SELECTED PROPERTIES OF COMPOSITE COATINGS BASED ON ZrSiO 4. Technical University of Košice, Faculty of Mechamical Engineering, Košice, Slovakia

Similar documents
THERMAL SPRAY COATINGS

INVESTIGATION OF MICROSTRUCTURES OF PLASMA AND HVOF SPRAYED CARBIDE COATINGS

Advances in high velocity oxygen fuel spraying enhance long-term durability in Bosch Rexroth large hydraulic cylinder rods

DRY SLIDING WEAR PERFORMANCE OF THERMAL SPRAYED MICRO- NANO BORON CARBIDE COATING ON 410 GRADE STEEL

Thermal Durability and Abradability of Plasma Sprayed Al-Si-Polyimide Seal Coatings p. 85

POSSIBILITIES OF UTILIZATION HIGH VELOCITY OXYGEN FUEL (HVOF) COATINGS IN CONDITIONS OF THERMAL CYCLIC LOADING

Influence of Spraying Conditions on Properties of Zr-Based Metallic Glass Coating by Gas Tunnel Type Plasma Spraying

THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING

Lecture-52 Surface Modification Techniques: HVOF and Detonation Spraying

Effect of Ternary Gas Mixtures on the Microstructure of Refractory Metals and Alloys Deposited by Low Pressure Plasma Spraying

A Comparative Study for Wear Resistant of Multiple coating on Steel Alloy faces produced by hot spray

INVESTIGATION OF HVOF THERMAL SPRAYED MICRO B4C, MICRO- 1%, 2%, 3% NANO B4C COATINGS ON DRY SLIDING WEAR PERFORMANCE OF 410 GRADE STEEL

SURFACE BEHAVIOUR OF CU-AL AND CU INTERMETALLIC COATING PRODUCED BY ARC SPRAYED. Yıldız Y.ÖZBEK*, Nuray KARAKUŞ, Ekrem ALTUNCU, Fatih ÜSTEL

The principle Of Tungsten Inert Gas (TIG) Welding Process

METHODS OF COATING FABRICATION

Improvement of Mild Steel Surface Properties by Fly-ash + Quartz + Illmenite Composite Coating

C Mn Si P S Mo Cr

Analysis of Surface Properties of Al 2 O 3 Coating over Mild Steel Using Plasma Spray Process

HARD CHROME REPLACEMENT

PROCESS CONTROL OF THERMAL BARRIER COATING SYSTEM BY CURRENT VARIANT CHANGES TO ALTER THE MICROSTRUCTURAL AND MECHANICAL CHARACTERISTICS

Global Journal of Engineering Science and Research Management

Laser assisted Cold Spray

Available online at Fatigue Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application

STUDY ON HYDROXYAPATITE COATING ON BIOMATERIALS BY PLASMA SPRAY METHOD

Study on NiCr-Cr 3 C 2 Deposition Efficiency of Two Supersonic Spraying

Impact Fatigue Failure Investigation of HVOF Coatings

DEPOSITION OF ALUMINA (ALUMINUMOXIDE) NANOLAYER USING PLASMA TORCH

Analysis of Bending Stresses On Coating Materials by Experimental and FE Method

Journal of Faculty of Engineering & Technology

Microstructure and Mechanical Properties of HA/ZrO2 Coatings by Gas Tunnel Plasma Spraying.

THE TECHNOLOGY AND PROPERTIES OF COMBINED SPRAYED BARRIER COATINGS

METALLURGICAL JOINING OF STEEL SHEETS TREATED BY NITROOXIDATION BY A HYBRID CMT LASER PROCESS

MACROSTRUCTURE, MICROSTRUCTURE AND MICROHARDNESS ANALYSIS

Examination of tribological properties of oxide-polymer and carbide-polymer coatings formed by flame, plasma and HVOF spray processes

Manufacturing Process-I Prof. Dr. D.K. Dwivedi Department of Mechanical and Industrial Engineering Indian Institute of Technology, Roorkee

