Development of a novel reformer for tar-free syngas production

Similar documents
Energy Procedia

Biomass gasification plant and syngas clean-up system

High Temperature Pre-Heating of Steam

Development of Tar Removal Technologies for Biomass Gasification using the By-products

Optimising design of secondary combustion chambers using CFD

Available online at ScienceDirect. Energy Procedia 105 (2017 )

EVALUATION OF AN INTEGRATED BIOMASS GASIFICATION/FUEL CELL POWER PLANT

ScienceDirect. Experiences from oxy-fuel combustion of bituminous coal in a 150 kw th circulating fluidized bed pilot facility

Long-term Operation of a Small-scale Gasification and Power Generation Plant for Chicken Manure

Available online at Energy Procedia 1 (2009) (2008) GHGT-9. Sandra Heimel a *, Cliff Lowe a

Evaluation of new combustion technologies for CO 2 and NO x reduction in steel industries

Thermal-chemical treatment of solid waste mixtures

Quality Enhancement of Producer Gas From Cassava Rhizome Using High Temperature Air-Steam Downdraft Gasification

THE HOT GAS DESULFURIZATION IN A COMPACT TWO BEDS SYSTEM INTEGRATED WITH COAL GASIFICATION AND FISHER-TROPSCH SYSTEM

A novel CO 2 -capturing natural gas combined cycle with LNG cold energy utilization

Available online at ScienceDirect. Energy Procedia 69 (2015 )

Numerical Examination of Acid Gas for Syngas and Sulfur Recovery

CHAPTER 1 INTRODUCTION

HIGH TEMPERATURE AIR AND STEAM GASIFICATION OF DENSIFIED BIOFUELS

Improved solutions for solid waste to energy conversion

Development Tendency and Prospect of High Performance Coal Utilization Power Generation System for Low Carbon Society

CO 2 recovery from industrial hydrogen facilities and steel production to comply with future European Emission regulations

Dry Low-NOx Combustion Technology for Novel Clean Coal Power Generation Aiming at the Realization of a Low Carbon Society

Biomethane production via anaerobic digestion and biomass gasification

Available online at ScienceDirect. Energy Procedia 93 (2016 )

The 3-D Numerical Simulation of a Walking Beam Type Slab Heating Furnace with Regenerative Burners

Innovative Zero-emission Coal Gasification Power Generation Project

Fresh air pre-cooling and energy recovery by using indirect evaporative cooling in hot and humid region a case study in Hong Kong

DETERMINATION OF AIR/FUEL AND STEAM/FUEL RATIO FOR COAL GASIFICATION PROCESS TO PRODUCE SYNTHESIS GAS

Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation technology

ScienceDirect. Techno-Economic Study of Adsorption Processes for Pre- Combustion Carbon Capture at a Biomass CHP Plant

JERNKONTORETS FORSKNING

Heat transfer optimization in a fluidized bed biomass gasification reactor

Questions. Downdraft biomass gasifier. Air. Air. Blower. Air. Syngas line Filter VFD. Gas analyzer(s) (vent)

Thermal Oxidation plants February 2016

DOE/ID/ Work Performed Under Contract No. DE-FC36-95ID13331

Development status of the EAGLE Gasification Pilot Plant

Effect of Air-fuel Ratio on the Combustion Characteristics of Syngas (H2:CO) in Directinjection Spark-ignition Engine

Slim POX Design for Gasification 4th International Freiberg Conference on IGCC & XtL Technologies 3-5. May 2010

Study Results in Demonstration Operation of Oxyfuel Combustion Boiler for CO 2 Capture

The Enerjetik RJ2 Gasifier. Do we finally have the right gasifying system for the Ceramic Industry?

