enght 3.2.3 Road bridges 3.2.4 Railway bridges 3.2.5 Crane supporting structures 3.2.6 Towers, masts and chimneys 3.3 Ca1cu1ation ofstresses 3.3.1 Introduction 3.3.2 Relevant nominal stresses 3.3.3 Stresses in bolted joints 3.3.4 Stresses in we1ds 3.3.5 Nominal stresses In steel and concrete composite bridges 3.3.6 Nominal stresses in tubu1ar struetures (frames and trusses) 3.4 Modified nominal stresses and coneentration faetors 3.4.1 Generalities 3.4.2 Misalignements 3.5 Geometrie stresses (Structura1 stress at the hot spot) 3.5.1 Introduction 3.5.2 Determination using FEM modelling 3.5.3 Determination using formulas 3.6 Stresses in orthotropic decks 3.7 Calcu1ation of stress ranges 3.7.1 Introduction 3.7.2 Stress range in non-we1ded details 3.7.3 Stress range in boltedjoints 3.7.4 Stress range in welds 62 71 71 72 73 73 76 77 83 86 94 95 95 96 98 99 101 103 106 106 109 116 116 118 120 122 125 125 126 128 134 iii

T \BlI: 01' Co''I L:'\ rs 3.7.5 Multiaxial stress range eases 136 3.7.5.1 Introduction 136 3.7.5.2 Possible stress range cases 137 3.7.5.3 Proportional and non-proportional normal stress ranges 139 3.7.5.4 Non-proportional normal and shear stress ranges 139 3.7.6 Stress ranges in steel and eonerete eomposite struetures 141 3.7.7 Stress ranges in eonneetion deviees from steel and eonerete eomposite struetures 146 3.8 Modified nominal stress ranges 150 3.9 Geometrie stress ranges 152 Chaptcr 4 IV 4.1 Introduetion 163 4.1.1 Set offatigue strength eurves 163 4.1.2 Modified fatigue strength eurves 167 4.1.3 Size effeets on fatigue strength 169 4.1.4 Mean stress influenee 171 4.1.5 Post-weId improvements 171 4.2 Fatigue detail tables 172 4.2.1 Introduetion 172 4.2.2 Non-welded details classifieation (EN 1993-1-9, Table 8.1) 173 4.2.3 Welded plated details classifieation (general eomments) 175 4.2.4 Longitudinal welds, (built-up seetions, EN 1993-1-9 Table 8.2), including longitudinal butt welds 176 4.2.5 Transverse but welds (EN 1993-1-9'Table 8.3) 176 4.2.6 Welded attaehments and stiffeners (EN 1993-1-9 Table 8.4) and Ioad-carrying welded joints (EN 1993-1-9 Table 8.5) 177 4.2.7 Welded tubular details classifieation (EN 1993-1-9 Tables 8.6 and 8.7) 182 4.2.8 Orthotropic deek details classifieation (EN 1993-1-9 Tables 8.8 and 8.9) 182

I'HIU 01' ('OVI F'I P, 4.2.9 Crane girder details (EN 1993-1-9 Table 8.10) 183 4.2.10 Tension components details (EN 1993-1-11) 183 4.2.11 Geometrie stress categories (EN 1993-1-9, Annex B, TableB.l) 186 4.2.12 Particular case 01' web breathing, plate slendemess limitations 188 4.3 Determination 01' fatigue strength or life by testing 188 Chapter ::; 5.1 Generalities 5.2 Strategies 5.2.1 Safe life 5.2.2 Damage tolerant 5.3 Partial factors 5.3.1 Introduction 5.3.2 Action effects partial factor 5.3.3 Strength partial factor 5.4 Verifieation 5.4.1 Introduction 5.4.2 Verifieation using the fatigue limit 5.4.3 Verifieation using damage equivalent factors 5.4.4 Verifieation using damage aceumulation method 5.4.5 Verification 01' tension components 5.4.6 Verifieation using damage accumulation in ease oftwo or more eranes 5.4.7 Verification under multiaxial stress ranges 5.4.7.1 Original interaction criteria 5.4.7.2 General interaction criteria in EN 1993 5.4.7.3 Special case ofbiaxial normal stresses and shear stress ranges 5.4.7.4 Interaction criteria in EN 1994, welded studs 191 193 193 194 195 195 196 197 200 200 201 209 215 217 218 220 220 222 224 226 v

TABU: OE COl'TE"iTS Chapter 6 BRITTLE FRACTURE 231 6.1 Introduction 231 6.2 Steel quality 233 6.3 Relationship between different fracture toughness test results 235 6.4 Fracture concept in EN 1993-1-10 240 6.4.1 method for toughness verification 240 6.4.2 method for safety verification 243 6.4.3 Flaw size design value 245 6.4.4 Design value ofthe action effect stresses 247 6.5 Standardisation ofchoice ofmaterial: maximum allowable thicknesses 249 REFEREN(J':S..... 259 Annex,\ STANDARDS FOR STEEL CONSTRlJCTJON 271 VI Annex B FATIGUF: DETAIL TAHLES WITH COMMl~NTARY Introduction B.l. Plain members and mechanically fastenedjoints (EN 1993-1-9, 277 277 Table 8.1) 278 B.2. Welded built-up sections (EN 1993-1-9, Table 8.2) 281 B.3. Transverse butt welds (EN 1993-1-9, Table 8.3) 283 B.4. Attachments and stiffeners (EN 1993-1-9, Table 8.4) 286 B.5. Load carrying weldedjoints (EN 1993-1-9, Table 8.5) 288 B.6. Hollow sections (T:S12.5 mm) (EN 1993-1-9, Table 8.6) 291 8.7. Lattice girder node joints (EN 1993-1-9, Table 8.7) 293 B.8. Orthotropic decks - closed stringers (EN 1993-1-9, Table 8.8) 295 B.9. Orthotropic decks - open stringers (EN 1993-1-9, Table 8.9) 297 B.I0. Top flange to web junction of runway beams (En 1993-1-9, Table 8.10) 298

L\BLE 01< CO'\II:'\ rs B.11. Detail eategories for use with geometrie (hot spot) stress method (EN 1993-1-9, Tab1e B.1) 300 B.12. Tension eomponents 302 B.l3. Review of orthotropie deeks details and struetura1 analysis 304 Annex. C MAXIMUM PERl\HSSIBLE THICKNESS TABLES 309 Introduetion 309 C.1. Maximum permissib1e va1ues of element thiekness t in mm (EN 1993-1-10, Tab1e2.1) 310 C.2. Maximum permissib1e va1ues of element thiekness t in mm (EN 1993-1-12, Tab1e4) 311 VII