Properties and Peculiarities of Ceramic Coatings on the Al2O3 and ZrSiO4 Basis Formed by a New Multi-chamber Gas-dynamic Accelerator

Formation of Fe-base Metal Glass Coating by Gas Tunnel Type Plasma Spraying

Microstructure and Phase Composition of Titanium Coatings Plasma Sprayed with a Shroud

QUANTITATIVE MICROSTRUCTURE ANALYSIS OF DISPERSION STRENGTHENED Al-Al 4 C 3 MATERIAL BY EBSD TECHNIQUE

Surface Coating of Tungsten Carbide by Electric Exploding of Contact

Manufacturing Process - I Prof. Dr. D.K. Dwivedi Department of Mechanical & Industrial Engineering Indian Institute of Technology, Roorkee

Shrouding of Thermal Plasma Jets Generated by Gas-Water Torch

Cost-efficient wear / corrosion protective coatings using High Velocity Oxy Fuel Wire Spraying

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process

STUDY OF FAILURE PROCESSES IN SPECIMENS WITH DIFFERENT TYPE OF COATINGS

Cold Spray - Improved Corrosion and Wear Resistant Coatings by Cold Spray

Microstructural Studies of Thermal Spray Coating

International Journal of Advance Engineering and Research Development

TECHNOLOGY OF CREATION COATINGS BASED ON FeCrAlY.

QUALITY OF WELD CLADS APPLIED BY SAW METHOD IN ADHESIVE WEAR CONDITIONS

Transactions on Engineering Sciences vol 8, 1995 WIT Press, ISSN

Effect of Nano-Sized Fe 2 O 3 on Microstructure and Hydration Resistance of MgO-CaO Refractories

Preparation and Properties of High Chromium Cast Iron Matrix Composites Reinforced by Zirconium Corundum Particles

Lecture 16 Gas Tungsten Arc welding III & Plasma Arc Welding Keyword: 16.1 Selection of pulse parameters

SURFACE ALLOYING OF ALUMINUM WITH COPPER USING CO 2 LASER

Deposition of Amorphous Aluminium Powder Using Cold Spray

Internal Metallic Pipe Coatings for the Geothermal Industry

Thermal Spray Coatings in Severe Service Elaine Motyka 3/2/2017

STRUCTURAL AND FRACTURE CHARACTERISTICS OF NICKEL-BASED ALLOYS

Material Product Data Sheet Tungsten Carbide Nickel Chromium Self-Fluxing Powders

Properties of Fe-base Metal Glass Coatings Produced by Gas Tunnel Type Plasma Spraying

Controlled Residual Surface Contamination of γtial, Induction Melted in Ceramic Crucibles

ANALYSIS AND ASSESSMENT OF POWDER METALLURGY TECHNIQUES FOR ARMOUR ELEMENTS PRODUCTION

Epoxies Used in Tensile Testing: Film vs. Liquid-Why is There a Difference?

Application of Fly-ash Composite in Plasma Surface Engineering

Improving The Wear Resistance of Mechanical Harvester Basecutter Blades by Surface Engineering.

SURFACE TREATMENT OF SONOTRODE MATERIAL AW 7075

STRUCTURE AND PROPERTIES OF ALUMINUM ALLOYS WITH ADDITIONS OF TRANSITION METALS PRODUCED VIA COUPLED RAPID SOLIDIFICATION AND HOT EXTRUSION

Microstructure and property of Al 2 O 3 coating microplasma-sprayed using a novel hollow cathode torch

Functionally Graded Thermal Barrier Composite Coatings Formed by Gas Tunnel Type Plasma Spraying

CORROSION PROPERTIES OF CERMET COATINGS SPRAYED BY HIGH-VELOCITY OXYGEN-FUEL. Dragos UŢU, Iosif HULKA, Viorel-Aurel ŞERBAN, Hannelore FILIPESCU

Thermal spraying Terminology, classification

Influence of welding current in resistance spot welding on the properties of Zn coated steel DX51D

CHAPTER 2 - OBJECTIVES

Study on Machined Thermal Sprayed Coatings Adherence

Improvement of corrosion resistance of HVOF thermal sprayed coatings by gas shroud

ESTABLISHMENT OF PROCESS PARAMETERS AND TECHNOLOGY WORKING ELECTRIC ARC THERMAL SPRAYING OF COMPOSITE MATERIALS I.BUTNARIU, I.