Department of Mechanical Engineering, University of Cagliari Piazza d Armi, Cagliari, Italia

Available online at ScienceDirect. Energy Procedia 89 (2016 ) 85 92

1) ABSORPTION The removal of one or more selected components from a gas mixture by absorption is probably the most important operation in the control

Commercialization of Clean Coal Technology with CO2 Recovery

ScienceDirect. Oxyfuel combustion in a bubbling fluidized bed combustor

Synthetic Fuel Substitutes for Thermal Oxidizers Increased Sustainability, Reduced Natural Gas Consumption

New Power Plant Concept for Moist Fuels, IVOSDIG

Henning Bockhorn et al. / Energy Procedia 120 (2017)

Performance and NOx Emissions of Refinery Fired Heaters Retrofitted to Hydrogen Combustion

Available online at Energy Procedia 37 (2013 ) GHGT-11

Research Group Zero Emission Technologies

Theoretical Investigation on the Partial Load Feedwater Heating System with Thermal Vapor Compressor in a Coal-fired Power Unit

Effect of Choke Ring Position on Thermal and Fluid Flow in a SRU Thermal Reactor

A Combined Thermal System with an Air-cooled Organic Rankine Cycle (ORC)

Thermochemical Gasification of Agricultural Residues for Energetic Use

RESEARCH GROUP: Future Energy Technology

Available online at ScienceDirect. Procedia Engineering 150 (2016 )

Innovative H 2 S Gas Treatment Technology 2016 Gasification and Syngas Technologies Conference

Reactor design and optimization V. Spallina, F. Gallucci, M.C. Romano, P. Chiesa, G. Lozza, M. van Sint Annaland

Module 4: Gaseous Fuel. Lecture 28: Water Gas

Numerical and analytical analysis of groundwater influence on the pile ground heat exchanger with cast-in spiral coils

ScienceDirect. Experimental study of a single quartz tube solid particle air receiver

CFD and Wind Tunnel Study of the Performance of a Multi- Directional Wind Tower with Heat Transfer Devices

High Efficiency Furnace with Oxy-Fuel Combustion and Zero-Emission by CO2 Recovery

Production costs for different green gas qualities based on large-scale gasification of. biomass. Author: Bahlmann, R. Co-author(s): Roeterink, H.

two-stage gasifier(viking gasifier)

CFB Combustion Control System for Multiple Fuels

Using a Process Simulator to Improve Sulphur Recovery

Heat Storage Performance of a Honeycomb Ceramic Monolith

INVESTIGATIONS OF POTENTIALITIES OF BIOMASS GASIFICATION AT HTAG SYSTEM

Oxy-fuel combustion boiler for CO 2 capturing: 50 kw-class model test and numerical simulation

Model development of a blast furnace stove

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

Makoto Kobayashi. 20 May, 2014

DESIGN AND SIMULATION OF A TRAPPED-VORTEX COMBUSTION CHAMBER FOR GAS TURBINE FED BY SYNGAS

CFD modeling of Plasmatron Methane Reformer

CO 2 Capture and Storage: Options and Challenges for the Cement Industry

Hydrogen oxygen steam generator integrating with renewable energy resource for electricity generation

ScienceDirect. Energy recovery from biomass by fast pyrolysis

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

DRI Production Using Coke Oven Gas (COG): Results of the MIDREX Thermal Reactor System TM (TRS ) Testing and Future Commercial Application

Available online at ScienceDirect. Energy Procedia 78 (2015 )

A numerical simulation of the combustion processes of wood pellets

Conversion of Hydrocarbons into Syn-Gas Stimulated by Non-thermal Atmospheric Pressure Plasma

COMBUSTION DYNAMICS AT BIOMASS THERMOCHEMICAL CONVERSION DOWNSTREAM OF INTEGRATED GASIFIER AND COMBUSTOR

Author: Andrea Milioni Chemical Engineer On Contract Cooperator University UCBM Rome (Italy)

Effect of Fuel Particle Size on Emissions and Performance of Fluidized Bed Combustor

Available online at ScienceDirect. Procedia Engineering 102 (2015 )

Efficient and Flexible AHAT Gas Turbine System

Advanced combustion systems for tube manufacturing

MODELING OF CHAR COMBUSTION IN CO 2 /O 2 AND N 2 /O 2 ATMOSPHERES

UC Discovery /West Biofuels Project Research Plan. An Investigation of a Thermochemical Process for the Conversion of Biomass to Mixed Alcohol

Euan Evenson Praxair, Research and Development

Working group Gasification & Gas Cleaning

Available online at ScienceDirect. Energy Procedia 86 (2016 ) L.V. van der Ham*, P. Khakharia, E.L.V.

Analysis of combined process flow sheet modifications for energy efficient CO 2 capture from flue gases using chemical absorption

CECEBE Technologies Inc.

Available online at ScienceDirect. Procedia Engineering 146 (2016 )

The types of industrial exhaust streams that present particular pollution-control challenges include:

Transcription:

Available online at www.sciencedirect.com ScienceDirect Energy Procedia 75 (2015 ) 246 251 The 7 th International Conference on Applied Energy ICAE2015 Development of a novel reformer for tar-free syngas production Yosuke Tsuboi*, Shintaro Ito, Makoto Takafuji, Hiroaki Ohara, Toshiro Fujimori Abstract IHI Corporation, Isogo-ku ShinNakahara 1, Yokohama 235-8501, Japan A novel reformer using highly efficient heat regeneration for tar-free syngas production is developed and its performance demonstrated in a pilot-scale plant using steam gasification. Basic design parameters of the regenerative tar reformer, namely residence time and amount of oxidant are determined based on numerical results. It has been predicted that good performance could be achieved at an operation temperature about 1573 K, the residence time exceeding 4 sec and an oxidant addition of 12% of the syngas flow rate. The regenerative tar reformer so designed shows stable operation. Over 99% of light and heavy tars are reformed to gas in the case of 11.3% oxygen addition to syngas. Further it is seen that a reduction of oxygen consumption more than 30% compared to a conventional oxidation reformer can be achieved. The formation of a high temperature zone has a strong influence on the tar reforming efficiency. 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 2015 The Authors. Published Elsevier Ltd. Selection Peer-review and/or under responsibility peer-review of under Applied responsibility Energy Innovation of ICAE Institute Keywords: Tar reformer; regeneration; steam gasification 1 Introduction Gasification of solid feedstock for syngas production or heat and power generation increasingly attracts interest all over the world [1, 2]. Steam gasification in a fluidized bed gasifier generally yields a higher cold gas efficiency compared to gasifiers working under high temperature and pressure. Twin IHI gasifier called TIGAR has been developed by the authors [3] over the years. TIGAR can produce syngas of high calorific value using steam gasification in the circulating fluidized bed. However, the presence of tar from the process of low temperature gasification can cause pipe blockage and also reduces the overall cold gas efficiency of the process. It is, therefore, necessary to realize a high conversion of the tar to gases. One of the basic methods for tar conversion is partial oxidation reforming with high temperature combustion. On the other hand, there is the problem of reducing the total cold gas efficiency due to consumption of syngas, when large amounts of oxidant are used [4]. Thus, a novel tar reformer using the technology of highly efficient heat regeneration is developed in this study. * Corresponding author. Tel.: ++81-45-759-2867; fax: ++81-45-759-2208. E-mail address: yosuke_tsuboi@ihi.co.jp 1876-6102 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of Applied Energy Innovation Institute doi:10.1016/j.egypro.2015.07.319