EFFECT OF GTAW WELDING PARAMETERS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CARBON STEEL ALLOYS BY STELLITE 6 FILLER

Institute for Diagnostic Imaging Research

INTRO TO THERMAL SPRAY

Joining of C f /SiC composites with Niobium alloy

Structure Control of Plasma Sprayed Zircon Coating by Substrate Preheating and Post Heat Treatment

AIRCRAFT COLD SPRAY REPAIR COLD SPRAY REPAIR SERVICES

The Transition Layer in Platinum-Alumina

Diffusion Bonding of Semi-Solid (SSM 356) Cast Aluminum Alloy

NCERCAMP at the University of Akron. Major Equipment

Tungsten Coating for Thermal Fusion Material Produced by Gas Tunnel Type Plasma Spraying.

Plasma Spray Coating. Principles and Applications WILEY- WILEY-VCH Verlag GmbH & Co. KGaA. Robert B. Heimann VCH

The Comparison of Microstructure and Mechanical Properties of Flux-Cored Wires (FCW)

EVALUATION OF THE BOND STRENGT OF THE THERMALLY SPRAYED COATINGS

Lecture 29 DESIGN OF WELDED JOINTS VII

Materials Services Materials Trading. Powder Metals. Additive Manufacturing

High Rate Zinc Oxide Film Deposition by Atmospheric TPCVD Using Ar/Air Plasma Jets

Šárka Houdková a Radek Enžl b Olga Bláhová c Petra Pechmanová a Jitka Hlinková c

Copyright 1999 Society of Manufacturing Engineers FUNDAMENTAL MANUFACTURING PROCESSES Welding NARRATION (VO):

CLAD STAINLESS STEELS AND HIGH-NI-ALLOYS FOR WELDED TUBE APPLICATION

Remote Plasma Source Chamber Anodization

Repetition: Electrochemistry

Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia 2)

Dependence of Adhesion Strength of Plasma Spray on Coating Surface Properties

Transcription:

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 181 SELECTED PROPERTIES OF COMPOSITE COATINGS BASED ON ZrSiO 4 Janetta Brezinová 1) *, Anna Guzanová 1), Jozef Malejčík 1) 1) Technical University of Košice, Faculty of Mechamical Engineering, Košice, Slovakia Received: 27.06.2012 Accepted: 16.11.2012 *Corresponding author: e-mail: janetta.brezinova@tuke.sk, Tel.: +421 55 602 3542, Department of Technology and Materials, Faculty of Mechanical Engineering, Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia Abstract The article deals with the assessment of some properties of plasma sprayed coatings based on ZrSiO 4 doped with different volume fractions of metal dopant (Ni). The work was aimed on verification the possibility to replace the application of Ni interlayer by adding Ni directly to the ceramic powder and apply them together in a single technological operation. The coatings were studied from point of view of their structure and construction using light and electron microscopy, their porosity using image analysis and mercury porosimetry and also adhesion of the coatings in relation to the volume of dopant added. The best properties reached composite coating doped with 12 wt. % Ni. Keywords: plasma spraying, composite ceramic coatings, zircon silicate, adhesion, porosity 1 Introduction The main reason for the use of thermally sprayed coatings is surface protection. But in the recent years, there are more and more applications of these coatings as functional surfaces where are an alternative material between the use of thin films and bulk materials. In almost all industrial fields, such as power engineering, automotive, aerospace, chemical and petrochemical engineering too are thermally sprayed coatings dominant material. A lot of effort is put into the investigation of thermal spraying and its application in biomedicine [1, 2]. Practical impact of thermal spraying technology on product quality lies in technical and economical increasing of their properties in primary production and renovation too. Among the most important properties of thermally sprayed coatings are their resistance to mechanical wear, their excellent tribological properties (self-lubricating, sliding, sealing coatings), resistance to oxidation, corrosion and chemical attacks by aggressive environments and their resistance to extreme temperatures also. They find applications in case of adding dimensions or material missing, in electro - isolation coatings, electro - conductive coatings, biocompatible coatings, coatings with special physical properties (superconductivity, optics and resistance to radiation) and others [1, 3, 4-6]. Coatings produced by this technology can be applied to all conventional construction materials (ferrous and nonferrous metals). It means that it is not important the chemical composition of basic material. During the coating process, the basic material is not heated over the temperatures higher than 150 C - it means any deformation of coated parts and any degradation of structure due to thermal shocks of basic material. Generally, the process of coating creating can be characterized as heating and melting of additional material (powder,