Yosuke Tsuboi et al. / Energy Procedia 75 ( 2015 ) 246 251 247 The combination of regenerative burners [5] forms a heating system which allows self-heat recovery of exhaust gas in the combustion process. Cyclic regenerative combustion operates on the principle of short-term heat storage using ceramic heat exchangers. The flow direction is periodically changed by switching valves. Owing to reduction of fuel consumption and NO x emission, this system has been specifically adopted and popularized in high temperature furnaces. However, to the authors knowledge, the regenerative technique has not been applied to tar reforming yet. The main objective of this study is to design and show the performance of a regenerative tar reformer, which allows a decrease of oxygen supply and thereby an increase in cold gas efficiency. 2 Numerical methods and results Before starting with the detailed engineering, basic design parameters of the regenerative tar reformer have been determined based on numerical results. For this purpose two commercial software packages, CHEMKIN-Pro and FLUENT 15.0, have been used (conditions of simulation model are shown in Table 1). In a first step, the relationship between residence time and reactor temperature is investigated by perfectly stirred reactor (PSR) calculations using detailed chemistry including tar [6]. The results reveal the necessary temperature which has to be provided for effective tar reforming. Then, the amount of oxygen to achieve this temperature is estimated from 3D-calculations with simplified gas combustion chemistry [7]. All hydrocarbons with aromatic rings are regarded as tar components. In the 3Dcalculations, radiation is modeled by the Discrete Ordinate method; heat loss to the boundaries is evaluated by solving 1D-heat conduction through the walls. Syngas is supplied with the preheating temperature of 1170 K; composition and amount of tar are set with reference to experiments performed in the TIGAR pilot gasification facility using woody biomass. The amount of oxygen addition is expressed by the volumetric ratio R O2 of oxygen to syngas (Equation 1). Figure 1 shows the relation between residence time in the reactor and tar reforming efficiency (Equation 2) with reactor temperature as parameter. It is seen that the residence time necessary to accomplish almost complete tar reforming becomes shorter, when the reactor temperature is increased. Thus, a smaller reactor can be realized with higher reactor temperature. However, a high temperature must be obtained by oxidizing syngas, which diminishes the energy efficiency of the gasification process. R O2 = volume of oxygen / volume of syngas (wet) *100% (1) tar = (1 total mass of tar at outlet / total mass of tar at inlet) *100% (2) Table 1. Conditions of simulation model Reaction condition Software CHEMKIN-Pro FLUENT 15.0 Flow field Unsteady Steady state H 2 1.78 H 2 O 32.59 Gas CO 29.63 Inlet gas composition CO 2 18.00 condition, wt% C m H n 9.58 N 2 6.34 Tar 2.08 Temperature, 1170 Temperature condition Constant 1D heat conduction Reaction model Detailed chemistry [6] Reduced chemistry [7] Radiation model - Discrete Ordinate Emissivity - 0.5 Thermal conductivity, W/mK - 2.18 Fig. 1. Tar reforming efficiency vs. residence time.

248 Yosuke Tsuboi et al. / Energy Procedia 75 ( 2015 ) 246 251 gy ( ) Fig.2. Temperature distribution in the mixing zone for reactor with tangential oxygen supply. Fig.3. Cross-sectional mean gas temperature vs. residence time with amount of oxygen supply as parameter. Therefore, the reactor temperature cannot be raised arbitrarily and is set to 1573 K here. In this case, complete tar reforming can be achieved, when the residence time is longer than 4 sec (Fig.1). Steady 3D-calculations are performed to confirm the temperature distribution in the reactor. Note, that in practice, the temperature profile may be rather unsteady due to periodically changing the flow direction as explained in section 3. However, simply steady calculations are done here for two reasons. The unsteady behaviour is likely to continue for only a short time compared to the switching period. Secondly, the purpose of the calculation is to find the amount of oxygen (R O2 ) necessary to obtain a mean temperature, which is close to the reactor temperature required from the PSR studies. Contrary to general applications of regenerative burners, not oxygen but syngas is preheated here, since the volume of syngas is much larger than the volume of oxygen due to the partial oxidation reaction. Oxygen is injected to the reactor tangentially from four nozzles as indicated at the top of Fig. 2. It is seen, that a circular (cylindrical) temperature field is formed due to the slightly swirling flow induced by the oxygen nozzles, which is supposed to enhance the mixing of oxygen with syngas. Figure 3 shows the mean gas temperature versus residence time, where residence time has been evaluated as distance of cross-section from the top divided by the mean axial flow velocity. Note, that mean gas temperature and mean flow velocity are calculated as mass-weighted averages over the cross-section. The results show that the temperature first abruptly decreases due to low-temperature oxygen injection, but then quickly recovers because of exothermic reaction. After a local maximum slightly behind the oxygen injection, the temperature gradually decreases with time (distance), presumably due to heat loss to the wall. It is found that the reactor temperature exceeds 1573K over the entire length in the case of R O2 =12%. 3 Experimental methods and results The numerical results (Fig. 2) revealed that high temperatures are achieved around the oxygen streams. It is also confirmed (but not shown in the paper) that oxygen is completely consumed downstream. However, a relatively large area of low temperature exists near the top and upper side walls due to inadequate mixing. Therefore, in order to improve mixing the regenerative tar reformer has been designed with opposite supply streams, i.e. the swirl flow has been changed from oxygen to syngas as illustrated in Fig. 4. After being preheated by heat storage units, the strong swirling flow of syngas, which has an approximately ten times larger volume than oxygen, enters the reformer where it then mixes with the choked oxygen flow injected from 4 holes on the top of the reformer. Note, that the reactor is U-shaped in the present reformer to prevent a shortcut from inlet to outlet.