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 182 wire, rod, cord or molten - bath form). Molten or semi molten particles are then accelerated, propelled and sprayed on the prepared basic surface. The results of particle impact onto the substrate surface are a partial or complete deformation of individual particles (flatting), their quickly cooling and solidification and finally transformation into lamellar heterogeneous structure. On the cross-section of thermally sprayed coatings it can be seen the formed boundaries between deformed particles and applied layers of coating. Apart from it, all thermally sprayed coatings contain very common porosity and sometimes in case of incorrect technological procedure some defects (cracks, micro - cracks), un-joined parts of coatings, unjoined layers of coatings, etc. [3, 7-9]. Nowadays, thermal spraying technology of ceramic coatings is very frequently possibility for improving the functional properties of mechanical parts and components and increasing their operational life. Apart from the common used and conventional method of high velocity oxy fuel spraying (HVOF), the plasma spraying technology with water arc stabilization offers several advantages. Plasma spraying technology with water arc stabilization is characterized by higher temperature plasma, high performance of coating application and so on. This method is particularly suitable for spraying of high fusible ceramic and composite coatings based on ceramic basis [1-3, 7, 8, 19-21]. The most common material for plasma spraying is oxide ceramics. It is a material which consists of one or predominantly one refractory oxide. Some of basic substances are already in nature in the form of oxides; others are prepared chemically or by thermal decomposition. Final properties of coatings are substantially different such as properties of raw materials. It is due to many factors that enter into the process from the flight of sprayed particles by plasma beam and in the process of coating formation. To enhance of certain properties of thermally sprayed coatings are used besides the basic component (often oxide) the dopants (plastic, metallic, ceramic) [1, 2]. Plasma spraying is very progressive variant of thermal spraying processes. It is characterized by high concentration of heat and high working temperature. For spraying of powdered materials, there are used many different equipments. They consist of complex parts, while the powerful spray unit is a plasma torch. According to a type of stabilization media there are plasma torches with gas and water stabilization of the arc. For plasma torches with gas stabilization of the arc it is much more important the effect of spraying parameters. Apart from amperage, voltage and velocity of plasma beam, an important role plays the amount of supplied, focusing and shielding gas, the shape and design of the nozzle, jets and diameter of tungsten electrode. The final properties of generated plasma beam are strongly dependent on a used stream. For an effective powder heating is substantial the value of enthalpy, i.e. a content of energy in the plasma. The rare gases have a relatively high temperature at a relatively small enthalpy; the molecular gases (H 2, N 2 ) have significantly higher enthalpy. According to used plasma gas, the temperature of gassed plasma reaches 7-15 000 K, in the case of helium up to 20 000 K. Commercially produced water stabilized plasma torches consist of a specially shaped arc chamber, rotary-cooled copper anode and graphite cathode. The mechanism of arc plasma formation lies in the evaporation of inner cylindrical wall of water vortex which surrounds the arc column. Evaporation is induced by absorption of part the Joule heat arc. The steam does not flow; its heating creates the pressure in the inside of arc chamber and the plasma is accelerated to the mouth of the nozzle. The properties of arc are controlled by processes that influence evaporation from the wall and by radial transport of energy from the centre of arc to