Yosuke Tsuboi et al. / Energy Procedia 75 ( 2015 ) 246 251 249 Reforming performance is checked by separating a portion of the syngas produced in a pilot gasification plant to the new reformer. The pilot plant has a feeding capacity of 6 ton/day. 30 Nm 3 /h of syngas is reformed here. The heat storage units are honeycomb structures, which have been selected from 4 different types by evaluating the effect of heat transfer area on heating performance using basic heat transfer theory, and by doing preliminary tests with the actual reformer. Four rotary valves are used to switch the flow direction of syngas in intervals of 30 or 60 sec. Soot blowers operated with nitrogen are mounted above and below the honeycombs. Gas is sampled at three locations named S 1 -S 3. In the present regenerative tar reformer, a little amount of gas is slipping, meaning that entering gas immediately goes out of the reactor through the same valve when the flow direction is switched. Therefore, the result of tar at station S 3 cannot always be 100%, even if the efficiency is 100% at S 2. This problem can be solved by using a three-tower-type reactor, as is already confirmed in practical use [8]. In this study, the purpose is to confirm the tar reforming efficiency for various amounts of oxygen; thus, only S 1 and S 2 are used for the evaluation of tar reforming performance. The total residence time of the reactor is 8 sec in case of reaction temperature of 1573K and syngas flow rate of 30Nm 3 /h; thus, the residence time up to S 2 is about 4 sec. Figure 5 shows trend data of the regenerative tar reformer. The switching cycle and R O2 are 60 sec and 11.3%, respectively. Gas temperature on right and left sides of the reactor periodically changes due to the flow switching. Temperature T 5 at the central position in the reactor is almost constant. (a) (b) Fig. 4. Schematic of regenerative tar reformer. (a) Diagram of the reformer. (b) Structure of syngas inlet/outlet. Fig. 5. Trend data of regenerative tar reformer. Fig. 6. Temperature distribution in flow direction.