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 183 walls (inner surface of the water vortex). The resulting properties of the generated plasma beam are strongly dependent on a stream. The temperature of plasma arc with water stabilization reaches 30 000 K and above [1-3]. A zircon silicate (ZrSiO 4 ) exhibits properties such as high thermal shock resistance, good corrosion resistance, low wettability, etc. Its major application is in the production of rocket engines, aircraft turbines, as a structural material in nuclear reactors and similar applications Zircon is one of the technologically important oxide ceramic materials used for its refractoriness, its low thermal expansion and low thermal conductivity [9-13]. To increase adhesion and compensation of thermal expansion changes of the substrate often applies interlayer based on nickel. But using interlayer increase economic demands of the coating formation and often requires other technological equipment. The main aim of this contribution was to evaluate the structure, formation and selected properties of prepared ceramic coatings - conventional way (zircon silicate applied to nickel interlayer) and new way (composite of zircon silicate with different wt.% addition component (5, 12, 16 wt.%) of nickel to suggest and create the suitable combination of coating components (one composite coating) without using any interlayer for applications in the extreme conditions. 2 Experimental materials and methods As a substrate material the low carbon steel of grade S235JRG2 (EN 10025A1) was used. Tensile strength is 363-441 MPa and yield strength min 235 MPa. Chemical composition of steel substrate is shown in Table 1. Table 1 Chemical composition of steel substrate Chemical composition [wt.%] C max Mn max Al min S max P max N min Fe 0.17 1.400 0.020 0.045 0.045 0.009 balance Before thermal spraying the steel substrate was pre-treated by blasting technology. Based on previously acquired knowledge in our workplace the grit blasting media (hereafter BM) type brown corundum grain size (d z ) = 0.7 mm was used. Blasting was carried out on the pneumatic blasting equipment type TJVP 320. Blasting media was on the steel substrate applied with a pneumatic spray nozzle ( 9 mm) at air of pressure of 0.4 MPa. During blasting the necessary amount of blasting media was used and the measured area showed a uniform media distribution. Immediately after blasting, the selected thermal spraying technology was followed. In the first case, the nickel (Ni) interlayer was applied by flame spraying and then the layer of zircon silicate (ZrSiO 4 ) with plasma torch type WSP PAL - 160 with water plasma arc stabilization was deposited. In the second case the composite coatings (ZrSiO 4 + 5 wt. %, 12 wt. %, 16 wt. %) Ni) were also created by the already mentioned, plasma torch, which is characterized by its high performance (up to 160 kw) and high enthalpy plasma [7, 16, 17]. Distance deposit of samples from the mouth of the torched nozzle was 300 mm. Illustration of plasma thermal spraying is shown in Fig. 1. The basic formation and structure of selected ceramic coatings was documented on the fracture surfaces by scanning electron microscope (SEM) type JEOL JSM 7000-F. There was performed also EDX analysis of coatings. The basic microscopic observation was implemented by micro hardness measurement.

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 184 Fig. 1 Thermal spraying with water plasma arc stabilization, a) flame ignition, b) coating application Specific characteristics of the selected ceramic coatings were determined by coating adhesion measurement (pull-off test - EN 582). The principle of adhesion pull-off test was based on perpendicular coating separation from the steel substrate. The adhesion was expressed as a tension which was required to coating destroying. For the realization of this test the cylinders (dimensions: ø25 x 95 mm) with applied experimental coatings were made and glued coating were glued to the test counterpart (button-to-button bond configuration). There was measured also porosity of composite coatings using two different methods - based on image analysis of metallographic sections with software NIS Elements and by mercury porosimetry. Image analysis of metallographic sections of coatings consists in outlining of individual pores within evaluated area and software compute the area of enclosed pores (after set of image magnification). The theory of mercury porosimetry is based on the physical principle that a nonreactive, non-wetting liquid will not penetrate pores until sufficient pressure is applied to force its entrance [18]. Mercury is a non-wetting liquid for almost all substances and consequently it has to be forced into the pores of these materials. Pore size and volume quantification are accomplished by submerging the sample under a confined quantity of mercury and then increasing the pressure of the mercury hydraulically. The detection of the free mercury diminution in the penetrometer stem is based on a capacitance system, and the amount thus displaced is equal to that filling the pores. 3 Results To enhance the adhesion properties of ceramic coatings in generally it is commonly to use an interlayer under the outer coating. Is acceptable solution but it increases an economic demand of this technology [14]. A complex view onto investigated ceramic coatings provided scanning microscopy (SEM). On Fig. 2a) it can be seen the fracture surface of ceramic coating formed by ZrSiO 4 which is deposited on Ni interlayer. The fracture surface is very heterogeneous and consisted of lamellar structure with the flattened particles (splats) of different shapes and sizes which is typical for thermal spraying [3, 8, 14, 15]. The Fig. 2 b), c), d) documents the structure of composite coatings with Ni as the addition of metal part. The structure is heterogeneous too. The nickel particles are concentrated on the figures as bright areas alternating with ceramic component. The values of microhardness measurement of prepared ceramic coatings are documented in Table 2.

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 185 Table 2 Vickers microhardness (HV) of evaluated ceramic and composite coatings Type of ceramic coating HV 0.05 with Ni interlayer 789 ZrSiO 4 + 5 wt.% Ni 572 ZrSiO 4 + 12wt.% Ni 499 ZrSiO 4 + 16 wt.% Ni 463 The highest value of microhardness was shown by a ceramic coating ZrSiO 4 applied on the interlayer. Increasing of the metal dopant added to the ceramic matrix led to decreasing microhardness values (by about 320 units). Fig. 2 SEM images of fracture surfaces of ceramic coatings. a) ZrSiO 4 applied on Ni interlayer, b) ZrSiO 4 with additional component 5 wt. % Ni, c) ZrSiO 4 with additional component 12 wt. % Ni, d) ZrSiO 4 with additional component 16 wt. % Ni Surface of coatings is significantly heterogeneous, consisting of individual splats in the form of discs of different size and shape. Overheated particles produce spattering, from which particles of globular shape separate. Voids arise due insufficient deformability of newly formed layer. Pores present in the coating are small but numerous. Locally partially melted particles occur. The internal structure of the coating is formed by layering of particles to each other. It is a characteristic sandwich structure. The better coupling between individual layers (splats in the form of discs) the fewer content of defects e.g. pores, cavities, cold joints and the more anchoring wedges will be in a layer. The chemical composition of studied ceramic coatings was verified by Energy Dispersive X - ray (EDX) analysis. On the Fig. 3 the details of surface fractures and EDX spectrum of selected areas can be seen.

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 186 ZrSiO 4 applied on Ni interlayer ZrSiO 4 + 5 wt. % Ni ZrSiO 4 + 12 wt. % Ni ZrSiO 4 + 16 wt. % Ni Fig. 3 Surface fractures of ceramic coatings and their EDX spectrum

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 187 EDX analysis confirmed the increased proportion of the metal dopant in the ceramic matrix, which corresponds to the composition of powder mixtures applied. The results of coating adhesion measurement are (pull-off test) in Table 3. Table 3 Results of coating adhesion measurement (pull-off test) according to STN EN 582 Appearance of coatings after pull - off Fracture evaluation test ZrSiO 4 with Ni interlayer Adhesion strength 16 MPa ZrSiO 4 + 5 wt.% Ni Adhesion strength 16.5 MPa ZrSiO 4 + 12 wt. % Ni Adhesion strength 23.5 MPa ZrSiO 4 + 16 wt. % Ni Adhesion strength 16.5 MPa Fig. 4 Evaluation of closed porosity Adhesion of ZrSiO 4 with Ni interlayer and adhesion of Ni doped composite coatings (ZrSiO 4 + 5 wt. % Ni and ZrSiO 4 + 16 wt. % Ni) was approximately the same. The