250 Yosuke Tsuboi et al. / Energy Procedia 75 ( 2015 ) 246 251 The pressure in the reactor is stable in spite of periodic movement of switching valves, oxygen injection and soot blowing. This is the result of a well-considered control sequence, which takes the delay of opening-closing timing of the electric valves into account. The temperature distributions in flow direction for cycles L and R are shown in Fig.6. Temperature T P1 and T P2 are not measured but assumed to be the same as T 3 and T 4 of the reverse cycle (Fig.4). Although the inlet temperature of about 800 K is slightly lower than expected due to heat losses of the separated line between pilot plant and regenerative tar reformer, temperature augmentation of syngas by the heat storage units worked as predicted. Also the heat loss of the reformer itself is predictable. A noteworthy difference from the calculated temperature distribution (Fig. 3) is the shape of the profile, which is M-shaped in Fig.6, presumably due to the wall temperature staying high from the previous cycle. It can be said that this heat recirculation effect by the wall is one of the merits of the regenerative reactor. Figure 7 shows the relationship between R O2 and tar. The measurement of heavy and light tars is separated by the condensation temperature. Tar which condensed above 150 degree C is measured by weight and regarded as heavy tar, while that condensing below 150 degree C is regarded as light tar and detected by GCMS. The change of the sum of both tars and reforming efficiency with R O2 are shown in Fig.7. It is readily seen that tar increases with R O2 and more than 99% of light and heavy tars are reformed to gas in the case of R O2 =11.3%. This result indicates that a 30% reduction of oxygen supply compared to the results of a conventional oxidation reformer obtained by the authors can be achieved by the regenerative tar reformer. However, the temperature distribution (Fig.6) to accomplish the tar reforming efficiency of more than 99% is lower than the numerical prediction for the case of R O2 =12% (Fig.3). The main reason for this discrepancy is supposed to be caused by the different supply methods. In addition, there are a few experimental conditions which differ from the numerical conditions, e.g. the addition of Argon by 15vol% (dry) to the syngas for gas analysis reasons. Therefore, another calculation is performed using the experimental conditions as input data. Figure 8 reveals that the inversion of oxygen and syngas supplies results in a wider high temperature zone compared to Fig. 2, owing to improvement of mixing between syngas and oxygen. The simulated temperature shows good agreement with the experimental data (Fig.9). The maximal temperature exceeds 1650 K. In addition, the efficiency as calculated for PSR with detailed chemistry using the temperature distribution shown in Fig. 9 yields 82%, although tar is only 65% in case of reaction temperature less than 1400K (Fig.2). Therefore, it can be concluded that the formation of a high temperature zone is important for good performance of tar reforming, even though the residence time in this zone may be short. Fig.7. Tar reforming efficiency as experimentally verified in regenerative reformer.

Yosuke Tsuboi et al. / Energy Procedia 75 ( 2015 ) 246 251 251 gy ( ) Fig.8. Temperature distribution in the mixing zone for reactor with tangential syngas supply. 4 Conclusions Fig.9. Temperature distribution and tar reforming efficiency. (comparison of experiment with simulation) Regenerative reforming of light and heavy tars contained in syngas by steam gasification was investigated. In a first step, basic design parameters of the reformer such as appropriate size of the reactor and amount of oxidant were determined by using numerical predictions. The results showed that the appropriate average temperature in the reactor, necessary minimal residence time and oxygen flow rate are 1573 K, 4 sec and 12% of the syngas volume, respectively. Experiments with the new regenerative tar reformer proved stable operation and reforming efficiency exceeding 99% at an oxygen flow rate of 11.3%. This result also proved that the concept of regenerative reformer yields higher system efficiency, because the same high reforming efficiency as obtained with a conventional reformer could be achieved with 30% less oxygen consumption. It was found that the formation of a high temperature zone has a strong effect on high reforming efficiency. Acknowledgements This study has been performed as part of the project SNG Production from Woody Biomass Using Gasification Process, sponsored by the New Energy and Industrial Technology Development Organization (NEDO). References [1] J Corella, JM Toledo, G Molina. A review on dual fluidized-bed biomass gasifiers. Ind. Eng. Chem. Res. 2007;46:6831 6839. [2] K Umeki, K Yamamoto, T Namioka, K Yoshikawa. High temperature steam-only gasification of woody biomass. Applied Energy. 2010;87(3):791-798. [3] T Suda, Z Liu, M Takafuji, K Hamada, H Tani, Gasification Using Twin IHI Gasifier. IHI engeneering review, 2012;45 [4] J Han, H Kim. The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renewable and Sustainable Energy Reviews, 2008;12:397-416. [5] H Tsuji, A K Gupta, T Hasegawa, M Katsuki, K Kishimoto, M Morita, High Temperature Air Combustion, CRC Press, Boca Paton, FL, 2003. [6] K Narayanaswamy, G Blanquart, H Pitsch, A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame 2010;157:1879-1898. [7] W P Jones, R P Lindstedt, Global Reaction Schemes for Hydrocarbon Combustion, Combust. Flame, 1988;73:233-249. [8] https://www.ecom-jp.co.jp/en/product/dasshu.html