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 188 greatest adhesion (23.5 MPa) was achieved by zircon silicate with 12 wt. % Ni. Increasing of Ni dopant content led to the decreasing of coating adhesion to level of pure ZrSiO 4 coating applied to Ni interlayer. The cohesive forces of used experimental adhesive (CHS EPOXY 1200 ) were not sufficient to remove the coating from the steel substrate across all prepared samples, so the appearance and character of coating fracture were evaluated in the presence of adhesive residues. It follows that the cohesion strength of applied coatings was excellent. Fig. 4 and Fig. 5 shows evaluation of coatings closed (ineffective) porosity by image analysis of metallographic sections. Closed porosity refers to pores which are closed in volume of coating and do not create connection between substrate and surrounding atmosphere. Fig. 5 Closed porosity of evaluated coatings Based on image analysis there was assessed size and number of closed pores in the coatings. The closed porosity reduces the cohesion strength of coatings under load. In the coating ZrSiO 4 applied on the interlayer more than 50 % pores of the total porosity are of size 100 µm. Coatings with the higher dopant content contained more pores of small size. The open porosity (effective) refers to the connection between substrate and surrounding atmosphere. It negatively affects the resistance of coatings in corrosive environments, allows penetration of aggressive components of corrosive environment into the coating, or to the substrate and causes under corroding. The presence of open pores in the coatings was evaluated by mercury porosimetry. The results are shown in Table 4. Realized analysis showed the lowest open porosity in coating ZrSiO 4 + 12 wt. % Ni.

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 189 Table 4 Open porosity of evaluated coatings determined by mercury porosimetry Sample Sample Interparticlparticular Intra- Humidity Coating weight volume [g] [cm 3 [%] ] PS [%] PS [%] Total PS [%] Ni + ZrSiO 4 1.41 0.226 9.4 0.3938 1.1257 1.5195 ZrSiO 4 +6%Ni 2.42 0.329 0.16 1.4097 0 1.4097 ZrSiO 4 +12%Ni 2.33 0.348 0 0.1704 0 0.1704 ZrSiO 4 +16Ni 1.59 0.214 0.96 1.6079 0 1.6079 4 Discussion The contribution was focused on research of basic formation, structure and selected properties of composite coatings on ZrSiO 4 basis with different addition (5, 12, 16 wt. %) of Ni component. Electron - microscopic observation (SEM) of ceramic coatings showed markedly heterogeneous surface of fracture surfaces which consist of different shapes and sizes of splats. The greatest adhesion (23.5 MPa) after pull - off test has composite coating zircon silicate with 12 wt. % of Ni as metallic addition component. Appearance and character of fracture surface were evaluated as a cohesive fracture in the adhesive. The highest microhardness was shown by ceramic coating ZrSiO 4 applied on the interlayer. Increasing of the metal dopant added to the ceramic matrix led to decreasing microhardness values (by about 320 units). With the increasing of dopant content size of closed pores in coatings decreased. There was noted presence of small pores, which positively affects the cohesion strength of coatings. Based on the realised analysis coating ZrSiO 4 + 12 wt. % Ni showed the lowest open porosity. Based on experimental results obtained it can be concluded that the elimination of interlayer for evaluated type coatings with a ceramic matrix is possible while maintaining their properties. Interlayer elimination allows reducing the economic and technological demands of coatings. The best properties reached composite coating doped with 12 wt. % Ni. It is characterized by good adhesion, relatively low porosity and relatively high hardness - about 500 HV 0.05. However, for a comprehensive assessment of the properties of the coating it is necessary to perform other experimental measurements aimed on assessment of its quality in terms of thermal cyclic stress and in tribological conditions based on simulations of real operating conditions, which coatings are really exposed to. 5 Conclusions Based on the experimental results, it is possible to formulate following conclusions: ceramic coatings showed heterogeneous fracture surfaces consist of splats with different shape and size, ZrSiO 4 with 12 wt. % of Ni showed the greatest adhesion of all evaluated coatings (cohesive fracture in the adhesive after pull-off test), the highest microhardness was shown in coating ZrSiO 4 applied on the interlayer; increasing of the metal dopant led to decreasing microhardness, size of closed pores in coatings decreased with increasing of dopant content composite coating ZrSiO 4 + 12 wt. % Ni showed the lowest open porosity, good adhesion, relatively low porosity and relatively high hardness. The realised research showed, that elimination of interlayer for evaluated type coatings with a ceramic matrix is possible while maintaining their properties.

Acta Metallurgica Slovaca, Vol. 18, 2012, No. 4, p. 181-190 190 References [1] R. B. Heimann: Plasma - Spray Coating. Principles and Applications, 2 nd ed., Wiley-VCH, Germany, 2008 [2] L. Pawlowski: The Science and Enginneering of Thermal Spray Coatings, 2 nd ed., John Wiley and Sons, England, 2008 [3] K. Šimunović: Thermal Spraying. Welding Engineering and Technology, 1 st ed., Eolss Publishers, Oxford, 2010 [4] J. Bidulská, R. Bidulský, M. Actis Grande: Acta Metallurgica Slovaca, Vol. 16, 2010, No. 3, p. 146-150 [5] D. Jakubéczyová, M. Hagarová, M. Vojtko: Acta Metallurgica Slovaca, Vol. 15, 2009, No. 1, p. 15-22 [6] M. Hagarová, O. Bláhová, J. Savková: Acta Metallurgica Slovaca, Vol. 15, 2009, No. 4, p. 221-227 [7] D. Jankura, D. Draganovská, J. Brezinová: Chemicke Listy, Vol. 105, 2011, No. 16, p. s542-s545 [8] D. Jankura, V. Bačová: Kovove Materialy, Vol. 47, 2009, No. 6, p. 359-366 [9] X. Q. Cao, R. Vassen, D. Stoever: Journal of the European Ceramic Society, Vol. 24, 2004, No. 1, p. 1-10 [10] P. Chráska, K. Neufuss, H. Herman: Journal of Thermal Spray Technology, Vol. 6, 1997, No. 4, p. 445-448 [11] A. Kaiser, M. Lobert, R. Telle: Journal of the European Ceramic Society, Vol. 28, 2008, No. 11, p. 2199-2211 [12] [20.5.2012] P. Ctibor, J. Sedláček, K. Neufuss: Plasma spraying and dielectric characterization of zirconium silicate. http://www.mtf.stuba.sk/docs/internetovy_casopis/ 2007/mimorcis/ctibor.pdf [13] G. M. Ingo, T. Caro: Acta Materialia, Vol. 56, 2008, No. 18, p. 5177-5187 [14] J. Brezinová, M. Ábel, J. Viňáš: Transfer Inovacii, Vol. 18, 2010, p. 230-232 (in Slovak) [15] K. Holmberg, A. Matthews: Coating Tribology. Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2 nd ed., Elsevier Science, Amsterdam, 2009 [16] T. Nakamura, Y. Liu: International Jornal of Solids and Structures, Vol. 44, 2007, p. 1990-2009 [17] J. Brezinová, A. Guzanová, I. Mamuzić: Acta Metallurgica Slovaca, Vol. 18, 2012, No. 1, p. 20-27 [18] B. Zhang, S. Li: Industrial & Engineering Chemistry Research, Vol. 34, 1995, No. 4, p. 1383-1386 [19] M.F. Morks, I. Cole, A. Kobayashi: Vacuum, Vol. 88, 2013, No. 1, p. 134-138. [20] R.G. Song, C. Wang, Y. Jiang, H. Li, G. Lu, Z.X. Wang: Journal of Alloys and Compounds, Vol. 544, 2012, p. 13-18 [21] B. F. Sørensen, H. Toftegaard, S. Linderoth, M. Lundberg, S. Feih: Journal of the European Ceramic Society, Vol. 32, 2012, No. 16, p. 4165-4176 Acknowledgement Authors are grateful for the support of experimental works by project KEGA No. 059TUKE- 4/2012. This contribution is also the result of the project implementation: Unique equipment for evaluation of tribocorrosion properties of the mechanical parts surfaces (ITMS: 26220220048) supported by the Research & Development Operational Programme funded by the ERDF.